Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization

•A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context information.•Results achieved by our method are clinically acceptable.•Only  1 min to complete both tasks of bone segmentation and landmark digitizatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical image analysis Ročník 60; s. 101621
Hlavní autori: Zhang, Jun, Liu, Mingxia, Wang, Li, Chen, Si, Yuan, Peng, Li, Jianfu, Shen, Steve Guo-Fang, Tang, Zhen, Chen, Ken-Chung, Xia, James J., Shen, Dinggang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.02.2020
Elsevier BV
Predmet:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context information.•Results achieved by our method are clinically acceptable.•Only  1 min to complete both tasks of bone segmentation and landmark digitization. [Display omitted] Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization.
AbstractList Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization.
•A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context information.•Results achieved by our method are clinically acceptable.•Only  1 min to complete both tasks of bone segmentation and landmark digitization. [Display omitted] Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization.
Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization.Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on the boundaries of segmented bone regions, the tasks of bone segmentation and landmark digitization could be highly associated. Also, the spatial context information (e.g., displacements from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the spatial association between voxels and landmarks. However, most of the existing studies simply treat bone segmentation and landmark digitization as two standalone tasks without considering their inherent relationship, and rarely take advantage of the spatial context information contained in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). Specifically, we first utilize displacement maps to model the spatial context information in CBCT images, where each element in the displacement map denotes the displacement from a voxel to a particular landmark. An FCN is learned to construct the mapping from the input image to its corresponding displacement maps. Using the learned displacement maps as guidance, we further develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation and landmark digitization.
ArticleNumber 101621
Author Liu, Mingxia
Wang, Li
Shen, Steve Guo-Fang
Yuan, Peng
Xia, James J.
Chen, Ken-Chung
Shen, Dinggang
Chen, Si
Li, Jianfu
Tang, Zhen
Zhang, Jun
AuthorAffiliation b Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100191, China
a Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, 27599, USA
d Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
c Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, Texas 77030, USA
AuthorAffiliation_xml – name: c Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, Texas 77030, USA
– name: b Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100191, China
– name: d Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
– name: a Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, 27599, USA
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: xdzhangjun@gmail.com
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 2
  givenname: Mingxia
  surname: Liu
  fullname: Liu, Mingxia
  email: mingxia_liu@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  email: li_wang@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 4
  givenname: Si
  surname: Chen
  fullname: Chen, Si
  organization: Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100191, China
– sequence: 5
  givenname: Peng
  surname: Yuan
  fullname: Yuan, Peng
  organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 6
  givenname: Jianfu
  surname: Li
  fullname: Li, Jianfu
  organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 7
  givenname: Steve Guo-Fang
  surname: Shen
  fullname: Shen, Steve Guo-Fang
  organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 8
  givenname: Zhen
  surname: Tang
  fullname: Tang, Zhen
  organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 9
  givenname: Ken-Chung
  surname: Chen
  fullname: Chen, Ken-Chung
  organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 10
  givenname: James J.
  surname: Xia
  fullname: Xia, James J.
  email: jxia@houstonmethodist.org
  organization: Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 11
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dinggang_shen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31816592$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wC5CQJTZsMviRh7MAqRrxkiqxgbXlODeDU8cutjO0_HqcSRlBF7CxLd_vXJ17zzk6cd4BQs8p2VBC69fjZoLeqA0jtD38MPoInVFe00KUjJ8c37Q6RecxjoSQpizJE3TKqaB11bIzNG-9S3Cbit1seujxMFt7h7V3e2_nZLxTFjtIP3y4jnjwAY_euIR1UM74Sd0aa_2gtMlYl-3hCLsJXFKLFCvXY5uPSYVr3JudSebnofIUPR6UjfDs_r5AX9-_-7L9WFx9_vBpe3lV6FI0qeha3YEAyvUgGipE1bBWkaoHQoe6pT2Uou0AgDE9dK3oGloT0mnGlGor6Cp-gd6ufW_mLi9LZ2dBWXkTTLZ0J70y8u-KM9_kzu9lw2uSt5cbvLpvEPz3GWKSk4kabJ4K_Bwl44yXglWMZ_TlA3T0c8j7W6imKkVZN0vDF386Olr5nUgG-Aro4GMMMBwRSuSSshzlIXe55C7X3LOqfaDSZg0hj2Xsf7RvVi3kJPYGgozagNMZDKCT7L35p_4X2IzNhg
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3541601
crossref_primary_10_1097_SCS_0000000000010492
crossref_primary_10_1016_j_jdent_2024_104862
crossref_primary_10_1109_TMI_2022_3180343
crossref_primary_10_1109_TMI_2023_3278493
crossref_primary_10_1186_s12903_025_05831_8
crossref_primary_10_1016_j_cpet_2021_09_012
crossref_primary_10_1016_j_neucom_2021_08_042
crossref_primary_10_1097_MD_0000000000031922
crossref_primary_10_3390_math11244890
crossref_primary_10_1109_ACCESS_2023_3317512
crossref_primary_10_1088_1361_6560_acb483
crossref_primary_10_1007_s11548_024_03089_z
crossref_primary_10_1097_SCS_0000000000009299
crossref_primary_10_1016_j_neucom_2023_127051
crossref_primary_10_1002_aisy_202300185
crossref_primary_10_1016_j_neucom_2024_128782
crossref_primary_10_1007_s11548_023_02976_1
crossref_primary_10_1016_j_compbiomed_2024_108550
crossref_primary_10_1259_dmfr_20210253
crossref_primary_10_1016_j_ijom_2022_10_010
crossref_primary_10_1016_j_media_2021_102303
crossref_primary_10_1186_s40001_024_01681_2
crossref_primary_10_1002_mp_16302
crossref_primary_10_1177_20552076241271749
crossref_primary_10_1016_j_compbiomed_2025_110051
crossref_primary_10_1371_journal_pone_0291728
crossref_primary_10_1259_dmfr_20210499
crossref_primary_10_1007_s12204_021_2296_2
crossref_primary_10_1016_j_media_2021_102183
crossref_primary_10_1109_TIM_2025_3547079
crossref_primary_10_1088_1361_6560_ac840f
crossref_primary_10_1038_s41598_025_06229_w
crossref_primary_10_1016_j_media_2021_102025
crossref_primary_10_3390_jpm13020343
crossref_primary_10_1016_j_compmedimag_2025_102496
crossref_primary_10_1016_j_neucom_2025_131095
crossref_primary_10_3389_fbioe_2025_1580502
crossref_primary_10_1016_j_jcms_2024_01_009
crossref_primary_10_1007_s00428_021_03154_x
crossref_primary_10_1016_j_asoc_2022_109549
crossref_primary_10_1038_s41598_023_45466_9
crossref_primary_10_1371_journal_pone_0305947
crossref_primary_10_1177_00220345221112333
crossref_primary_10_1007_s11548_022_02626_y
crossref_primary_10_1109_JBHI_2021_3087494
crossref_primary_10_1007_s11517_023_02919_7
crossref_primary_10_1002_mp_17300
crossref_primary_10_1088_1361_6560_acb2ab
crossref_primary_10_1186_s12880_025_01797_9
crossref_primary_10_1016_j_bspc_2024_106676
crossref_primary_10_1016_j_bspc_2023_105939
crossref_primary_10_1117_1_JMI_10_2_024002
crossref_primary_10_1109_ACCESS_2022_3180028
crossref_primary_10_1007_s00330_021_08455_y
crossref_primary_10_1038_s41598_023_30430_4
crossref_primary_10_1016_j_xcrm_2025_102186
crossref_primary_10_1016_j_modpat_2022_100054
crossref_primary_10_3390_ijerph18010094
crossref_primary_10_3390_healthcare11202760
crossref_primary_10_1016_j_compmedimag_2024_102364
crossref_primary_10_1038_s41598_022_15920_1
crossref_primary_10_1038_s41598_025_93317_6
crossref_primary_10_1259_dmfr_20210437
crossref_primary_10_1016_j_compbiomed_2021_104925
crossref_primary_10_1016_j_knosys_2022_109434
crossref_primary_10_1016_j_joms_2025_04_010
crossref_primary_10_1038_s41467_022_29637_2
Cites_doi 10.1109/TPAMI.2012.143
10.1016/j.media.2019.02.007
10.1016/j.ejrad.2008.06.002
10.1002/hbm.22741
10.1109/TBME.2018.2869989
10.1016/j.media.2018.02.009
10.1109/TMI.2017.2712367
10.1109/TMI.2016.2582386
10.1016/j.ijom.2009.02.028
10.1186/1471-2342-14-32
10.1109/TBME.2016.2638918
10.1109/TMI.2011.2162634
10.1007/s11042-017-5581-1
10.1109/TIP.2016.2579306
10.1016/j.neuroimage.2010.09.018
10.1109/TIP.2017.2721106
10.1016/j.tripleo.2005.10.039
10.1016/j.media.2016.11.002
10.1016/j.media.2014.01.002
10.1109/TMI.2013.2258030
10.1109/TMI.2011.2156806
10.1259/dmfr/30642039
10.1109/TMI.2016.2515021
10.1109/TMI.2009.2014372
10.1016/j.media.2013.01.001
10.1016/j.neuroimage.2014.04.056
10.1002/mp.12116
10.1109/TIP.2016.2624198
10.1109/TMI.2018.2875814
10.1109/TBME.2015.2503421
10.1109/TMI.2015.2403285
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2019.101621
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 101621
ExternalDocumentID PMC7360136
31816592
10_1016_j_media_2019_101621
S1361841518302093
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE021863
– fundername: NIDCR NIH HHS
  grantid: R01 DE022676
– fundername: NIDCR NIH HHS
  grantid: R01 DE027251
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c487t-b9cbe8e13cf871885729a05de01f691de489beee22cfb98b71600bc22aa95eb53
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527917100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Tue Sep 30 16:51:52 EDT 2025
Thu Oct 02 06:31:53 EDT 2025
Tue Oct 07 07:09:06 EDT 2025
Thu Apr 03 07:04:47 EDT 2025
Tue Nov 18 22:40:09 EST 2025
Sat Nov 29 07:00:12 EST 2025
Fri Feb 23 02:48:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bone segmentation
Fully convolutional networks
Cone-beam computed tomography
Landmark digitization
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-b9cbe8e13cf871885729a05de01f691de489beee22cfb98b71600bc22aa95eb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7360136
PMID 31816592
PQID 2375484676
PQPubID 2045428
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7360136
proquest_miscellaneous_2323482523
proquest_journals_2375484676
pubmed_primary_31816592
crossref_primary_10_1016_j_media_2019_101621
crossref_citationtrail_10_1016_j_media_2019_101621
elsevier_sciencedirect_doi_10_1016_j_media_2019_101621
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Alansary, Oktay, Li, Le Folgoc, Hou, Vaillant, Kamnitsas, Vlontzos, Glocker, Kainz (bib0002) 2019; 53
Li, Zhao, Wei, Yang, Wu, Zhuang, Ling, Wang (bib0018) 2016; 25
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib0001) 2016
Schulze, Heil, Grob, Bruellmann, Dranischnikow, Schwanecke, Schoemer (bib0038) 2011; 40
Chen, Belavy, Yu, Chu, Armbrecht, Bansmann, Felsenberg, Zheng (bib0007) 2015; 34
Dai, He, Sun (bib0014) 2016
Criminisi, Shotton, Robertson, Konukoglu (bib0012) 2010
De Vos, Casselman, Swennen (bib0015) 2009; 38
Zhang, Liu, Wang, Chen, Yuan, Li, Shen, Tang, Chen, Xia, Shen (bib0051) 2017
Criminisi, Robertson, Konukoglu, Shotton, Pathak, White, Siddiqui (bib0011) 2013; 17
Lian, Liu, Zhang, Shen (bib0019) 2018
Payer, Štern, Bischof, Urschler (bib0030) 2016
Zhang (bib0052) 1993
Farag, Lu, Roth, Liu, Turkbey, Summers (bib0016) 2017; 26
Xu, Huo, Park, Landman, Milkowski, Grbic, Zhou (bib0044) 2018
Ranjan, Patel, Chellappa (bib0032) 2017
Liu, Mei, Zhang, Che, Luo (bib0026) 2015
Chen, Xie, Franke, Grutzner, Nolte, Zheng (bib0008) 2014; 18
Boyd, Vandenberghe (bib0005) 2004
Wang, Suh, Das, Pluta, Craige, Yushkevich (bib0042) 2013; 35
Loubele, Maes, Schutyser, Marchal, Jacobs, Suetens (bib0028) 2006; 102
Wang, Chen, Gao, Shi, Liao, Li, Shen, Yan, Lee, Chow (bib0043) 2014; 41
Liu, Zhang, Shen (bib0022) 2015; 36
Artaechevarria, Munoz-Barrutia, Ortiz-de Solórzano (bib0003) 2009; 28
Zhang, Gao, Gao, Munsell, Shen (bib0047) 2016; 35
Yim, Jung, Yoo, Choi, Park, Kim (bib0045) 2015
Zhang, Gao, Park, Zong, Lin, Shen (bib0048) 2017; 64
Cheng, Chen, Yang, Deng, Wu, Megalooikonomou, Gable, Ling (bib0009) 2011
Torosdagli, Liberton, Verma, Sincan, Lee, Bagci (bib0041) 2018; 38
Zhang, Liu, Shen (bib0050) 2017; 26
Schroff, Criminisi, Zisserman (bib0037) 2008
Zhu, Wang, Liu, Qian, Yousuf, Oto, Shen (bib0054) 2017; 44
Rother, Minka, Blake, Kolmogorov (bib0034) 2006
Schapire, Freund, Bartlett, Lee (bib0036) 1998; 26
Zhang, Gao, Wang, Tang, Xia, Shen (bib0049) 2016; 63
Mitra, Bourgeat, Fripp, Ghose, Rose, Salvado, Connelly, Campbell, Palmer, Sharma (bib0029) 2014; 98
Zhang, Luo, Loy, Tang (bib0053) 2014
Lindner, Thiagarajah, Wilkinson, Consortium, Wallis, Cootes (bib0021) 2013; 32
Zhan, Dewan, Harder, Krishnan, Zhou (bib0046) 2011; 30
Coupé, Manjón, Fonov, Pruessner, Robles, Collins (bib0010) 2011; 54
Liu, Zhang, Yap, Shen (bib0025) 2017; 36
Lian, Zhang, Liu, Zong, Hung, Lin, Shen (bib0020) 2018; 46
Liu, Zhang, Adeli, Shen (bib0024) 2018; 66
Baumgartner, Kamnitsas, Matthew, Fletcher, Smith, Koch, Kainz, Rueckert (bib0004) 2017; 36
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0017) 2014
Seghers, Slagmolen, Lambelin, Hermans, Loeckx, Maes, Suetens (bib0039) 2007
Liu, Zhang, Shen (bib0023) 2016; 35
Pfister, Charles, Zisserman (bib0031) 2015
Rousseau, Habas, Studholme (bib0035) 2011; 30
Cuingnet, Prevost, Lesage, Cohen, Mory, Ardon (bib0013) 2012
Shahidi, Bahrampour, Soltanimehr, Zamani, Oshagh, Moattari, Mehdizadeh (bib0040) 2014; 14
Loubele, Bogaerts, Van Dijck, Pauwels, Vanheusden, Suetens, Marchal, Sanderink, Jacobs (bib0027) 2009; 71
Ronneberger, Fischer, Brox (bib0033) 2015
Cao, Li, Zheng, Fan, Yin, Shen, Zhang (bib0006) 2018; 77
Seghers (10.1016/j.media.2019.101621_bib0039) 2007
Wang (10.1016/j.media.2019.101621_bib0042) 2013; 35
Cao (10.1016/j.media.2019.101621_bib0006) 2018; 77
Lian (10.1016/j.media.2019.101621_bib0019) 2018
Baumgartner (10.1016/j.media.2019.101621_bib0004) 2017; 36
Pfister (10.1016/j.media.2019.101621_bib0031) 2015
Criminisi (10.1016/j.media.2019.101621_bib0012) 2010
Ronneberger (10.1016/j.media.2019.101621_bib0033) 2015
Schroff (10.1016/j.media.2019.101621_bib0037) 2008
Chen (10.1016/j.media.2019.101621_bib0008) 2014; 18
Zhang (10.1016/j.media.2019.101621_bib0050) 2017; 26
Ranjan (10.1016/j.media.2019.101621_bib0032) 2017
Goodfellow (10.1016/j.media.2019.101621_bib0017) 2014
Li (10.1016/j.media.2019.101621_bib0018) 2016; 25
Liu (10.1016/j.media.2019.101621_bib0026) 2015
Zhang (10.1016/j.media.2019.101621_bib0047) 2016; 35
Liu (10.1016/j.media.2019.101621_bib0025) 2017; 36
Alansary (10.1016/j.media.2019.101621_bib0002) 2019; 53
Schapire (10.1016/j.media.2019.101621_bib0036) 1998; 26
Yim (10.1016/j.media.2019.101621_bib0045) 2015
Abadi (10.1016/j.media.2019.101621_bib0001) 2016
Zhan (10.1016/j.media.2019.101621_bib0046) 2011; 30
Wang (10.1016/j.media.2019.101621_bib0043) 2014; 41
Zhang (10.1016/j.media.2019.101621_bib0051) 2017
Artaechevarria (10.1016/j.media.2019.101621_bib0003) 2009; 28
Liu (10.1016/j.media.2019.101621_bib0023) 2016; 35
Mitra (10.1016/j.media.2019.101621_bib0029) 2014; 98
Boyd (10.1016/j.media.2019.101621_bib0005) 2004
Criminisi (10.1016/j.media.2019.101621_bib0011) 2013; 17
Loubele (10.1016/j.media.2019.101621_bib0028) 2006; 102
Cheng (10.1016/j.media.2019.101621_bib0009) 2011
Cuingnet (10.1016/j.media.2019.101621_bib0013) 2012
Zhu (10.1016/j.media.2019.101621_bib0054) 2017; 44
Rother (10.1016/j.media.2019.101621_bib0034) 2006
Chen (10.1016/j.media.2019.101621_bib0007) 2015; 34
Rousseau (10.1016/j.media.2019.101621_bib0035) 2011; 30
Coupé (10.1016/j.media.2019.101621_bib0010) 2011; 54
Xu (10.1016/j.media.2019.101621_bib0044) 2018
Dai (10.1016/j.media.2019.101621_bib0014) 2016
Lindner (10.1016/j.media.2019.101621_bib0021) 2013; 32
Zhang (10.1016/j.media.2019.101621_bib0053) 2014
Payer (10.1016/j.media.2019.101621_bib0030) 2016
Zhang (10.1016/j.media.2019.101621_bib0052) 1993
Farag (10.1016/j.media.2019.101621_bib0016) 2017; 26
Shahidi (10.1016/j.media.2019.101621_bib0040) 2014; 14
Loubele (10.1016/j.media.2019.101621_bib0027) 2009; 71
Torosdagli (10.1016/j.media.2019.101621_bib0041) 2018; 38
Liu (10.1016/j.media.2019.101621_bib0022) 2015; 36
De Vos (10.1016/j.media.2019.101621_bib0015) 2009; 38
Lian (10.1016/j.media.2019.101621_bib0020) 2018; 46
Liu (10.1016/j.media.2019.101621_bib0024) 2018; 66
Zhang (10.1016/j.media.2019.101621_bib0048) 2017; 64
Zhang (10.1016/j.media.2019.101621_bib0049) 2016; 63
Schulze (10.1016/j.media.2019.101621_bib0038) 2011; 40
References_xml – volume: 25
  start-page: 3919
  year: 2016
  end-page: 3930
  ident: bib0018
  article-title: Deepsaliency: multi-task deep neural network model for salient object detection
  publication-title: IEEE Trans. Image Process.
– start-page: 711
  year: 2018
  end-page: 719
  ident: bib0044
  article-title: Less is more: Simultaneous view classification and landmark detection for abdominal ultrasound images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 94
  year: 2014
  end-page: 108
  ident: bib0053
  article-title: Facial landmark detection by deep multi-task learning
  publication-title: European Conference on Computer Vision
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0017
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
  ident: bib0019
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3707
  year: 2015
  end-page: 3715
  ident: bib0026
  article-title: Multi-task deep visual-semantic embedding for video thumbnail selection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 36
  start-page: 123
  year: 2017
  end-page: 134
  ident: bib0025
  article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data
  publication-title: Med. Image Anal.
– volume: 40
  start-page: 265
  year: 2011
  end-page: 273
  ident: bib0038
  article-title: Artefacts in CBCT: a review
  publication-title: Dentomaxillofacial Radiol.
– year: 2017
  ident: bib0051
  article-title: Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 36
  start-page: 2204
  year: 2017
  end-page: 2215
  ident: bib0004
  article-title: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound
  publication-title: IEEE Trans. Med. Imaging
– volume: 30
  start-page: 2087
  year: 2011
  end-page: 2100
  ident: bib0046
  article-title: Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 386
  year: 2017
  end-page: 399
  ident: bib0016
  article-title: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling
  publication-title: IEEE Trans. Image Process.
– volume: 102
  start-page: 225
  year: 2006
  end-page: 234
  ident: bib0028
  article-title: Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: A pilot study
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology
– start-page: 135
  year: 2007
  end-page: 142
  ident: bib0039
  article-title: Landmark based liver segmentation using local shape and local intensity models
  publication-title: MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0033
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 17
  start-page: 1293
  year: 2013
  end-page: 1303
  ident: bib0011
  article-title: Regression forests for efficient anatomy detection and localization in computed tomography scans
  publication-title: Med. Image Anal.
– volume: 77
  start-page: 29669
  year: 2018
  end-page: 29686
  ident: bib0006
  article-title: Multi-task neural networks for joint hippocampus segmentation and clinical score regression
  publication-title: Multimed. Tools Appl.
– year: 2017
  ident: bib0032
  article-title: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 46
  start-page: 106
  year: 2018
  end-page: 117
  ident: bib0020
  article-title: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images
  publication-title: Med. Image Anal.
– start-page: 1913
  year: 2015
  end-page: 1921
  ident: bib0031
  article-title: Flowing convnets for human pose estimation in videos
  publication-title: ICCV
– volume: 71
  start-page: 461
  year: 2009
  end-page: 468
  ident: bib0027
  article-title: Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications
  publication-title: Eur. J. Radiol.
– volume: 41
  year: 2014
  ident: bib0043
  article-title: Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization
  publication-title: Med. Phys.
– year: 2004
  ident: bib0005
  article-title: Convex Optimization
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  ident: bib0003
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1719
  year: 2015
  end-page: 1729
  ident: bib0007
  article-title: Localization and segmentation of 3D intervertebral discs in mr images by data driven estimation
  publication-title: IEEE Trans. Med. Imaging
– volume: 54
  start-page: 940
  year: 2011
  end-page: 954
  ident: bib0010
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: NeuroImage
– volume: 26
  start-page: 4753
  year: 2017
  end-page: 4764
  ident: bib0050
  article-title: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks
  publication-title: IEEE Trans. Image Process.
– start-page: 66
  year: 2012
  end-page: 74
  ident: bib0013
  article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 230
  year: 2016
  end-page: 238
  ident: bib0030
  article-title: Regressing heatmaps for multiple landmark localization using CNNs
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2016
  ident: bib0001
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation
– volume: 38
  start-page: 919
  year: 2018
  end-page: 931
  ident: bib0041
  article-title: Deep geodesic learning for segmentation and anatomical landmarking
  publication-title: IEEE Trans. Med. Imaging
– start-page: 993
  year: 2006
  end-page: 1000
  ident: bib0034
  article-title: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– start-page: 3150
  year: 2016
  end-page: 3158
  ident: bib0014
  article-title: Instance-aware semantic segmentation via multi-task network cascades
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 35
  start-page: 611
  year: 2013
  end-page: 623
  ident: bib0042
  article-title: Multi-atlas segmentation with joint label fusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 1847
  year: 2015
  end-page: 1865
  ident: bib0022
  article-title: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis
  publication-title: Hum. Brain Mapp.
– start-page: 106
  year: 2010
  end-page: 117
  ident: bib0012
  article-title: Regression forests for efficient anatomy detection and localization in CT studies
  publication-title: International MICCAI Workshop on Medical Computer Vision
– start-page: 6204
  year: 2011
  end-page: 6207
  ident: bib0009
  article-title: Automatic dent-landmark detection in 3-D CBCT dental volumes
  publication-title: EMBC
– volume: 35
  start-page: 1463
  year: 2016
  end-page: 1474
  ident: bib0023
  article-title: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment
  publication-title: IEEE Trans. Med. Imaging
– volume: 98
  start-page: 324
  year: 2014
  end-page: 335
  ident: bib0029
  article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke
  publication-title: NeuroImage
– volume: 14
  start-page: 32
  year: 2014
  ident: bib0040
  article-title: The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images
  publication-title: BMC Med. Imaging
– volume: 53
  start-page: 156
  year: 2019
  end-page: 164
  ident: bib0002
  article-title: Evaluating reinforcement learning agents for anatomical landmark detection
  publication-title: Med. Image Anal.
– start-page: 676
  year: 2015
  end-page: 684
  ident: bib0045
  article-title: Rotating your face using multi-task deep neural network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 35
  start-page: 2524
  year: 2016
  end-page: 2533
  ident: bib0047
  article-title: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 1651
  year: 1998
  end-page: 1686
  ident: bib0036
  article-title: Boosting the margin: a new explanation for the effectiveness of voting methods
  publication-title: Ann. Stat.
– volume: 38
  start-page: 609
  year: 2009
  end-page: 625
  ident: bib0015
  article-title: Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature
  publication-title: Int. J. Oral Maxillofac. Surg.
– start-page: 299
  year: 1993
  end-page: 313
  ident: bib0052
  article-title: Model selection via multifold cross validation
  publication-title: Ann. Stat.
– volume: 44
  start-page: 1028
  year: 2017
  end-page: 1039
  ident: bib0054
  article-title: MRI-based prostate cancer detection with high-level representation and hierarchical classification
  publication-title: Med. Phys.
– volume: 32
  start-page: 1462
  year: 2013
  end-page: 1472
  ident: bib0021
  article-title: Fully automatic segmentation of the proximal femur using random forest regression voting
  publication-title: IEEE Trans. Med. Imaging
– volume: 18
  start-page: 487
  year: 2014
  end-page: 499
  ident: bib0008
  article-title: Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements
  publication-title: Med. Image Anal.
– volume: 30
  start-page: 1852
  year: 2011
  end-page: 1862
  ident: bib0035
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2008
  end-page: 10
  ident: bib0037
  article-title: Object class segmentation using random forests
  publication-title: BMVC
– volume: 63
  start-page: 1820
  year: 2016
  end-page: 1829
  ident: bib0049
  article-title: Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multiscale statistical features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 64
  start-page: 2803
  year: 2017
  end-page: 2812
  ident: bib0048
  article-title: Structured learning for 3d perivascular spaces segmentation using vascular features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 66
  start-page: 1195
  year: 2018
  end-page: 1206
  ident: bib0024
  article-title: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 35
  start-page: 611
  year: 2013
  ident: 10.1016/j.media.2019.101621_bib0042
  article-title: Multi-atlas segmentation with joint label fusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.143
– volume: 53
  start-page: 156
  year: 2019
  ident: 10.1016/j.media.2019.101621_bib0002
  article-title: Evaluating reinforcement learning agents for anatomical landmark detection
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.02.007
– year: 2017
  ident: 10.1016/j.media.2019.101621_bib0032
  article-title: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 299
  year: 1993
  ident: 10.1016/j.media.2019.101621_bib0052
  article-title: Model selection via multifold cross validation
  publication-title: Ann. Stat.
– start-page: 135
  year: 2007
  ident: 10.1016/j.media.2019.101621_bib0039
  article-title: Landmark based liver segmentation using local shape and local intensity models
– volume: 71
  start-page: 461
  year: 2009
  ident: 10.1016/j.media.2019.101621_bib0027
  article-title: Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2008.06.002
– start-page: 676
  year: 2015
  ident: 10.1016/j.media.2019.101621_bib0045
  article-title: Rotating your face using multi-task deep neural network
– volume: 36
  start-page: 1847
  year: 2015
  ident: 10.1016/j.media.2019.101621_bib0022
  article-title: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22741
– volume: 66
  start-page: 1195
  year: 2018
  ident: 10.1016/j.media.2019.101621_bib0024
  article-title: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2869989
– volume: 41
  year: 2014
  ident: 10.1016/j.media.2019.101621_bib0043
  article-title: Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization
  publication-title: Med. Phys.
– volume: 46
  start-page: 106
  year: 2018
  ident: 10.1016/j.media.2019.101621_bib0020
  article-title: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.02.009
– volume: 36
  start-page: 2204
  year: 2017
  ident: 10.1016/j.media.2019.101621_bib0004
  article-title: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2712367
– start-page: 993
  year: 2006
  ident: 10.1016/j.media.2019.101621_bib0034
  article-title: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs
– volume: 35
  start-page: 2524
  year: 2016
  ident: 10.1016/j.media.2019.101621_bib0047
  article-title: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2582386
– start-page: 230
  year: 2016
  ident: 10.1016/j.media.2019.101621_bib0030
  article-title: Regressing heatmaps for multiple landmark localization using CNNs
– start-page: 6204
  year: 2011
  ident: 10.1016/j.media.2019.101621_bib0009
  article-title: Automatic dent-landmark detection in 3-D CBCT dental volumes
– volume: 38
  start-page: 609
  year: 2009
  ident: 10.1016/j.media.2019.101621_bib0015
  article-title: Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature
  publication-title: Int. J. Oral Maxillofac. Surg.
  doi: 10.1016/j.ijom.2009.02.028
– volume: 14
  start-page: 32
  year: 2014
  ident: 10.1016/j.media.2019.101621_bib0040
  article-title: The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images
  publication-title: BMC Med. Imaging
  doi: 10.1186/1471-2342-14-32
– volume: 64
  start-page: 2803
  year: 2017
  ident: 10.1016/j.media.2019.101621_bib0048
  article-title: Structured learning for 3d perivascular spaces segmentation using vascular features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2638918
– volume: 30
  start-page: 2087
  year: 2011
  ident: 10.1016/j.media.2019.101621_bib0046
  article-title: Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2162634
– start-page: 94
  year: 2014
  ident: 10.1016/j.media.2019.101621_bib0053
  article-title: Facial landmark detection by deep multi-task learning
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2019.101621_bib0033
  article-title: U-Net: convolutional networks for biomedical image segmentation
– volume: 77
  start-page: 29669
  year: 2018
  ident: 10.1016/j.media.2019.101621_bib0006
  article-title: Multi-task neural networks for joint hippocampus segmentation and clinical score regression
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5581-1
– volume: 25
  start-page: 3919
  year: 2016
  ident: 10.1016/j.media.2019.101621_bib0018
  article-title: Deepsaliency: multi-task deep neural network model for salient object detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2579306
– volume: 54
  start-page: 940
  year: 2011
  ident: 10.1016/j.media.2019.101621_bib0010
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.018
– start-page: 106
  year: 2010
  ident: 10.1016/j.media.2019.101621_bib0012
  article-title: Regression forests for efficient anatomy detection and localization in CT studies
– start-page: 1913
  year: 2015
  ident: 10.1016/j.media.2019.101621_bib0031
  article-title: Flowing convnets for human pose estimation in videos
– year: 2016
  ident: 10.1016/j.media.2019.101621_bib0001
  article-title: Tensorflow: a system for large-scale machine learning
– start-page: 66
  year: 2012
  ident: 10.1016/j.media.2019.101621_bib0013
  article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests
– year: 2017
  ident: 10.1016/j.media.2019.101621_bib0051
  article-title: Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks
– start-page: 1
  year: 2008
  ident: 10.1016/j.media.2019.101621_bib0037
  article-title: Object class segmentation using random forests
– volume: 26
  start-page: 4753
  year: 2017
  ident: 10.1016/j.media.2019.101621_bib0050
  article-title: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2721106
– volume: 102
  start-page: 225
  year: 2006
  ident: 10.1016/j.media.2019.101621_bib0028
  article-title: Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: A pilot study
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology
  doi: 10.1016/j.tripleo.2005.10.039
– volume: 26
  start-page: 1651
  year: 1998
  ident: 10.1016/j.media.2019.101621_bib0036
  article-title: Boosting the margin: a new explanation for the effectiveness of voting methods
  publication-title: Ann. Stat.
– volume: 36
  start-page: 123
  year: 2017
  ident: 10.1016/j.media.2019.101621_bib0025
  article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.002
– start-page: 711
  year: 2018
  ident: 10.1016/j.media.2019.101621_bib0044
  article-title: Less is more: Simultaneous view classification and landmark detection for abdominal ultrasound images
– volume: 18
  start-page: 487
  year: 2014
  ident: 10.1016/j.media.2019.101621_bib0008
  article-title: Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.01.002
– volume: 32
  start-page: 1462
  year: 2013
  ident: 10.1016/j.media.2019.101621_bib0021
  article-title: Fully automatic segmentation of the proximal femur using random forest regression voting
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2258030
– volume: 30
  start-page: 1852
  year: 2011
  ident: 10.1016/j.media.2019.101621_bib0035
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2156806
– volume: 40
  start-page: 265
  year: 2011
  ident: 10.1016/j.media.2019.101621_bib0038
  article-title: Artefacts in CBCT: a review
  publication-title: Dentomaxillofacial Radiol.
  doi: 10.1259/dmfr/30642039
– start-page: 3150
  year: 2016
  ident: 10.1016/j.media.2019.101621_bib0014
  article-title: Instance-aware semantic segmentation via multi-task network cascades
– volume: 35
  start-page: 1463
  year: 2016
  ident: 10.1016/j.media.2019.101621_bib0023
  article-title: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2515021
– volume: 28
  start-page: 1266
  year: 2009
  ident: 10.1016/j.media.2019.101621_bib0003
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2014372
– start-page: 2672
  year: 2014
  ident: 10.1016/j.media.2019.101621_bib0017
  article-title: Generative adversarial nets
– volume: 17
  start-page: 1293
  year: 2013
  ident: 10.1016/j.media.2019.101621_bib0011
  article-title: Regression forests for efficient anatomy detection and localization in computed tomography scans
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.01.001
– volume: 98
  start-page: 324
  year: 2014
  ident: 10.1016/j.media.2019.101621_bib0029
  article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.056
– volume: 44
  start-page: 1028
  year: 2017
  ident: 10.1016/j.media.2019.101621_bib0054
  article-title: MRI-based prostate cancer detection with high-level representation and hierarchical classification
  publication-title: Med. Phys.
  doi: 10.1002/mp.12116
– volume: 26
  start-page: 386
  year: 2017
  ident: 10.1016/j.media.2019.101621_bib0016
  article-title: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2624198
– start-page: 3707
  year: 2015
  ident: 10.1016/j.media.2019.101621_bib0026
  article-title: Multi-task deep visual-semantic embedding for video thumbnail selection
– volume: 38
  start-page: 919
  year: 2018
  ident: 10.1016/j.media.2019.101621_bib0041
  article-title: Deep geodesic learning for segmentation and anatomical landmarking
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2875814
– volume: 63
  start-page: 1820
  year: 2016
  ident: 10.1016/j.media.2019.101621_bib0049
  article-title: Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multiscale statistical features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2503421
– year: 2018
  ident: 10.1016/j.media.2019.101621_bib0019
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2004
  ident: 10.1016/j.media.2019.101621_bib0005
– volume: 34
  start-page: 1719
  year: 2015
  ident: 10.1016/j.media.2019.101621_bib0007
  article-title: Localization and segmentation of 3D intervertebral discs in mr images by data driven estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2403285
SSID ssj0007440
Score 2.5852432
Snippet •A joint learning framework for both bone segmentation and landmark digitization.•A displacement map is used to explicitly model the spatial context...
Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning surgical or orthodontic treatment to correct craniomaxillofacial (CMF)...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101621
SubjectTerms Anatomic Landmarks - diagnostic imaging
Bone segmentation
Computed tomography
Cone-beam computed tomography
Cone-Beam Computed Tomography - methods
Digitization
Displacement
Fully convolutional networks
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging, Three-Dimensional - methods
Joints (anatomy)
Landmark digitization
Mandible
Mapping
Maxillofacial Abnormalities - diagnostic imaging
Neural Networks, Computer
Orthodontics
Three dimensional models
Title Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization
URI https://dx.doi.org/10.1016/j.media.2019.101621
https://www.ncbi.nlm.nih.gov/pubmed/31816592
https://www.proquest.com/docview/2375484676
https://www.proquest.com/docview/2323482523
https://pubmed.ncbi.nlm.nih.gov/PMC7360136
Volume 60
WOSCitedRecordID wos000527917100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DSE4IBgMCmMyEuJSMuV34uOEOsFUChId6i1yHKe4tGlpm6lc-ct5_pE0pWMaBy5R5TiNlffl-T3ne58Rem37DDJpAK8TktTyY5pZhObc8jMn4ySGCVyJ6XztRf1-PBySz63Wr6oW5moSFUW8XpP5fzU1tIGxZensP5i7_lNogN9gdDiC2eF4K8MrvSlIZ0elyCCalOvrPxW53NwVbFJo7reSYuiMZ6JYdRjMWWI2pWsxmcxyqhbS0xlEoEs-mpr6JM1bllTIKV1872RiJFamjLMZ41bffsRU8oGoUT3ZWaG-KDdsIFFqCn8xWovNPGE69sSGg6Cd5BfRXKyAzNSuiR_av3qhY0kE6OnnmjbjlPUmA8aryhUGXUe94_D12sP4VNXZSKYeOd303pbX7n9Kzi97vWTQHQ7ezH9Ycucx-YXebMOyhw7cKCDgGQ_OPnSHF_V8LiUUdfWeHmalXaVYgjv3_Vt8s5u__EnDbcQ1g4fogUlI8JkG0iPU4sUhut-QqTxEdz8aAsZjVG6jCyt04S104QpdGNCFFbrwNejCEl24iS4MwMIVunATXU_Q5Xl38O69ZXbusBgkwCsrJSzlMXc8lkNCHscBpHDUDjJuO3lIwAv4MUk5567L8pTEKSTttp0y16WUBDwNvCO0X8AoniFMPRblIePMznKfZgFJ7YBxj-RpZvOAxW3kVs87YUbWXu6uMkkq_uI4UUZKpJESbaQ2eltfNNeqLjd3DytDJiYw1QFnAjC8-cLjyuyJcRHLxJW7TsuwP2yjV_Vp8OryUx0t-KyUfVypOhW4Xhs91SipBwqzsCPJEG0UbeGn7iAV47fPFOKbUo6PvFBqND6_xX1foHubF_gY7a8WJX-J7rCrlVguTtBeNIxPzJvyG-x06LE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-guided+fully+convolutional+networks+for+joint+craniomaxillofacial+bone+segmentation+and+landmark+digitization&rft.jtitle=Medical+image+analysis&rft.au=Zhang%2C+Jun&rft.au=Liu%2C+Mingxia&rft.au=Wang%2C+Li&rft.au=Chen%2C+Si&rft.date=2020-02-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=60&rft.spage=101621&rft_id=info:doi/10.1016%2Fj.media.2019.101621&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon