Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization
•A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context information.•Results achieved by our method are clinically acceptable.•Only 1 min to complete both tasks of bone segmentation and landmark digitizatio...
Uložené v:
| Vydané v: | Medical image analysis Ročník 60; s. 101621 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.02.2020
Elsevier BV |
| Predmet: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context information.•Results achieved by our method are clinically acceptable.•Only 1 min to complete both tasks of bone segmentation and landmark digitization.
[Display omitted]
Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization. |
|---|---|
| AbstractList | Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization. •A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context information.•Results achieved by our method are clinically acceptable.•Only 1 min to complete both tasks of bone segmentation and landmark digitization. [Display omitted] Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization. Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization.Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization. |
| ArticleNumber | 101621 |
| Author | Liu, Mingxia Wang, Li Shen, Steve Guo-Fang Yuan, Peng Xia, James J. Chen, Ken-Chung Shen, Dinggang Chen, Si Li, Jianfu Tang, Zhen Zhang, Jun |
| AuthorAffiliation | b Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100191, China a Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, 27599, USA d Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea c Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, Texas 77030, USA |
| AuthorAffiliation_xml | – name: c Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, Texas 77030, USA – name: b Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100191, China – name: d Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea – name: a Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, 27599, USA |
| Author_xml | – sequence: 1 givenname: Jun surname: Zhang fullname: Zhang, Jun email: xdzhangjun@gmail.com organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 2 givenname: Mingxia surname: Liu fullname: Liu, Mingxia email: mingxia_liu@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li email: li_wang@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 4 givenname: Si surname: Chen fullname: Chen, Si organization: Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100191, China – sequence: 5 givenname: Peng surname: Yuan fullname: Yuan, Peng organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 6 givenname: Jianfu surname: Li fullname: Li, Jianfu organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 7 givenname: Steve Guo-Fang surname: Shen fullname: Shen, Steve Guo-Fang organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 8 givenname: Zhen surname: Tang fullname: Tang, Zhen organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 9 givenname: Ken-Chung surname: Chen fullname: Chen, Ken-Chung organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 10 givenname: James J. surname: Xia fullname: Xia, James J. email: jxia@houstonmethodist.org organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 11 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dinggang_shen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31816592$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUhS1URB_wC5CQJTZsMviRh7MAqRrxkiqxgbXlODeDU8cutjO0_HqcSRlBF7CxLd_vXJ17zzk6cd4BQs8p2VBC69fjZoLeqA0jtD38MPoInVFe00KUjJ8c37Q6RecxjoSQpizJE3TKqaB11bIzNG-9S3Cbit1seujxMFt7h7V3e2_nZLxTFjtIP3y4jnjwAY_euIR1UM74Sd0aa_2gtMlYl-3hCLsJXFKLFCvXY5uPSYVr3JudSebnofIUPR6UjfDs_r5AX9-_-7L9WFx9_vBpe3lV6FI0qeha3YEAyvUgGipE1bBWkaoHQoe6pT2Uou0AgDE9dK3oGloT0mnGlGor6Cp-gd6ufW_mLi9LZ2dBWXkTTLZ0J70y8u-KM9_kzu9lw2uSt5cbvLpvEPz3GWKSk4kabJ4K_Bwl44yXglWMZ_TlA3T0c8j7W6imKkVZN0vDF386Olr5nUgG-Aro4GMMMBwRSuSSshzlIXe55C7X3LOqfaDSZg0hj2Xsf7RvVi3kJPYGgozagNMZDKCT7L35p_4X2IzNhg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3541601 crossref_primary_10_1097_SCS_0000000000010492 crossref_primary_10_1016_j_jdent_2024_104862 crossref_primary_10_1109_TMI_2022_3180343 crossref_primary_10_1109_TMI_2023_3278493 crossref_primary_10_1186_s12903_025_05831_8 crossref_primary_10_1016_j_cpet_2021_09_012 crossref_primary_10_1016_j_neucom_2021_08_042 crossref_primary_10_1097_MD_0000000000031922 crossref_primary_10_3390_math11244890 crossref_primary_10_1109_ACCESS_2023_3317512 crossref_primary_10_1088_1361_6560_acb483 crossref_primary_10_1007_s11548_024_03089_z crossref_primary_10_1097_SCS_0000000000009299 crossref_primary_10_1016_j_neucom_2023_127051 crossref_primary_10_1002_aisy_202300185 crossref_primary_10_1016_j_neucom_2024_128782 crossref_primary_10_1007_s11548_023_02976_1 crossref_primary_10_1016_j_compbiomed_2024_108550 crossref_primary_10_1259_dmfr_20210253 crossref_primary_10_1016_j_ijom_2022_10_010 crossref_primary_10_1016_j_media_2021_102303 crossref_primary_10_1186_s40001_024_01681_2 crossref_primary_10_1002_mp_16302 crossref_primary_10_1177_20552076241271749 crossref_primary_10_1016_j_compbiomed_2025_110051 crossref_primary_10_1371_journal_pone_0291728 crossref_primary_10_1259_dmfr_20210499 crossref_primary_10_1007_s12204_021_2296_2 crossref_primary_10_1016_j_media_2021_102183 crossref_primary_10_1109_TIM_2025_3547079 crossref_primary_10_1088_1361_6560_ac840f crossref_primary_10_1038_s41598_025_06229_w crossref_primary_10_1016_j_media_2021_102025 crossref_primary_10_3390_jpm13020343 crossref_primary_10_1016_j_compmedimag_2025_102496 crossref_primary_10_1016_j_neucom_2025_131095 crossref_primary_10_3389_fbioe_2025_1580502 crossref_primary_10_1016_j_jcms_2024_01_009 crossref_primary_10_1007_s00428_021_03154_x crossref_primary_10_1016_j_asoc_2022_109549 crossref_primary_10_1038_s41598_023_45466_9 crossref_primary_10_1371_journal_pone_0305947 crossref_primary_10_1177_00220345221112333 crossref_primary_10_1007_s11548_022_02626_y crossref_primary_10_1109_JBHI_2021_3087494 crossref_primary_10_1007_s11517_023_02919_7 crossref_primary_10_1002_mp_17300 crossref_primary_10_1088_1361_6560_acb2ab crossref_primary_10_1186_s12880_025_01797_9 crossref_primary_10_1016_j_bspc_2024_106676 crossref_primary_10_1016_j_bspc_2023_105939 crossref_primary_10_1117_1_JMI_10_2_024002 crossref_primary_10_1109_ACCESS_2022_3180028 crossref_primary_10_1007_s00330_021_08455_y crossref_primary_10_1038_s41598_023_30430_4 crossref_primary_10_1016_j_xcrm_2025_102186 crossref_primary_10_1016_j_modpat_2022_100054 crossref_primary_10_3390_ijerph18010094 crossref_primary_10_3390_healthcare11202760 crossref_primary_10_1016_j_compmedimag_2024_102364 crossref_primary_10_1038_s41598_022_15920_1 crossref_primary_10_1038_s41598_025_93317_6 crossref_primary_10_1259_dmfr_20210437 crossref_primary_10_1016_j_compbiomed_2021_104925 crossref_primary_10_1016_j_knosys_2022_109434 crossref_primary_10_1016_j_joms_2025_04_010 crossref_primary_10_1038_s41467_022_29637_2 |
| Cites_doi | 10.1109/TPAMI.2012.143 10.1016/j.media.2019.02.007 10.1016/j.ejrad.2008.06.002 10.1002/hbm.22741 10.1109/TBME.2018.2869989 10.1016/j.media.2018.02.009 10.1109/TMI.2017.2712367 10.1109/TMI.2016.2582386 10.1016/j.ijom.2009.02.028 10.1186/1471-2342-14-32 10.1109/TBME.2016.2638918 10.1109/TMI.2011.2162634 10.1007/s11042-017-5581-1 10.1109/TIP.2016.2579306 10.1016/j.neuroimage.2010.09.018 10.1109/TIP.2017.2721106 10.1016/j.tripleo.2005.10.039 10.1016/j.media.2016.11.002 10.1016/j.media.2014.01.002 10.1109/TMI.2013.2258030 10.1109/TMI.2011.2156806 10.1259/dmfr/30642039 10.1109/TMI.2016.2515021 10.1109/TMI.2009.2014372 10.1016/j.media.2013.01.001 10.1016/j.neuroimage.2014.04.056 10.1002/mp.12116 10.1109/TIP.2016.2624198 10.1109/TMI.2018.2875814 10.1109/TBME.2015.2503421 10.1109/TMI.2015.2403285 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. Copyright Elsevier BV Feb 2020 |
| Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. – notice: Copyright Elsevier BV Feb 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
| DOI | 10.1016/j.media.2019.101621 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 101621 |
| ExternalDocumentID | PMC7360136 31816592 10_1016_j_media_2019_101621 S1361841518302093 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE021863 – fundername: NIDCR NIH HHS grantid: R01 DE022676 – fundername: NIDCR NIH HHS grantid: R01 DE027251 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c487t-b9cbe8e13cf871885729a05de01f691de489beee22cfb98b71600bc22aa95eb53 |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527917100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Tue Sep 30 16:51:52 EDT 2025 Thu Oct 02 06:31:53 EDT 2025 Tue Oct 07 07:09:06 EDT 2025 Thu Apr 03 07:04:47 EDT 2025 Tue Nov 18 22:40:09 EST 2025 Sat Nov 29 07:00:12 EST 2025 Fri Feb 23 02:48:37 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bone segmentation Fully convolutional networks Cone-beam computed tomography Landmark digitization |
| Language | English |
| License | Copyright © 2019. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c487t-b9cbe8e13cf871885729a05de01f691de489beee22cfb98b71600bc22aa95eb53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7360136 |
| PMID | 31816592 |
| PQID | 2375484676 |
| PQPubID | 2045428 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7360136 proquest_miscellaneous_2323482523 proquest_journals_2375484676 pubmed_primary_31816592 crossref_primary_10_1016_j_media_2019_101621 crossref_citationtrail_10_1016_j_media_2019_101621 elsevier_sciencedirect_doi_10_1016_j_media_2019_101621 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Alansary, Oktay, Li, Le Folgoc, Hou, Vaillant, Kamnitsas, Vlontzos, Glocker, Kainz (bib0002) 2019; 53 Li, Zhao, Wei, Yang, Wu, Zhuang, Ling, Wang (bib0018) 2016; 25 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib0001) 2016 Schulze, Heil, Grob, Bruellmann, Dranischnikow, Schwanecke, Schoemer (bib0038) 2011; 40 Chen, Belavy, Yu, Chu, Armbrecht, Bansmann, Felsenberg, Zheng (bib0007) 2015; 34 Dai, He, Sun (bib0014) 2016 Criminisi, Shotton, Robertson, Konukoglu (bib0012) 2010 De Vos, Casselman, Swennen (bib0015) 2009; 38 Zhang, Liu, Wang, Chen, Yuan, Li, Shen, Tang, Chen, Xia, Shen (bib0051) 2017 Criminisi, Robertson, Konukoglu, Shotton, Pathak, White, Siddiqui (bib0011) 2013; 17 Lian, Liu, Zhang, Shen (bib0019) 2018 Payer, Štern, Bischof, Urschler (bib0030) 2016 Zhang (bib0052) 1993 Farag, Lu, Roth, Liu, Turkbey, Summers (bib0016) 2017; 26 Xu, Huo, Park, Landman, Milkowski, Grbic, Zhou (bib0044) 2018 Ranjan, Patel, Chellappa (bib0032) 2017 Liu, Mei, Zhang, Che, Luo (bib0026) 2015 Chen, Xie, Franke, Grutzner, Nolte, Zheng (bib0008) 2014; 18 Boyd, Vandenberghe (bib0005) 2004 Wang, Suh, Das, Pluta, Craige, Yushkevich (bib0042) 2013; 35 Loubele, Maes, Schutyser, Marchal, Jacobs, Suetens (bib0028) 2006; 102 Wang, Chen, Gao, Shi, Liao, Li, Shen, Yan, Lee, Chow (bib0043) 2014; 41 Liu, Zhang, Shen (bib0022) 2015; 36 Artaechevarria, Munoz-Barrutia, Ortiz-de Solórzano (bib0003) 2009; 28 Zhang, Gao, Gao, Munsell, Shen (bib0047) 2016; 35 Yim, Jung, Yoo, Choi, Park, Kim (bib0045) 2015 Zhang, Gao, Park, Zong, Lin, Shen (bib0048) 2017; 64 Cheng, Chen, Yang, Deng, Wu, Megalooikonomou, Gable, Ling (bib0009) 2011 Torosdagli, Liberton, Verma, Sincan, Lee, Bagci (bib0041) 2018; 38 Zhang, Liu, Shen (bib0050) 2017; 26 Schroff, Criminisi, Zisserman (bib0037) 2008 Zhu, Wang, Liu, Qian, Yousuf, Oto, Shen (bib0054) 2017; 44 Rother, Minka, Blake, Kolmogorov (bib0034) 2006 Schapire, Freund, Bartlett, Lee (bib0036) 1998; 26 Zhang, Gao, Wang, Tang, Xia, Shen (bib0049) 2016; 63 Mitra, Bourgeat, Fripp, Ghose, Rose, Salvado, Connelly, Campbell, Palmer, Sharma (bib0029) 2014; 98 Zhang, Luo, Loy, Tang (bib0053) 2014 Lindner, Thiagarajah, Wilkinson, Consortium, Wallis, Cootes (bib0021) 2013; 32 Zhan, Dewan, Harder, Krishnan, Zhou (bib0046) 2011; 30 Coupé, Manjón, Fonov, Pruessner, Robles, Collins (bib0010) 2011; 54 Liu, Zhang, Yap, Shen (bib0025) 2017; 36 Lian, Zhang, Liu, Zong, Hung, Lin, Shen (bib0020) 2018; 46 Liu, Zhang, Adeli, Shen (bib0024) 2018; 66 Baumgartner, Kamnitsas, Matthew, Fletcher, Smith, Koch, Kainz, Rueckert (bib0004) 2017; 36 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0017) 2014 Seghers, Slagmolen, Lambelin, Hermans, Loeckx, Maes, Suetens (bib0039) 2007 Liu, Zhang, Shen (bib0023) 2016; 35 Pfister, Charles, Zisserman (bib0031) 2015 Rousseau, Habas, Studholme (bib0035) 2011; 30 Cuingnet, Prevost, Lesage, Cohen, Mory, Ardon (bib0013) 2012 Shahidi, Bahrampour, Soltanimehr, Zamani, Oshagh, Moattari, Mehdizadeh (bib0040) 2014; 14 Loubele, Bogaerts, Van Dijck, Pauwels, Vanheusden, Suetens, Marchal, Sanderink, Jacobs (bib0027) 2009; 71 Ronneberger, Fischer, Brox (bib0033) 2015 Cao, Li, Zheng, Fan, Yin, Shen, Zhang (bib0006) 2018; 77 Seghers (10.1016/j.media.2019.101621_bib0039) 2007 Wang (10.1016/j.media.2019.101621_bib0042) 2013; 35 Cao (10.1016/j.media.2019.101621_bib0006) 2018; 77 Lian (10.1016/j.media.2019.101621_bib0019) 2018 Baumgartner (10.1016/j.media.2019.101621_bib0004) 2017; 36 Pfister (10.1016/j.media.2019.101621_bib0031) 2015 Criminisi (10.1016/j.media.2019.101621_bib0012) 2010 Ronneberger (10.1016/j.media.2019.101621_bib0033) 2015 Schroff (10.1016/j.media.2019.101621_bib0037) 2008 Chen (10.1016/j.media.2019.101621_bib0008) 2014; 18 Zhang (10.1016/j.media.2019.101621_bib0050) 2017; 26 Ranjan (10.1016/j.media.2019.101621_bib0032) 2017 Goodfellow (10.1016/j.media.2019.101621_bib0017) 2014 Li (10.1016/j.media.2019.101621_bib0018) 2016; 25 Liu (10.1016/j.media.2019.101621_bib0026) 2015 Zhang (10.1016/j.media.2019.101621_bib0047) 2016; 35 Liu (10.1016/j.media.2019.101621_bib0025) 2017; 36 Alansary (10.1016/j.media.2019.101621_bib0002) 2019; 53 Schapire (10.1016/j.media.2019.101621_bib0036) 1998; 26 Yim (10.1016/j.media.2019.101621_bib0045) 2015 Abadi (10.1016/j.media.2019.101621_bib0001) 2016 Zhan (10.1016/j.media.2019.101621_bib0046) 2011; 30 Wang (10.1016/j.media.2019.101621_bib0043) 2014; 41 Zhang (10.1016/j.media.2019.101621_bib0051) 2017 Artaechevarria (10.1016/j.media.2019.101621_bib0003) 2009; 28 Liu (10.1016/j.media.2019.101621_bib0023) 2016; 35 Mitra (10.1016/j.media.2019.101621_bib0029) 2014; 98 Boyd (10.1016/j.media.2019.101621_bib0005) 2004 Criminisi (10.1016/j.media.2019.101621_bib0011) 2013; 17 Loubele (10.1016/j.media.2019.101621_bib0028) 2006; 102 Cheng (10.1016/j.media.2019.101621_bib0009) 2011 Cuingnet (10.1016/j.media.2019.101621_bib0013) 2012 Zhu (10.1016/j.media.2019.101621_bib0054) 2017; 44 Rother (10.1016/j.media.2019.101621_bib0034) 2006 Chen (10.1016/j.media.2019.101621_bib0007) 2015; 34 Rousseau (10.1016/j.media.2019.101621_bib0035) 2011; 30 Coupé (10.1016/j.media.2019.101621_bib0010) 2011; 54 Xu (10.1016/j.media.2019.101621_bib0044) 2018 Dai (10.1016/j.media.2019.101621_bib0014) 2016 Lindner (10.1016/j.media.2019.101621_bib0021) 2013; 32 Zhang (10.1016/j.media.2019.101621_bib0053) 2014 Payer (10.1016/j.media.2019.101621_bib0030) 2016 Zhang (10.1016/j.media.2019.101621_bib0052) 1993 Farag (10.1016/j.media.2019.101621_bib0016) 2017; 26 Shahidi (10.1016/j.media.2019.101621_bib0040) 2014; 14 Loubele (10.1016/j.media.2019.101621_bib0027) 2009; 71 Torosdagli (10.1016/j.media.2019.101621_bib0041) 2018; 38 Liu (10.1016/j.media.2019.101621_bib0022) 2015; 36 De Vos (10.1016/j.media.2019.101621_bib0015) 2009; 38 Lian (10.1016/j.media.2019.101621_bib0020) 2018; 46 Liu (10.1016/j.media.2019.101621_bib0024) 2018; 66 Zhang (10.1016/j.media.2019.101621_bib0048) 2017; 64 Zhang (10.1016/j.media.2019.101621_bib0049) 2016; 63 Schulze (10.1016/j.media.2019.101621_bib0038) 2011; 40 |
| References_xml | – volume: 25 start-page: 3919 year: 2016 end-page: 3930 ident: bib0018 article-title: Deepsaliency: multi-task deep neural network model for salient object detection publication-title: IEEE Trans. Image Process. – start-page: 711 year: 2018 end-page: 719 ident: bib0044 article-title: Less is more: Simultaneous view classification and landmark detection for abdominal ultrasound images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 94 year: 2014 end-page: 108 ident: bib0053 article-title: Facial landmark detection by deep multi-task learning publication-title: European Conference on Computer Vision – start-page: 2672 year: 2014 end-page: 2680 ident: bib0017 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: bib0019 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3707 year: 2015 end-page: 3715 ident: bib0026 article-title: Multi-task deep visual-semantic embedding for video thumbnail selection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 36 start-page: 123 year: 2017 end-page: 134 ident: bib0025 article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data publication-title: Med. Image Anal. – volume: 40 start-page: 265 year: 2011 end-page: 273 ident: bib0038 article-title: Artefacts in CBCT: a review publication-title: Dentomaxillofacial Radiol. – year: 2017 ident: bib0051 article-title: Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 36 start-page: 2204 year: 2017 end-page: 2215 ident: bib0004 article-title: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound publication-title: IEEE Trans. Med. Imaging – volume: 30 start-page: 2087 year: 2011 end-page: 2100 ident: bib0046 article-title: Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 386 year: 2017 end-page: 399 ident: bib0016 article-title: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling publication-title: IEEE Trans. Image Process. – volume: 102 start-page: 225 year: 2006 end-page: 234 ident: bib0028 article-title: Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: A pilot study publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology – start-page: 135 year: 2007 end-page: 142 ident: bib0039 article-title: Landmark based liver segmentation using local shape and local intensity models publication-title: MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge – start-page: 234 year: 2015 end-page: 241 ident: bib0033 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 17 start-page: 1293 year: 2013 end-page: 1303 ident: bib0011 article-title: Regression forests for efficient anatomy detection and localization in computed tomography scans publication-title: Med. Image Anal. – volume: 77 start-page: 29669 year: 2018 end-page: 29686 ident: bib0006 article-title: Multi-task neural networks for joint hippocampus segmentation and clinical score regression publication-title: Multimed. Tools Appl. – year: 2017 ident: bib0032 article-title: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 46 start-page: 106 year: 2018 end-page: 117 ident: bib0020 article-title: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images publication-title: Med. Image Anal. – start-page: 1913 year: 2015 end-page: 1921 ident: bib0031 article-title: Flowing convnets for human pose estimation in videos publication-title: ICCV – volume: 71 start-page: 461 year: 2009 end-page: 468 ident: bib0027 article-title: Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications publication-title: Eur. J. Radiol. – volume: 41 year: 2014 ident: bib0043 article-title: Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization publication-title: Med. Phys. – year: 2004 ident: bib0005 article-title: Convex Optimization – volume: 28 start-page: 1266 year: 2009 end-page: 1277 ident: bib0003 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 1719 year: 2015 end-page: 1729 ident: bib0007 article-title: Localization and segmentation of 3D intervertebral discs in mr images by data driven estimation publication-title: IEEE Trans. Med. Imaging – volume: 54 start-page: 940 year: 2011 end-page: 954 ident: bib0010 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: NeuroImage – volume: 26 start-page: 4753 year: 2017 end-page: 4764 ident: bib0050 article-title: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks publication-title: IEEE Trans. Image Process. – start-page: 66 year: 2012 end-page: 74 ident: bib0013 article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 230 year: 2016 end-page: 238 ident: bib0030 article-title: Regressing heatmaps for multiple landmark localization using CNNs publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2016 ident: bib0001 article-title: Tensorflow: a system for large-scale machine learning publication-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation – volume: 38 start-page: 919 year: 2018 end-page: 931 ident: bib0041 article-title: Deep geodesic learning for segmentation and anatomical landmarking publication-title: IEEE Trans. Med. Imaging – start-page: 993 year: 2006 end-page: 1000 ident: bib0034 article-title: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 3150 year: 2016 end-page: 3158 ident: bib0014 article-title: Instance-aware semantic segmentation via multi-task network cascades publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 35 start-page: 611 year: 2013 end-page: 623 ident: bib0042 article-title: Multi-atlas segmentation with joint label fusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 1847 year: 2015 end-page: 1865 ident: bib0022 article-title: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis publication-title: Hum. Brain Mapp. – start-page: 106 year: 2010 end-page: 117 ident: bib0012 article-title: Regression forests for efficient anatomy detection and localization in CT studies publication-title: International MICCAI Workshop on Medical Computer Vision – start-page: 6204 year: 2011 end-page: 6207 ident: bib0009 article-title: Automatic dent-landmark detection in 3-D CBCT dental volumes publication-title: EMBC – volume: 35 start-page: 1463 year: 2016 end-page: 1474 ident: bib0023 article-title: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment publication-title: IEEE Trans. Med. Imaging – volume: 98 start-page: 324 year: 2014 end-page: 335 ident: bib0029 article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke publication-title: NeuroImage – volume: 14 start-page: 32 year: 2014 ident: bib0040 article-title: The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images publication-title: BMC Med. Imaging – volume: 53 start-page: 156 year: 2019 end-page: 164 ident: bib0002 article-title: Evaluating reinforcement learning agents for anatomical landmark detection publication-title: Med. Image Anal. – start-page: 676 year: 2015 end-page: 684 ident: bib0045 article-title: Rotating your face using multi-task deep neural network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 35 start-page: 2524 year: 2016 end-page: 2533 ident: bib0047 article-title: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 1651 year: 1998 end-page: 1686 ident: bib0036 article-title: Boosting the margin: a new explanation for the effectiveness of voting methods publication-title: Ann. Stat. – volume: 38 start-page: 609 year: 2009 end-page: 625 ident: bib0015 article-title: Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature publication-title: Int. J. Oral Maxillofac. Surg. – start-page: 299 year: 1993 end-page: 313 ident: bib0052 article-title: Model selection via multifold cross validation publication-title: Ann. Stat. – volume: 44 start-page: 1028 year: 2017 end-page: 1039 ident: bib0054 article-title: MRI-based prostate cancer detection with high-level representation and hierarchical classification publication-title: Med. Phys. – volume: 32 start-page: 1462 year: 2013 end-page: 1472 ident: bib0021 article-title: Fully automatic segmentation of the proximal femur using random forest regression voting publication-title: IEEE Trans. Med. Imaging – volume: 18 start-page: 487 year: 2014 end-page: 499 ident: bib0008 article-title: Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements publication-title: Med. Image Anal. – volume: 30 start-page: 1852 year: 2011 end-page: 1862 ident: bib0035 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2008 end-page: 10 ident: bib0037 article-title: Object class segmentation using random forests publication-title: BMVC – volume: 63 start-page: 1820 year: 2016 end-page: 1829 ident: bib0049 article-title: Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multiscale statistical features publication-title: IEEE Trans. Biomed. Eng. – volume: 64 start-page: 2803 year: 2017 end-page: 2812 ident: bib0048 article-title: Structured learning for 3d perivascular spaces segmentation using vascular features publication-title: IEEE Trans. Biomed. Eng. – volume: 66 start-page: 1195 year: 2018 end-page: 1206 ident: bib0024 article-title: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis publication-title: IEEE Trans. Biomed. Eng. – volume: 35 start-page: 611 year: 2013 ident: 10.1016/j.media.2019.101621_bib0042 article-title: Multi-atlas segmentation with joint label fusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.143 – volume: 53 start-page: 156 year: 2019 ident: 10.1016/j.media.2019.101621_bib0002 article-title: Evaluating reinforcement learning agents for anatomical landmark detection publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.02.007 – year: 2017 ident: 10.1016/j.media.2019.101621_bib0032 article-title: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 299 year: 1993 ident: 10.1016/j.media.2019.101621_bib0052 article-title: Model selection via multifold cross validation publication-title: Ann. Stat. – start-page: 135 year: 2007 ident: 10.1016/j.media.2019.101621_bib0039 article-title: Landmark based liver segmentation using local shape and local intensity models – volume: 71 start-page: 461 year: 2009 ident: 10.1016/j.media.2019.101621_bib0027 article-title: Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2008.06.002 – start-page: 676 year: 2015 ident: 10.1016/j.media.2019.101621_bib0045 article-title: Rotating your face using multi-task deep neural network – volume: 36 start-page: 1847 year: 2015 ident: 10.1016/j.media.2019.101621_bib0022 article-title: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22741 – volume: 66 start-page: 1195 year: 2018 ident: 10.1016/j.media.2019.101621_bib0024 article-title: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2869989 – volume: 41 year: 2014 ident: 10.1016/j.media.2019.101621_bib0043 article-title: Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization publication-title: Med. Phys. – volume: 46 start-page: 106 year: 2018 ident: 10.1016/j.media.2019.101621_bib0020 article-title: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.02.009 – volume: 36 start-page: 2204 year: 2017 ident: 10.1016/j.media.2019.101621_bib0004 article-title: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2712367 – start-page: 993 year: 2006 ident: 10.1016/j.media.2019.101621_bib0034 article-title: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs – volume: 35 start-page: 2524 year: 2016 ident: 10.1016/j.media.2019.101621_bib0047 article-title: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2582386 – start-page: 230 year: 2016 ident: 10.1016/j.media.2019.101621_bib0030 article-title: Regressing heatmaps for multiple landmark localization using CNNs – start-page: 6204 year: 2011 ident: 10.1016/j.media.2019.101621_bib0009 article-title: Automatic dent-landmark detection in 3-D CBCT dental volumes – volume: 38 start-page: 609 year: 2009 ident: 10.1016/j.media.2019.101621_bib0015 article-title: Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature publication-title: Int. J. Oral Maxillofac. Surg. doi: 10.1016/j.ijom.2009.02.028 – volume: 14 start-page: 32 year: 2014 ident: 10.1016/j.media.2019.101621_bib0040 article-title: The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images publication-title: BMC Med. Imaging doi: 10.1186/1471-2342-14-32 – volume: 64 start-page: 2803 year: 2017 ident: 10.1016/j.media.2019.101621_bib0048 article-title: Structured learning for 3d perivascular spaces segmentation using vascular features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2638918 – volume: 30 start-page: 2087 year: 2011 ident: 10.1016/j.media.2019.101621_bib0046 article-title: Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2162634 – start-page: 94 year: 2014 ident: 10.1016/j.media.2019.101621_bib0053 article-title: Facial landmark detection by deep multi-task learning – start-page: 234 year: 2015 ident: 10.1016/j.media.2019.101621_bib0033 article-title: U-Net: convolutional networks for biomedical image segmentation – volume: 77 start-page: 29669 year: 2018 ident: 10.1016/j.media.2019.101621_bib0006 article-title: Multi-task neural networks for joint hippocampus segmentation and clinical score regression publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5581-1 – volume: 25 start-page: 3919 year: 2016 ident: 10.1016/j.media.2019.101621_bib0018 article-title: Deepsaliency: multi-task deep neural network model for salient object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2579306 – volume: 54 start-page: 940 year: 2011 ident: 10.1016/j.media.2019.101621_bib0010 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.018 – start-page: 106 year: 2010 ident: 10.1016/j.media.2019.101621_bib0012 article-title: Regression forests for efficient anatomy detection and localization in CT studies – start-page: 1913 year: 2015 ident: 10.1016/j.media.2019.101621_bib0031 article-title: Flowing convnets for human pose estimation in videos – year: 2016 ident: 10.1016/j.media.2019.101621_bib0001 article-title: Tensorflow: a system for large-scale machine learning – start-page: 66 year: 2012 ident: 10.1016/j.media.2019.101621_bib0013 article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests – year: 2017 ident: 10.1016/j.media.2019.101621_bib0051 article-title: Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks – start-page: 1 year: 2008 ident: 10.1016/j.media.2019.101621_bib0037 article-title: Object class segmentation using random forests – volume: 26 start-page: 4753 year: 2017 ident: 10.1016/j.media.2019.101621_bib0050 article-title: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2721106 – volume: 102 start-page: 225 year: 2006 ident: 10.1016/j.media.2019.101621_bib0028 article-title: Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: A pilot study publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology doi: 10.1016/j.tripleo.2005.10.039 – volume: 26 start-page: 1651 year: 1998 ident: 10.1016/j.media.2019.101621_bib0036 article-title: Boosting the margin: a new explanation for the effectiveness of voting methods publication-title: Ann. Stat. – volume: 36 start-page: 123 year: 2017 ident: 10.1016/j.media.2019.101621_bib0025 article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.002 – start-page: 711 year: 2018 ident: 10.1016/j.media.2019.101621_bib0044 article-title: Less is more: Simultaneous view classification and landmark detection for abdominal ultrasound images – volume: 18 start-page: 487 year: 2014 ident: 10.1016/j.media.2019.101621_bib0008 article-title: Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.01.002 – volume: 32 start-page: 1462 year: 2013 ident: 10.1016/j.media.2019.101621_bib0021 article-title: Fully automatic segmentation of the proximal femur using random forest regression voting publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2258030 – volume: 30 start-page: 1852 year: 2011 ident: 10.1016/j.media.2019.101621_bib0035 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2156806 – volume: 40 start-page: 265 year: 2011 ident: 10.1016/j.media.2019.101621_bib0038 article-title: Artefacts in CBCT: a review publication-title: Dentomaxillofacial Radiol. doi: 10.1259/dmfr/30642039 – start-page: 3150 year: 2016 ident: 10.1016/j.media.2019.101621_bib0014 article-title: Instance-aware semantic segmentation via multi-task network cascades – volume: 35 start-page: 1463 year: 2016 ident: 10.1016/j.media.2019.101621_bib0023 article-title: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2515021 – volume: 28 start-page: 1266 year: 2009 ident: 10.1016/j.media.2019.101621_bib0003 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2014372 – start-page: 2672 year: 2014 ident: 10.1016/j.media.2019.101621_bib0017 article-title: Generative adversarial nets – volume: 17 start-page: 1293 year: 2013 ident: 10.1016/j.media.2019.101621_bib0011 article-title: Regression forests for efficient anatomy detection and localization in computed tomography scans publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.01.001 – volume: 98 start-page: 324 year: 2014 ident: 10.1016/j.media.2019.101621_bib0029 article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.056 – volume: 44 start-page: 1028 year: 2017 ident: 10.1016/j.media.2019.101621_bib0054 article-title: MRI-based prostate cancer detection with high-level representation and hierarchical classification publication-title: Med. Phys. doi: 10.1002/mp.12116 – volume: 26 start-page: 386 year: 2017 ident: 10.1016/j.media.2019.101621_bib0016 article-title: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2624198 – start-page: 3707 year: 2015 ident: 10.1016/j.media.2019.101621_bib0026 article-title: Multi-task deep visual-semantic embedding for video thumbnail selection – volume: 38 start-page: 919 year: 2018 ident: 10.1016/j.media.2019.101621_bib0041 article-title: Deep geodesic learning for segmentation and anatomical landmarking publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2875814 – volume: 63 start-page: 1820 year: 2016 ident: 10.1016/j.media.2019.101621_bib0049 article-title: Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multiscale statistical features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2503421 – year: 2018 ident: 10.1016/j.media.2019.101621_bib0019 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2004 ident: 10.1016/j.media.2019.101621_bib0005 – volume: 34 start-page: 1719 year: 2015 ident: 10.1016/j.media.2019.101621_bib0007 article-title: Localization and segmentation of 3D intervertebral discs in mr images by data driven estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2403285 |
| SSID | ssj0007440 |
| Score | 2.5852432 |
| Snippet | •A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context... Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF)... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101621 |
| SubjectTerms | Anatomic Landmarks - diagnostic imaging Bone segmentation Computed tomography Cone-beam computed tomography Cone-Beam Computed Tomography - methods Digitization Displacement Fully convolutional networks Humans Image Processing, Computer-Assisted - methods Image segmentation Imaging, Three-Dimensional - methods Joints (anatomy) Landmark digitization Mandible Mapping Maxillofacial Abnormalities - diagnostic imaging Neural Networks, Computer Orthodontics Three dimensional models |
| Title | Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization |
| URI | https://dx.doi.org/10.1016/j.media.2019.101621 https://www.ncbi.nlm.nih.gov/pubmed/31816592 https://www.proquest.com/docview/2375484676 https://www.proquest.com/docview/2323482523 https://pubmed.ncbi.nlm.nih.gov/PMC7360136 |
| Volume | 60 |
| WOSCitedRecordID | wos000527917100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DSE4IBgMCmMyEuJSMuV34uOEOsFUChId6i1yHKe4tGlpm6lc-ct5_pE0pWMaBy5R5TiNlffl-T3ne58Rem37DDJpAK8TktTyY5pZhObc8jMn4ySGCVyJ6XztRf1-PBySz63Wr6oW5moSFUW8XpP5fzU1tIGxZensP5i7_lNogN9gdDiC2eF4K8MrvSlIZ0elyCCalOvrPxW53NwVbFJo7reSYuiMZ6JYdRjMWWI2pWsxmcxyqhbS0xlEoEs-mpr6JM1bllTIKV1872RiJFamjLMZ41bffsRU8oGoUT3ZWaG-KDdsIFFqCn8xWovNPGE69sSGg6Cd5BfRXKyAzNSuiR_av3qhY0kE6OnnmjbjlPUmA8aryhUGXUe94_D12sP4VNXZSKYeOd303pbX7n9Kzi97vWTQHQ7ezH9Ycucx-YXebMOyhw7cKCDgGQ_OPnSHF_V8LiUUdfWeHmalXaVYgjv3_Vt8s5u__EnDbcQ1g4fogUlI8JkG0iPU4sUhut-QqTxEdz8aAsZjVG6jCyt04S104QpdGNCFFbrwNejCEl24iS4MwMIVunATXU_Q5Xl38O69ZXbusBgkwCsrJSzlMXc8lkNCHscBpHDUDjJuO3lIwAv4MUk5567L8pTEKSTttp0y16WUBDwNvCO0X8AoniFMPRblIePMznKfZgFJ7YBxj-RpZvOAxW3kVs87YUbWXu6uMkkq_uI4UUZKpJESbaQ2eltfNNeqLjd3DytDJiYw1QFnAjC8-cLjyuyJcRHLxJW7TsuwP2yjV_Vp8OryUx0t-KyUfVypOhW4Xhs91SipBwqzsCPJEG0UbeGn7iAV47fPFOKbUo6PvFBqND6_xX1foHubF_gY7a8WJX-J7rCrlVguTtBeNIxPzJvyG-x06LE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-guided+fully+convolutional+networks+for+joint+craniomaxillofacial+bone+segmentation+and+landmark+digitization&rft.jtitle=Medical+image+analysis&rft.au=Zhang%2C+Jun&rft.au=Liu%2C+Mingxia&rft.au=Wang%2C+Li&rft.au=Chen%2C+Si&rft.date=2020-02-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=60&rft.spage=101621&rft_id=info:doi/10.1016%2Fj.media.2019.101621&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |