An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition
Detailed chemistry tabulations built from canonical combustion problems, such as premixed or diffusion flamelets, have been the subject of multiple studies. Chemical look-up table construction strategies may rely on the definition of progress variables, which are usually obtained from combination of...
Saved in:
| Published in: | Combustion and flame Vol. 160; no. 4; pp. 776 - 785 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Inc
01.04.2013
Elsevier |
| Subjects: | |
| ISSN: | 0010-2180, 1556-2921 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Detailed chemistry tabulations built from canonical combustion problems, such as premixed or diffusion flamelets, have been the subject of multiple studies. Chemical look-up table construction strategies may rely on the definition of progress variables, which are usually obtained from combination of reactants and final products mass fractions. Finding a progress variable such that all relevant species can be retrieved from knowledge of it is not always straightforward; especially for fuel mixtures composed of more than a single hydrocarbon, or for simpler fuels but under conditions where the global reaction progress is not continuous, as in the case of cool-flame ignition. To overcome these difficulties, automated methods are discussed for defining progress by variables in which all species of a chemical scheme, even minor ones, are involved. This is done by formulating constraints applied to progress variable definition: they should evolve in a monotonic manner from fresh to burnt gases and the species derivative in progress variable space should stay moderate for tabulation accuracy. This set of constraints is discretized along chemical trajectories observed in laminar canonical flames, to be formulated in terms of an ensemble of inequalities, which are solved using optimization tools. The outcome is a set of weighting coefficients to be applied to every species of the detailed chemical scheme, in order to construct the progress -variable space. The methods are successfully applied to methane and kerosene premixed flamelets and to n-heptane self-ignition, under conditions with cool-flame effects. |
|---|---|
| AbstractList | Detailed chemistry tabulations built from canonical combustion problems, such as premixed or diffusion flamelets, have been the subject of multiple studies. Chemical look-up table construction strategies may rely on the definition of progress variables, which are usually obtained from combination of reactants and final products mass fractions. Finding a progress variable such that all relevant species can be retrieved from knowledge of it is not always straightforward; especially for fuel mixtures composed of more than a single hydrocarbon, or for simpler fuels but under conditions where the global reaction progress is not continuous, as in the case of cool-flame ignition. To overcome these difficulties, automated methods are discussed for defining progress by variables in which all species of a chemical scheme, even minor ones, are involved. This is done by formulating constraints applied to progress variable definition: they should evolve in a monotonic manner from fresh to burnt gases and the species derivative in progress variable space should stay moderate for tabulation accuracy. This set of constraints is discretized along chemical trajectories observed in laminar canonical flames, to be formulated in terms of an ensemble of inequalities, which are solved using optimization tools. The outcome is a set of weighting coefficients to be applied to every species of the detailed chemical scheme, in order to construct the progress -variable space. The methods are successfully applied to methane and kerosene premixed flamelets and to n-heptane self-ignition, under conditions with cool-flame effects. |
| Author | Vervisch, Luc Tao, Pham Dinh Niu, Yi-Shuai |
| Author_xml | – sequence: 1 givenname: Yi-Shuai surname: Niu fullname: Niu, Yi-Shuai organization: LMI, Normandie Université, Institut National des Sciences Appliquées de Rouen, France – sequence: 2 givenname: Luc surname: Vervisch fullname: Vervisch, Luc email: vervisch@coria.fr organization: CORIA – CNRS, Normandie Université, INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray, France – sequence: 3 givenname: Pham Dinh surname: Tao fullname: Tao, Pham Dinh organization: LMI, Normandie Université, Institut National des Sciences Appliquées de Rouen, France |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27152628$$DView record in Pascal Francis https://normandie-univ.hal.science/hal-01671904$$DView record in HAL |
| BookMark | eNqNkk1r3DAQhkVJoZu0_8EUCu3BrkbyZ05d0o8UFnppz2Isj7JabGsraReSX185G0LppXsSjJ73ZWbeuWQXs5uJsbfAC-BQf9wV2k39IUQz4kSF4CAKgIJD9YKtoKrqXHQCLtiKc-C5gJa_Ypch7DjnTSnlit2t58zto53sA0br5rzHQEOG-713qLdZdNlAEe2YinpLkw3R32cR-8P4yF9n60N0E8b0nyR3nkLIjugt9iMlqbGzXbjX7KXBMdCbp_eK_fr65efNbb758e37zXqT67JtYq6hHEpALjvT9bIB3g8daerKwTRt3UqpW922fYut4JKG0mA11GagDozoJYK8Yh9Ovlsc1d7bCf29cmjV7XqjllraWgMdL48L-_7EpsZ_HyhElcbTNI44kzsEBY2UaYV13fwfrUCWFRfVGagUUlRd2YmEvntCMWgcjcdZ2_DctmigErVoE3d94rR3IXgyzwhwtdyB2qm_70Atd6AA0rBVEn_6R6xtfMwu-pTreRafTxaUkjta8ipoS7OmwXrSUQ3OnmPzBwCV2xk |
| CODEN | CBFMAO |
| CitedBy_id | crossref_primary_10_1080_13647830_2023_2211537 crossref_primary_10_1016_j_combustflame_2015_06_015 crossref_primary_10_1007_s10494_015_9595_3 crossref_primary_10_1016_j_ijhydene_2015_10_086 crossref_primary_10_1016_j_combustflame_2021_111815 crossref_primary_10_1016_j_fuel_2016_09_005 crossref_primary_10_1080_13647830_2021_1926544 crossref_primary_10_1016_j_combustflame_2024_113722 crossref_primary_10_1016_j_combustflame_2020_02_018 crossref_primary_10_1080_13647830_2017_1279347 crossref_primary_10_1080_13647830_2019_1673902 crossref_primary_10_1016_j_combustflame_2019_06_010 crossref_primary_10_3390_en18010045 crossref_primary_10_1016_j_combustflame_2019_04_047 crossref_primary_10_1016_j_apenergy_2015_06_031 crossref_primary_10_1007_s10494_024_00537_3 crossref_primary_10_2514_1_J054740 crossref_primary_10_1080_13647830_2017_1392043 crossref_primary_10_1016_j_proci_2016_07_073 crossref_primary_10_1016_j_combustflame_2019_04_045 crossref_primary_10_1080_13647830_2021_1970232 crossref_primary_10_1016_j_ces_2015_05_042 crossref_primary_10_1016_j_combustflame_2016_12_008 crossref_primary_10_1080_13647830_2022_2070549 crossref_primary_10_1007_s10483_015_1997_7 crossref_primary_10_1016_j_combustflame_2017_01_027 crossref_primary_10_1016_j_ast_2024_109188 crossref_primary_10_1007_s10494_015_9681_6 crossref_primary_10_1016_j_ast_2022_107888 crossref_primary_10_1016_j_cja_2023_07_036 crossref_primary_10_3103_S1068335625601876 crossref_primary_10_1063_5_0255969 crossref_primary_10_1007_s10494_014_9579_8 crossref_primary_10_1007_s10494_023_00515_1 crossref_primary_10_1007_s10494_013_9520_6 crossref_primary_10_1016_j_fuel_2024_131657 crossref_primary_10_1007_s10494_020_00184_4 crossref_primary_10_1016_j_combustflame_2025_114152 crossref_primary_10_1080_00102202_2015_1074574 crossref_primary_10_1016_j_combustflame_2014_11_025 crossref_primary_10_1016_j_compfluid_2017_08_024 crossref_primary_10_1016_j_fuel_2013_10_070 crossref_primary_10_1080_13647830_2017_1290279 crossref_primary_10_1007_s10494_016_9777_7 crossref_primary_10_1016_j_applthermaleng_2018_11_082 crossref_primary_10_1016_j_combustflame_2019_09_013 crossref_primary_10_1016_j_pecs_2016_07_001 crossref_primary_10_1016_j_combustflame_2021_111841 crossref_primary_10_1007_s10494_015_9609_1 crossref_primary_10_1016_j_combustflame_2017_02_011 crossref_primary_10_1016_j_combustflame_2019_12_028 crossref_primary_10_1063_5_0228969 crossref_primary_10_1016_j_proci_2024_105441 crossref_primary_10_1016_j_combustflame_2024_113497 crossref_primary_10_1080_13647830_2022_2036373 crossref_primary_10_1016_j_proci_2018_06_168 crossref_primary_10_1007_s10494_014_9577_x crossref_primary_10_1016_j_combustflame_2021_111652 crossref_primary_10_1016_j_proci_2016_06_004 crossref_primary_10_1016_j_proci_2018_06_129 crossref_primary_10_1080_13647830_2018_1472390 crossref_primary_10_1007_s10494_016_9791_9 crossref_primary_10_1016_j_combustflame_2022_112125 crossref_primary_10_1038_s41598_024_64552_0 crossref_primary_10_1016_j_fuel_2017_04_049 crossref_primary_10_1016_j_combustflame_2016_08_030 crossref_primary_10_1016_j_combustflame_2022_112286 crossref_primary_10_1016_j_combustflame_2022_112082 crossref_primary_10_1016_j_combustflame_2019_08_014 crossref_primary_10_1016_j_combustflame_2014_04_010 |
| Cites_doi | 10.1016/j.proci.2008.06.111 10.1016/0010-2180(92)90009-E 10.1007/s10494-010-9279-y 10.1080/00102200490504571 10.1016/j.combustflame.2010.07.015 10.1016/j.proci.2004.08.279 10.1017/S0022112004008213 10.1080/13647830701242531 10.1002/kin.550260408 10.1080/713665229 10.1016/j.proci.2010.07.091 10.1016/j.combustflame.2009.11.007 10.1016/j.combustflame.2011.10.003 10.1016/j.proci.2008.06.147 10.1016/j.combustflame.2009.07.008 10.1016/S0082-0784(00)80594-9 10.1016/j.combustflame.2007.09.002 10.1016/j.combustflame.2008.02.006 10.1016/S0010-2180(01)00316-9 10.1016/S0082-0784(96)80195-0 10.1016/j.combustflame.2008.10.021 10.1016/S0010-2180(98)00132-1 10.1063/1.1747319 10.1016/0010-2180(88)90001-6 10.1080/00102200701741327 10.1016/j.combustflame.2008.01.009 10.1016/j.combustflame.2011.03.011 10.1016/j.combustflame.2008.05.007 10.1016/j.combustflame.2009.09.014 10.1080/13647830.2010.502248 10.1016/j.proci.2004.08.273 10.1016/j.proci.2010.07.021 10.1016/0010-2180(92)90034-M |
| ContentType | Journal Article |
| Copyright | 2012 The Combustion Institute. 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2012 The Combustion Institute. – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION IQODW 7SU 7TB 8FD C1K FR3 H8D L7M 7S9 L.6 1XC |
| DOI | 10.1016/j.combustflame.2012.11.015 |
| DatabaseName | CrossRef Pascal-Francis Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Applied Sciences |
| EISSN | 1556-2921 |
| EndPage | 785 |
| ExternalDocumentID | oai:HAL:hal-01671904v1 27152628 10_1016_j_combustflame_2012_11_015 S0010218012003562 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SU 7TB 8FD C1K FR3 H8D L7M 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c487t-c14d41a039f9b3710bd9ece94df786833c8c88b8a8203ed4fa5d6fde91f2b3a13 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315762800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-2180 |
| IngestDate | Tue Oct 14 20:29:59 EDT 2025 Thu Oct 02 05:27:01 EDT 2025 Tue Oct 07 10:00:09 EDT 2025 Mon Oct 06 18:07:52 EDT 2025 Mon Jul 21 09:16:52 EDT 2025 Sat Nov 29 03:11:45 EST 2025 Tue Nov 18 21:32:55 EST 2025 Fri Feb 23 02:27:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Detailed chemistry tabulation Flamelets Progress variables Turbulent combustion modeling Methane Laminar flame Hydrocarbon Ignition Kerosene Turbulent combustion Flame propagation Heptane Modeling Optimization Cool flame Spontaneous combustion Accuracy Flame structure Fuel mixture |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c487t-c14d41a039f9b3710bd9ece94df786833c8c88b8a8203ed4fa5d6fde91f2b3a13 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ORCID | 0000-0003-0313-2060 |
| PQID | 1323259492 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01671904v1 proquest_miscellaneous_1733556667 proquest_miscellaneous_1513450257 proquest_miscellaneous_1323259492 pascalfrancis_primary_27152628 crossref_primary_10_1016_j_combustflame_2012_11_015 crossref_citationtrail_10_1016_j_combustflame_2012_11_015 elsevier_sciencedirect_doi_10_1016_j_combustflame_2012_11_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Combustion and flame |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Peters (b0235) 1986 Janicka, Sadiki (b0085) 2005; 30 Domingo, Vervisch, Veynante (b0020) 2008; 152 Lam, Goussis (b0040) 1994; 26 Wang, Ribert, Domingo, Vervisch (b0065) 2010; 4 de Swart, Bastiaans, van Oijen, de Goey (b0100) 2010; 85 Duwig, Fuchs (b0180) 2008; 180 2009. Bekdemir, Somers, de Goey (b0105) 2011; 33 Mosek 6.0: The Mosek Optimization Tools Manual. Delhaye, Somers, van Oijen, de Goey (b0030) 2009; 32 Talley (b0130) 1992; 88 Cplex 12.1: Ilog cplex documentation, ilog ibm. Gicquel, Darabiha (b0015) 2000; 28 Gurobi Optimiser v4.5. Massias, Diamantis, Mastorakos, Goussis (b0135) 1999; 117 G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, Technical Report. Knudsen, Pitsch (b0045) 2009; 156 R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Technical Report, Report No. SAND87-8248 UC-4, Sandia National Laboratories, 1990. 1999. Bray (b0110) 1996; 26 Duwig (b0185) 2011; 15 Bradley, Kwa, Lau, Missaghi, Chin (b0115) 1988; 71 Lodier, Vervisch, Moureau, Domingo (b0070) 2011; 158 Richardson, Sankaran, Grout, Chen (b0090) 2010; 157 Vreman, Albrecht, van Oijen, Bastiaans (b0190) 2008; 153 CLP (Coin-or Linear Programming) Open-Source Simplex Solver, Coin-or. Bykov, Maas (b0035) 2007; 11 Vanderbei (b0140) 2001 2011. Sutherland, Parente (b0050) 2009; 32 Pierce, Moin (b0120) 2004; 504 Zeuch, Moreac, Ahmed, Mauss (b0225) 2008; 155 GNU Linear Programming Kit Reference Manual. Nguyen, Vervisch, Subramanian, Domingo (b0055) 2010; 157 Pope (b0010) 1997; 1 Ihme, See (b0060) 2010; 157 2003. Maas, Pope (b0125) 1992; 88 Luche, Reuillon, Boettner, Cathonnet (b0220) 2004; 176 A.E. Lutz, R.J. Kee, J.A. Miller, SAND87-8248UC-401, Sandia National Laboratories, 1995. Qsopt Reference Manual. Peters (b0005) 2000 Bilger, Pope, Bray, Driscoll (b0080) 2005; 30 Oijen, Lammers, Goey (b0025) 2001; 127 Subramanian, Domingo, Vervisch (b0195) 2010; 157 Matlab Documentation and User Guides, Mathworks. Boileau, Staffelbach, Cuenot, Poinsot, Bérat (b0095) 2008; 154 Najafi-Yazdi, Cuenot, Mongeau (b0075) 2012; 159 Ketelheun, Olbricht, Hahn, Janicka (b0200) 2011; 33 2008. Curtiss, Hischfelder (b0215) 1949; 17 Lodier (10.1016/j.combustflame.2012.11.015_b0070) 2011; 158 10.1016/j.combustflame.2012.11.015_b0155 10.1016/j.combustflame.2012.11.015_b0210 Najafi-Yazdi (10.1016/j.combustflame.2012.11.015_b0075) 2012; 159 Bilger (10.1016/j.combustflame.2012.11.015_b0080) 2005; 30 Gicquel (10.1016/j.combustflame.2012.11.015_b0015) 2000; 28 Delhaye (10.1016/j.combustflame.2012.11.015_b0030) 2009; 32 Janicka (10.1016/j.combustflame.2012.11.015_b0085) 2005; 30 10.1016/j.combustflame.2012.11.015_b0170 Subramanian (10.1016/j.combustflame.2012.11.015_b0195) 2010; 157 Curtiss (10.1016/j.combustflame.2012.11.015_b0215) 1949; 17 Nguyen (10.1016/j.combustflame.2012.11.015_b0055) 2010; 157 10.1016/j.combustflame.2012.11.015_b0150 10.1016/j.combustflame.2012.11.015_b0175 10.1016/j.combustflame.2012.11.015_b0230 Richardson (10.1016/j.combustflame.2012.11.015_b0090) 2010; 157 Bekdemir (10.1016/j.combustflame.2012.11.015_b0105) 2011; 33 Sutherland (10.1016/j.combustflame.2012.11.015_b0050) 2009; 32 Bray (10.1016/j.combustflame.2012.11.015_b0110) 1996; 26 Knudsen (10.1016/j.combustflame.2012.11.015_b0045) 2009; 156 Talley (10.1016/j.combustflame.2012.11.015_b0130) 1992; 88 Pierce (10.1016/j.combustflame.2012.11.015_b0120) 2004; 504 10.1016/j.combustflame.2012.11.015_b0165 10.1016/j.combustflame.2012.11.015_b0145 Maas (10.1016/j.combustflame.2012.11.015_b0125) 1992; 88 10.1016/j.combustflame.2012.11.015_b0205 Pope (10.1016/j.combustflame.2012.11.015_b0010) 1997; 1 Massias (10.1016/j.combustflame.2012.11.015_b0135) 1999; 117 Domingo (10.1016/j.combustflame.2012.11.015_b0020) 2008; 152 Duwig (10.1016/j.combustflame.2012.11.015_b0185) 2011; 15 10.1016/j.combustflame.2012.11.015_b0160 Boileau (10.1016/j.combustflame.2012.11.015_b0095) 2008; 154 de Swart (10.1016/j.combustflame.2012.11.015_b0100) 2010; 85 Peters (10.1016/j.combustflame.2012.11.015_b0005) 2000 Ketelheun (10.1016/j.combustflame.2012.11.015_b0200) 2011; 33 Luche (10.1016/j.combustflame.2012.11.015_b0220) 2004; 176 Zeuch (10.1016/j.combustflame.2012.11.015_b0225) 2008; 155 Vreman (10.1016/j.combustflame.2012.11.015_b0190) 2008; 153 Ihme (10.1016/j.combustflame.2012.11.015_b0060) 2010; 157 Peters (10.1016/j.combustflame.2012.11.015_b0235) 1986 Vanderbei (10.1016/j.combustflame.2012.11.015_b0140) 2001 Lam (10.1016/j.combustflame.2012.11.015_b0040) 1994; 26 Duwig (10.1016/j.combustflame.2012.11.015_b0180) 2008; 180 Bradley (10.1016/j.combustflame.2012.11.015_b0115) 1988; 71 Wang (10.1016/j.combustflame.2012.11.015_b0065) 2010; 4 Bykov (10.1016/j.combustflame.2012.11.015_b0035) 2007; 11 Oijen (10.1016/j.combustflame.2012.11.015_b0025) 2001; 127 |
| References_xml | – volume: 15 start-page: 325 year: 2011 end-page: 346 ident: b0185 publication-title: Combust. Sci. Technol. – reference: A.E. Lutz, R.J. Kee, J.A. Miller, SAND87-8248UC-401, Sandia National Laboratories, 1995. – volume: 32 start-page: 1563 year: 2009 end-page: 1570 ident: b0050 publication-title: Proc. Combust. Inst. – year: 2001 ident: b0140 article-title: Linear Programming: Foundations and Extensions – reference: Mosek 6.0: The Mosek Optimization Tools Manual. < – volume: 30 start-page: 537 year: 2005 end-page: 547 ident: b0085 publication-title: Proc. Combust. Inst. – volume: 26 start-page: 461 year: 1994 end-page: 486 ident: b0040 publication-title: Int. J. Chem. Kinet. – volume: 180 start-page: 453 year: 2008 end-page: 480 ident: b0180 publication-title: Combust. Sci. Technol. – volume: 30 start-page: 21 year: 2005 end-page: 42 ident: b0080 publication-title: Proc. Combust. Inst. – volume: 157 start-page: 43 year: 2010 end-page: 61 ident: b0055 publication-title: Combust. Flame – reference: R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Technical Report, Report No. SAND87-8248 UC-4, Sandia National Laboratories, 1990. – volume: 157 year: 2010 ident: b0060 publication-title: Combust. Flame – reference: G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, Technical Report. < – volume: 4 start-page: 541 year: 2010 end-page: 570 ident: b0065 publication-title: Combust. Theory Model. – volume: 117 start-page: 685 year: 1999 end-page: 708 ident: b0135 publication-title: Combust. Flame – volume: 17 start-page: 550 year: 1949 ident: b0215 publication-title: J. Chem. Phys. – volume: 152 start-page: 415 year: 2008 end-page: 432 ident: b0020 publication-title: Combust. Flame – volume: 159 start-page: 1197 year: 2012 end-page: 1204 ident: b0075 publication-title: Combust. Flame – volume: 176 start-page: 1935 year: 2004 end-page: 1963 ident: b0220 publication-title: Combust. Sci. Technol. – reference: CLP (Coin-or Linear Programming) Open-Source Simplex Solver, Coin-or. < – volume: 88 start-page: 83 year: 1992 end-page: 101 ident: b0130 publication-title: Combust. Flame – volume: 157 start-page: 579 year: 2010 end-page: 601 ident: b0195 publication-title: Combust. Flame – volume: 127 start-page: 2124 year: 2001 end-page: 2134 ident: b0025 publication-title: Combust. Flame – volume: 26 start-page: 1 year: 1996 end-page: 26 ident: b0110 publication-title: Proc. Combust. Inst. – year: 2000 ident: b0005 article-title: Turbulent Combustion – reference: , 2009. – reference: Qsopt Reference Manual. < – volume: 71 start-page: 109 year: 1988 end-page: 122 ident: b0115 publication-title: Combust. Flame – reference: >, 2011. – volume: 85 start-page: 473 year: 2010 end-page: 511 ident: b0100 publication-title: Flow Turbul. Combust. – volume: 154 start-page: 2 year: 2008 end-page: 22 ident: b0095 publication-title: Combust. Flame – volume: 156 start-page: 678 year: 2009 end-page: 696 ident: b0045 publication-title: Combust. Flame – volume: 28 start-page: 1901 year: 2000 end-page: 1908 ident: b0015 publication-title: Thevenin. D. Proc. Combust. Inst. – reference: >, 2008. – volume: 157 start-page: 506 year: 2010 end-page: 515 ident: b0090 publication-title: Combust. Flame – reference: Matlab Documentation and User Guides, Mathworks. < – volume: 33 year: 2011 ident: b0105 publication-title: Proc. Combust. Inst. – volume: 32 start-page: 1051 year: 2009 end-page: 1058 ident: b0030 publication-title: Proc. Combust. Inst. – volume: 504 start-page: 73 year: 2004 end-page: 97 ident: b0120 publication-title: J. Fluid Mech. – volume: 158 start-page: 2009 year: 2011 end-page: 2016 ident: b0070 publication-title: Combust. Flame – volume: 33 start-page: 2975 year: 2011 end-page: 2982 ident: b0200 publication-title: Proc. Combust. Inst. – volume: 11 start-page: 839 year: 2007 end-page: 862 ident: b0035 publication-title: Combust. Theory Model. – volume: 1 start-page: 41 year: 1997 end-page: 63 ident: b0010 publication-title: Combust. Theory Model. – reference: >, 1999. – reference: >, 2009. – reference: Cplex 12.1: Ilog cplex documentation, ilog ibm. – volume: 155 start-page: 651 year: 2008 end-page: 674 ident: b0225 publication-title: Combust. Flame – start-page: 1231 year: 1986 end-page: 1250 ident: b0235 article-title: Laminar flamelet concepts in turbulent combustion publication-title: Proceedings of the 21st Symposium (International) on Combustion, Irvine – reference: GNU Linear Programming Kit Reference Manual. < – reference: Gurobi Optimiser v4.5. < – volume: 153 start-page: 394 year: 2008 end-page: 416 ident: b0190 publication-title: Combust. Flame – reference: >, 2003. – volume: 88 start-page: 239 year: 1992 end-page: 264 ident: b0125 publication-title: Combust. Flame – volume: 32 start-page: 1051 issue: 1 year: 2009 ident: 10.1016/j.combustflame.2012.11.015_b0030 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.06.111 – volume: 88 start-page: 83 year: 1992 ident: 10.1016/j.combustflame.2012.11.015_b0130 publication-title: Combust. Flame doi: 10.1016/0010-2180(92)90009-E – ident: 10.1016/j.combustflame.2012.11.015_b0165 – volume: 85 start-page: 473 issue: 3/4 year: 2010 ident: 10.1016/j.combustflame.2012.11.015_b0100 publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-010-9279-y – volume: 176 start-page: 1935 issue: 11 year: 2004 ident: 10.1016/j.combustflame.2012.11.015_b0220 publication-title: Combust. Sci. Technol. doi: 10.1080/00102200490504571 – ident: 10.1016/j.combustflame.2012.11.015_b0230 – volume: 157 issue: 10 year: 2010 ident: 10.1016/j.combustflame.2012.11.015_b0060 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2010.07.015 – volume: 30 start-page: 537 issue: 1 year: 2005 ident: 10.1016/j.combustflame.2012.11.015_b0085 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2004.08.279 – year: 2000 ident: 10.1016/j.combustflame.2012.11.015_b0005 – volume: 504 start-page: 73 year: 2004 ident: 10.1016/j.combustflame.2012.11.015_b0120 publication-title: J. Fluid Mech. doi: 10.1017/S0022112004008213 – start-page: 1231 year: 1986 ident: 10.1016/j.combustflame.2012.11.015_b0235 article-title: Laminar flamelet concepts in turbulent combustion – volume: 11 start-page: 839 issue: 6 year: 2007 ident: 10.1016/j.combustflame.2012.11.015_b0035 publication-title: Combust. Theory Model. doi: 10.1080/13647830701242531 – volume: 26 start-page: 461 year: 1994 ident: 10.1016/j.combustflame.2012.11.015_b0040 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.550260408 – volume: 1 start-page: 41 year: 1997 ident: 10.1016/j.combustflame.2012.11.015_b0010 publication-title: Combust. Theory Model. doi: 10.1080/713665229 – volume: 33 issue: 2 year: 2011 ident: 10.1016/j.combustflame.2012.11.015_b0105 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.07.091 – volume: 157 start-page: 506 issue: 3 year: 2010 ident: 10.1016/j.combustflame.2012.11.015_b0090 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.11.007 – ident: 10.1016/j.combustflame.2012.11.015_b0175 – volume: 159 start-page: 1197 issue: 3 year: 2012 ident: 10.1016/j.combustflame.2012.11.015_b0075 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.10.003 – ident: 10.1016/j.combustflame.2012.11.015_b0150 – volume: 32 start-page: 1563 issue: 1 year: 2009 ident: 10.1016/j.combustflame.2012.11.015_b0050 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.06.147 – volume: 157 start-page: 43 issue: 1 year: 2010 ident: 10.1016/j.combustflame.2012.11.015_b0055 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.07.008 – volume: 28 start-page: 1901 year: 2000 ident: 10.1016/j.combustflame.2012.11.015_b0015 publication-title: Thevenin. D. Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80594-9 – volume: 152 start-page: 415 issue: 3 year: 2008 ident: 10.1016/j.combustflame.2012.11.015_b0020 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2007.09.002 – volume: 154 start-page: 2 issue: 1/2 year: 2008 ident: 10.1016/j.combustflame.2012.11.015_b0095 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.02.006 – ident: 10.1016/j.combustflame.2012.11.015_b0145 – ident: 10.1016/j.combustflame.2012.11.015_b0170 – volume: 127 start-page: 2124 issue: 3 year: 2001 ident: 10.1016/j.combustflame.2012.11.015_b0025 publication-title: Combust. Flame doi: 10.1016/S0010-2180(01)00316-9 – ident: 10.1016/j.combustflame.2012.11.015_b0160 – ident: 10.1016/j.combustflame.2012.11.015_b0210 – volume: 26 start-page: 1 year: 1996 ident: 10.1016/j.combustflame.2012.11.015_b0110 publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(96)80195-0 – volume: 156 start-page: 678 issue: 3 year: 2009 ident: 10.1016/j.combustflame.2012.11.015_b0045 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.10.021 – volume: 15 start-page: 325 issue: 3 year: 2011 ident: 10.1016/j.combustflame.2012.11.015_b0185 publication-title: Combust. Sci. Technol. – year: 2001 ident: 10.1016/j.combustflame.2012.11.015_b0140 – volume: 117 start-page: 685 issue: 4 year: 1999 ident: 10.1016/j.combustflame.2012.11.015_b0135 publication-title: Combust. Flame doi: 10.1016/S0010-2180(98)00132-1 – ident: 10.1016/j.combustflame.2012.11.015_b0155 – volume: 17 start-page: 550 year: 1949 ident: 10.1016/j.combustflame.2012.11.015_b0215 publication-title: J. Chem. Phys. doi: 10.1063/1.1747319 – volume: 71 start-page: 109 issue: 2 year: 1988 ident: 10.1016/j.combustflame.2012.11.015_b0115 publication-title: Combust. Flame doi: 10.1016/0010-2180(88)90001-6 – volume: 180 start-page: 453 issue: 3 year: 2008 ident: 10.1016/j.combustflame.2012.11.015_b0180 publication-title: Combust. Sci. Technol. doi: 10.1080/00102200701741327 – volume: 153 start-page: 394 issue: 3 year: 2008 ident: 10.1016/j.combustflame.2012.11.015_b0190 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.01.009 – volume: 158 start-page: 2009 issue: 10 year: 2011 ident: 10.1016/j.combustflame.2012.11.015_b0070 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.03.011 – volume: 155 start-page: 651 year: 2008 ident: 10.1016/j.combustflame.2012.11.015_b0225 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.05.007 – volume: 157 start-page: 579 issue: 3 year: 2010 ident: 10.1016/j.combustflame.2012.11.015_b0195 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.09.014 – volume: 4 start-page: 541 issue: 14 year: 2010 ident: 10.1016/j.combustflame.2012.11.015_b0065 publication-title: Combust. Theory Model. doi: 10.1080/13647830.2010.502248 – ident: 10.1016/j.combustflame.2012.11.015_b0205 – volume: 30 start-page: 21 issue: 1 year: 2005 ident: 10.1016/j.combustflame.2012.11.015_b0080 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2004.08.273 – volume: 33 start-page: 2975 issue: 2 year: 2011 ident: 10.1016/j.combustflame.2012.11.015_b0200 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.07.021 – volume: 88 start-page: 239 year: 1992 ident: 10.1016/j.combustflame.2012.11.015_b0125 publication-title: Combust. Flame doi: 10.1016/0010-2180(92)90034-M |
| SSID | ssj0007433 |
| Score | 2.372481 |
| Snippet | Detailed chemistry tabulations built from canonical combustion problems, such as premixed or diffusion flamelets, have been the subject of multiple studies.... |
| SourceID | hal proquest pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 776 |
| SubjectTerms | Applied sciences Automated chemical speciation Combustion Combustion. Flame Construction Derivatives Detailed chemistry tabulation Energy Energy. Thermal use of fuels Engineering Sciences Exact sciences and technology Flamelets Fluids mechanics gases Ignition kerosene Mechanics Methane Progress variables Tabulation Theoretical studies. Data and constants. Metering Trajectories Turbulent combustion modeling |
| Title | An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition |
| URI | https://dx.doi.org/10.1016/j.combustflame.2012.11.015 https://www.proquest.com/docview/1323259492 https://www.proquest.com/docview/1513450257 https://www.proquest.com/docview/1733556667 https://normandie-univ.hal.science/hal-01671904 |
| Volume | 160 |
| WOSCitedRecordID | wos000315762800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1556-2921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007433 issn: 0010-2180 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ti9MwGA9zJ6iI6Kk4X44qfpPK2qZNIvhhHCenjCF4HvetpEnretzacWvH_R3-xT5pXrY57pyCX8oISbb0-eXJ78meF4TeMswzLJJMuQ1KH0tMfRpz7seSC6HypYkuz_bpmEwm9OyMfe31ftpYmOUFqSp6dcXm_1XU0AbCVqGzfyFuNyk0wGcQOjxB7PDcSfAjIICgB2YmwNJX55R0ucMV19Ruo9AobLW3dw3PTB2v7qawbWpgsrnU7ltKGS7BpjZRVkVZlU6cNslBPctUXTDj21wAzhxiJmXbKfrS_zZteWmbT5WWWuhKVONWrK4Qan3Rw2egj6vp-rWEKhHhvFmMqgUFD_xhuKFqde0Agym8pjgJSdbOYKLL-Gypd33TcK6koxbVLUa554XvVSZWHRe6mVP7t7POeSBa57bzdH2uVM0FRlE6VHkL9kISM9pHe6PPR2df3PkOnEv7LZgF2lS2ndfgdb_sOtpza6r8b-_P-QK2ZKFrqWzRgo7rnDxED4yR4o00uB6hXl7tozuHFi376N5aGsvH6Meo8rYh51nIeU3tWch5DnLeCnIfPAc4zwLOs4DzVoB7gr5_Ojo5PPZNAQ9fgB3c-CKAzR_wYcQKlkXAZTPJcpEzLAtCExpFggpKM8qBhka5xAWPZVLInAVFmEU8iJ6iflVX-TPk4QKThEBbFkkMeofKYpgxsIfDPCFM4gFi9v2mwmS3V0VWLtI_S3qAIjd2rnO87DTqoxVjatiqZqEpoHWn8W9A9u4LVZr349E4VW0qNAiIOl4GA3SwAQ3XPSRAvJOQDtBri5UUxKf-7eNVXreLNIjAWIoZZuENfeIgwjGYPeSGPiQCmyRJEvL8n97TC3R3pR9eon5z2eav0G2xbMrF5YHZXL8Adm_-gg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization-based+approach+to+detailed+chemistry+tabulation%3A+Automated+progress+variable+definition&rft.jtitle=Combustion+and+flame&rft.au=Niu%2C+Yi-Shuai&rft.au=Vervisch%2C+Luc&rft.au=Tao%2C+Pham+Dinh&rft.date=2013-04-01&rft.issn=0010-2180&rft.volume=160&rft.issue=4&rft.spage=776&rft.epage=785&rft_id=info:doi/10.1016%2Fj.combustflame.2012.11.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2012_11_015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |