MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants

The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in plant science Ročník 7; s. 817
Hlavní autoři: Shriram, Varsha, Kumar, Vinay, Devarumath, Rachayya M., Khare, Tushar S., Wani, Shabir H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media SA 14.06.2016
Frontiers Media S.A
Témata:
ISSN:1664-462X, 1664-462X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Nokwanda Makunga, Stellenbosch University, South Africa
Reviewed by: Biswapriya Biswavas Misra, University of Florida, USA; Taras P. Pasternak, Institute of Biology II, Germany
This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2016.00817