MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants

The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in plant science Ročník 7; s. 817
Hlavní autoři: Shriram, Varsha, Kumar, Vinay, Devarumath, Rachayya M., Khare, Tushar S., Wani, Shabir H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media SA 14.06.2016
Frontiers Media S.A
Témata:
ISSN:1664-462X, 1664-462X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.
AbstractList The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.
The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.
Author Wani, Shabir H.
Shriram, Varsha
Devarumath, Rachayya M.
Khare, Tushar S.
Kumar, Vinay
AuthorAffiliation 1 Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University Pune, India
3 Molecular Biology and Genetic Engineering Section, Vasantdada Sugar Institute Pune, India
2 Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University Pune, India
4 Division of Genetics and Plant Breeding, Faculty of Agriculture WADURA, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, India
AuthorAffiliation_xml – name: 1 Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University Pune, India
– name: 3 Molecular Biology and Genetic Engineering Section, Vasantdada Sugar Institute Pune, India
– name: 4 Division of Genetics and Plant Breeding, Faculty of Agriculture WADURA, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, India
– name: 2 Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University Pune, India
Author_xml – sequence: 1
  givenname: Varsha
  surname: Shriram
  fullname: Shriram, Varsha
– sequence: 2
  givenname: Vinay
  surname: Kumar
  fullname: Kumar, Vinay
– sequence: 3
  givenname: Rachayya M.
  surname: Devarumath
  fullname: Devarumath, Rachayya M.
– sequence: 4
  givenname: Tushar S.
  surname: Khare
  fullname: Khare, Tushar S.
– sequence: 5
  givenname: Shabir H.
  surname: Wani
  fullname: Wani, Shabir H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27379117$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYMoVqtrdzLgxk3bJJNMko1QSn1AfaAV3IU0k6kp00lNUsF_b2qraMFwIYF893DuPYdgt3GNAeAEwW6ec9GrFnXoYoiKLoQcsR1wgIqCdEiBX3Z_vVvgOIQZTIdCKATbBy3MciYQYgdgeGu1d493_ZClenDRNNGqOhsrPzUxZJXzWX9iXbQ6e4rehJCNXW28arTJbJM91KqJ4QjsVaoO5nhzt8Hz5XA8uO6M7q9uBv1RRxPOYkdRoU2FeEWwpqTgmkOSqlLMCAQNZWVespwITTFVEAlSas51WVE-wTmBZd4GF2vdxXIyN6VOZr2q5cLbufIf0ikr__409lVO3bskAhYCoyRwvhHw7m1pQpRzG7Sp0xTGLYNEHGLCEkgTeraFztzSN2k8mWNGhCCkIIk6_e3ox8r3hhNA10BacwjeVFLbqKJ1K4O2lgjKVZhyFaZchSm_wkx9va2-b-n_Oj4BJ2Og8Q
CitedBy_id crossref_primary_10_13005_bbra_2914
crossref_primary_10_29254_2077_4214_2023_1_168_36_43
crossref_primary_10_3389_fgene_2022_880195
crossref_primary_10_1007_s00344_022_10801_3
crossref_primary_10_1007_s00425_024_04375_5
crossref_primary_10_1007_s12229_016_9173_y
crossref_primary_10_1093_plphys_kiad033
crossref_primary_10_1007_s11240_023_02517_3
crossref_primary_10_1007_s11738_020_3013_8
crossref_primary_10_1016_j_plantsci_2023_111834
crossref_primary_10_1016_j_ymeth_2024_05_008
crossref_primary_10_1080_15592324_2017_1284724
crossref_primary_10_3390_ijms26136385
crossref_primary_10_1007_s11103_018_0761_6
crossref_primary_10_1007_s11240_023_02458_x
crossref_primary_10_1111_ppl_13714
crossref_primary_10_1093_plphys_kiae127
crossref_primary_10_1007_s10725_017_0289_9
crossref_primary_10_1080_07388551_2018_1524824
crossref_primary_10_1080_14620316_2019_1702481
crossref_primary_10_1007_s00299_017_2192_2
crossref_primary_10_1007_s40502_023_00709_9
crossref_primary_10_1007_s00425_021_03669_2
crossref_primary_10_15446_rev_colomb_biote_v23n2_88487
crossref_primary_10_1007_s10142_023_01014_2
crossref_primary_10_1016_j_ygeno_2018_11_022
crossref_primary_10_3390_ijms23073695
crossref_primary_10_1007_s12038_020_00034_5
crossref_primary_10_3390_plants13050641
crossref_primary_10_1007_s42729_024_01957_w
crossref_primary_10_1007_s10811_019_01903_9
crossref_primary_10_1007_s13205_019_1942_y
crossref_primary_10_1016_j_plgene_2017_04_005
crossref_primary_10_1016_j_gpb_2017_01_007
crossref_primary_10_3390_horticulturae3020031
crossref_primary_10_1007_s44169_025_00083_7
crossref_primary_10_1007_s11240_025_03097_0
crossref_primary_10_1007_s12033_018_0100_9
crossref_primary_10_3390_ijms20174306
crossref_primary_10_1007_s11105_019_01180_3
crossref_primary_10_1016_j_plaphy_2020_03_022
crossref_primary_10_1007_s40502_019_0436_6
crossref_primary_10_1016_j_bcab_2018_03_024
crossref_primary_10_1007_s42535_025_01320_z
crossref_primary_10_1007_s12038_020_00084_9
crossref_primary_10_1007_s13205_021_02857_x
crossref_primary_10_1111_plb_13378
crossref_primary_10_1111_ppl_13736
crossref_primary_10_1134_S0006297918090031
crossref_primary_10_1007_s11756_021_00763_4
crossref_primary_10_3390_plants10030504
crossref_primary_10_3390_plants11233371
crossref_primary_10_1038_s42003_025_08077_w
crossref_primary_10_3390_ijms222212519
crossref_primary_10_1371_journal_pone_0182629
crossref_primary_10_3389_fpls_2017_00864
crossref_primary_10_1016_j_jplph_2022_153740
crossref_primary_10_1155_2018_1451894
crossref_primary_10_1016_j_mcp_2020_101576
crossref_primary_10_1093_pcp_pcz131
crossref_primary_10_3390_ijms21249394
crossref_primary_10_1093_jxb_ery168
crossref_primary_10_1007_s00425_018_2906_x
crossref_primary_10_1016_j_rsci_2018_06_001
crossref_primary_10_3390_ijms20061267
crossref_primary_10_1007_s00425_020_03366_6
crossref_primary_10_1016_j_egg_2022_100125
crossref_primary_10_1093_nsr_nwz142
crossref_primary_10_3389_fpls_2020_00003
crossref_primary_10_1186_s12870_021_03108_0
crossref_primary_10_1111_ppl_13592
crossref_primary_10_1007_s11356_021_17039_8
crossref_primary_10_1002_ps_5043
crossref_primary_10_1016_j_ecoenv_2023_114881
crossref_primary_10_1093_plphys_kiaf003
crossref_primary_10_1007_s00344_023_11193_8
crossref_primary_10_1093_pcp_pcaa079
crossref_primary_10_3390_ijms23169280
crossref_primary_10_3389_fpls_2017_00565
crossref_primary_10_3390_ijms23158642
crossref_primary_10_1007_s00344_020_10294_y
crossref_primary_10_1007_s10311_022_01474_1
crossref_primary_10_1016_j_agrcom_2023_100014
crossref_primary_10_1016_j_plaphy_2023_107978
crossref_primary_10_3390_ijms19103239
crossref_primary_10_1016_j_plantsci_2023_111620
crossref_primary_10_1016_j_plaphy_2020_10_004
crossref_primary_10_1016_j_chemosphere_2022_135196
crossref_primary_10_1016_j_envexpbot_2018_10_003
crossref_primary_10_1186_s12870_018_1561_5
crossref_primary_10_1111_jac_70045
crossref_primary_10_1007_s11033_019_04793_9
crossref_primary_10_1007_s11033_022_07179_6
crossref_primary_10_1016_j_scitotenv_2018_10_340
crossref_primary_10_1111_tpj_13557
crossref_primary_10_1007_s11104_020_04564_7
crossref_primary_10_1139_gen_2020_0089
crossref_primary_10_1007_s00299_021_02705_5
crossref_primary_10_3390_ijms25042177
crossref_primary_10_3390_ijms23031612
crossref_primary_10_1016_j_gene_2022_146283
crossref_primary_10_3389_fpls_2021_726762
crossref_primary_10_3389_fpls_2022_919243
crossref_primary_10_3390_ijms22179311
crossref_primary_10_1007_s13205_022_03115_4
crossref_primary_10_1038_s41598_019_38932_w
crossref_primary_10_3390_cells11182806
crossref_primary_10_1155_2017_4975146
crossref_primary_10_1007_s11104_024_06745_0
crossref_primary_10_3390_ijms20153766
crossref_primary_10_1094_MPMI_10_19_0302_R
crossref_primary_10_1371_journal_pone_0183524
crossref_primary_10_1016_j_plantsci_2020_110622
crossref_primary_10_1016_j_ygeno_2018_01_007
crossref_primary_10_1016_j_tplants_2024_05_011
crossref_primary_10_1186_s40066_022_00369_2
crossref_primary_10_1016_j_plaphy_2019_02_015
crossref_primary_10_1007_s00299_017_2210_4
crossref_primary_10_3390_life11040289
crossref_primary_10_1016_j_sajb_2024_02_019
crossref_primary_10_3390_ijms23158724
crossref_primary_10_3389_fpls_2017_00374
crossref_primary_10_3390_ijms21218258
crossref_primary_10_1007_s11738_018_2718_4
crossref_primary_10_1016_j_ijbiomac_2023_125172
crossref_primary_10_1016_j_plaphy_2019_10_042
crossref_primary_10_3389_fmicb_2024_1408926
crossref_primary_10_3389_fpls_2021_629314
crossref_primary_10_3390_ijms24054639
crossref_primary_10_1007_s12038_020_00088_5
crossref_primary_10_1186_s12864_017_3526_8
crossref_primary_10_3390_membranes11120984
crossref_primary_10_1007_s00344_021_10476_2
crossref_primary_10_1007_s13199_020_00703_x
crossref_primary_10_1016_j_scitotenv_2020_140682
crossref_primary_10_1007_s10529_017_2302_9
crossref_primary_10_1007_s10142_018_0619_7
crossref_primary_10_1111_ppl_13451
crossref_primary_10_1007_s13562_021_00718_5
crossref_primary_10_1016_j_plgene_2017_05_013
crossref_primary_10_3390_app112110068
crossref_primary_10_1007_s11356_017_8593_5
crossref_primary_10_1038_s41598_018_34012_7
crossref_primary_10_1007_s11270_024_07372_2
crossref_primary_10_1186_s13007_024_01158_7
crossref_primary_10_1007_s00299_020_02649_2
crossref_primary_10_1016_j_jbiotec_2020_12_019
crossref_primary_10_1007_s00425_022_03997_x
crossref_primary_10_1016_j_plantsci_2017_12_003
crossref_primary_10_3390_plants9101367
crossref_primary_10_3390_agronomy10121920
crossref_primary_10_1038_s41598_020_59981_6
crossref_primary_10_1007_s10142_024_01520_x
crossref_primary_10_1016_j_plgene_2021_100281
crossref_primary_10_1007_s00344_019_09951_8
crossref_primary_10_1007_s00344_025_11627_5
crossref_primary_10_1007_s00709_022_01775_w
crossref_primary_10_1016_j_envexpbot_2021_104705
crossref_primary_10_1007_s13205_018_1521_7
crossref_primary_10_1016_j_plantsci_2021_110823
crossref_primary_10_1007_s11738_018_2803_8
crossref_primary_10_1155_2020_6649746
crossref_primary_10_1016_j_plaphy_2021_02_007
crossref_primary_10_3390_plants14030410
crossref_primary_10_1016_j_gene_2018_12_042
crossref_primary_10_1111_maec_12806
crossref_primary_10_1016_j_plantsci_2024_111995
crossref_primary_10_1016_j_plgene_2025_100531
crossref_primary_10_1016_j_ygeno_2020_05_002
crossref_primary_10_1016_j_plantsci_2024_111993
crossref_primary_10_1111_pce_13021
crossref_primary_10_1007_s11103_022_01328_y
crossref_primary_10_1111_pbi_13116
crossref_primary_10_1093_jxb_eraa188
crossref_primary_10_1016_j_ygeno_2021_06_034
crossref_primary_10_3390_plants12101991
crossref_primary_10_1007_s00344_024_11266_2
crossref_primary_10_1016_j_ygeno_2021_12_020
crossref_primary_10_1038_s41598_019_51100_4
crossref_primary_10_1111_pbi_13913
crossref_primary_10_1080_07352689_2023_2227485
crossref_primary_10_1016_j_fsi_2018_09_079
crossref_primary_10_1007_s40502_017_0326_8
crossref_primary_10_3390_genes8060156
crossref_primary_10_3389_fpls_2022_844149
crossref_primary_10_3390_ijms22147687
crossref_primary_10_3390_ijms232314755
crossref_primary_10_1016_j_jclepro_2023_139512
crossref_primary_10_1111_ppl_13521
crossref_primary_10_2478_sg_2023_0018
crossref_primary_10_3389_fpls_2019_00360
crossref_primary_10_1093_bib_bbab075
crossref_primary_10_3389_fpls_2017_00378
crossref_primary_10_1186_s12870_019_1679_0
crossref_primary_10_1007_s13752_023_00433_5
crossref_primary_10_1007_s10725_021_00762_0
crossref_primary_10_1007_s12298_019_00716_x
crossref_primary_10_1016_j_plaphy_2018_08_027
crossref_primary_10_1007_s00425_019_03331_y
crossref_primary_10_3389_fpls_2022_965745
crossref_primary_10_1016_j_plaphy_2021_07_004
crossref_primary_10_1093_pcp_pcz068
crossref_primary_10_1007_s00344_021_10376_5
crossref_primary_10_1111_jipb_13903
crossref_primary_10_1007_s10311_018_0741_8
crossref_primary_10_1016_j_cpb_2021_100213
crossref_primary_10_1016_j_scitotenv_2024_177732
crossref_primary_10_1016_j_ygeno_2019_03_004
crossref_primary_10_1016_j_envres_2022_114282
crossref_primary_10_1016_j_jece_2021_105198
crossref_primary_10_3390_cells9040901
crossref_primary_10_1007_s12298_022_01163_x
crossref_primary_10_1007_s40502_017_0327_7
crossref_primary_10_3390_f13101685
crossref_primary_10_1007_s00709_022_01822_6
crossref_primary_10_2478_s11756_019_00397_7
crossref_primary_10_1007_s40502_017_0342_8
crossref_primary_10_1007_s10142_025_01568_3
crossref_primary_10_1016_j_envexpbot_2020_104207
crossref_primary_10_3390_f11040384
crossref_primary_10_1111_nph_19939
crossref_primary_10_3390_agronomy8070118
Cites_doi 10.1080/15476286.2015.1094601
10.1038/nplants.2015.36
10.1080/03650340802595543
10.1186/1471-2164-13-S7-S16
10.1016/j.phytochem.2005.05.003
10.1093/bioinformatics/btq233
10.1186/1471-2229-13-33
10.1371/journal.pone.0137990
10.1016/j.cell.2009.01.046
10.1186/1471-2229-11-61
10.1111/nph.12434
10.1186/1471-2229-12-132
10.1007/s10529-015-1863-8
10.1007/s00299-014-1565-z
10.1021/jf302706e
10.1111/pbi.12340
10.1126/science.1076311
10.1371/journal.pone.0117584
10.1186/1471-2164-11-52
10.1105/tpc.106.041673
10.1111/pbi.12346
10.1073/pnas.0404025101
10.1093/nar/gkr247
10.1093/pcp/pch060
10.1105/tpc.111.089045
10.1186/1471-2229-12-182
10.1101/gad.1004402
10.1021/jf300724t
10.1111/j.1365-313X.2009.03835.x
10.3390/ijms131215826
10.1016/j.envexpbot.2008.06.001
10.1186/s12870-014-0271-x
10.1111/j.1399-3054.2010.01384.x
10.4238/2013
10.1016/j.cell.2009.12.023
10.4161/rna.25193
10.1007/978-1-4614-6108-1_2
10.1093/nar/gkr1159
10.1007/s11103-013-0089-1
10.1016/j.devcel.2008.04.005
10.1146/annurev.arplant.57.032905.105218
10.1016/j.pbi.2015.06.012
10.1093/jxb/erv013
10.1111/pce.12130
10.1007/s11356-016-6436-4
10.1104/pp.110.156950
10.1016/j.neucom.2015.12.011
10.1093/jxb/erq237
10.1016/j.gene.2014.11.002
10.1111/j.1467-7652.2010.00517.x
10.1038/srep11813
10.1007/s10142-015-0452-1
10.1007/s10142-010-0181-4
10.1007/s11033-010-0100-8
10.1104/pp.112.208702
10.1104/pp.110.170209
10.1111/j.1399-3054.2012.01653.x
10.1093/jxb/err046
10.1111/j.1469-8137.2010.03320.x
10.1261/rna.895308
10.1111/aab.12241
10.1093/jxb/erp296
10.1093/jxb/eru353
10.1016/j.tplants.2012.01.010
10.1093/bioinformatics/btu614
10.1007/s11103-011-9793-x
10.1093/nar/gkq721
10.1016/j.plantsci.2012.07.009
10.1016/j.bbrc.2007.01.022
10.1111/j.1365-313X.2011.04547.x
10.1101/024893
10.1073/pnas.0802493105
10.1093/jxb/erv450
10.1093/jxb/ers333
10.1186/1471-2229-13-140
10.1007/s13562-012-0117-2
10.1186/s12859-015-0798-3
10.5808/GI.2014.12.4.261
10.1007/s11103-013-0120-6
10.1111/pbi.12220
10.3389/fpls.2013.00357
10.1371/journal.pone.0048951
10.1093/jxb/ers136
10.1016/j.plgene.2015.12.001
10.1093/bioinformatics/btv583
10.1371/journal.pgen.1002021
10.1007/s00709-012-0395-5
10.3389/fpls.2015.00232
10.1186/1471-2164-15-1130
10.1186/1471-2164-12-307
10.1007/s10534-012-9560-8
10.1089/omi.2011.0115
10.1016/j.plantsci.2010.08.016
10.1007/s10142-016-0480-5
10.1093/nar/gkq1107
10.1093/jxb/erp181
10.1007/s00425-011-1514-9
10.1016/j.jplph.2012.03.009
10.1186/1471-2229-11-170
10.1080/07352689.2015.1078614
10.1016/j.bbrc.2012.09.055
10.1007/s00709-014-0749-2
10.1371/journal.pone.0143066
10.1007/s12263-012-0316-4
10.1080/07352680500365232
10.1111/j.1365-313X.2010.04216.x
10.1016/j.ymeth.2015.04.003
10.1016/j.molcel.2010.03.008
10.1186/1471-2105-14-174
10.1093/dnares/dss037
10.1111/tpj.12169
10.1007/s11032-015-0402-6
10.1371/journal.pone.0030039
10.1093/nar/gkv555
10.1093/nar/gku1162
10.1007/s12374-013-0213-4
10.1016/j.bbagrm.2011.05.001
10.1007/S11816-009-0118-3
10.1111/j.1365-313X.2008.03690.x
10.1002/jcp.25125
10.1016/j.plantsci.2013.05.009
10.1007/s12010-015-1785-x
10.3390/ijms161024532
10.1111/j.1365-3040.2011.02418.x
10.1002/jcp.24685
10.1093/bioinformatics/btu633
10.1186/1471-2229-10-123
10.3389/fpls.2015.00058
10.1093/jxb/eru270
10.1093/jxb/ers239
10.3389/fpls.2013.00145
10.1007/s11103-011-9817-6
10.1023/B:GROW.0000045995.49365.df
10.1093/nar/gkt1181
10.1093/bioinformatics/btv534
10.1111/pbi.12153
10.1134/S1021443715030061
10.1111/j.1469-8137.2012.04154.x
10.1111/tpj.12364
10.1111/pbi.12296
10.3389/fpls.2016.00235
10.1016/j.plaphy.2013.05.043
10.1186/s12864-015-1416-5
10.1155/2012/219462
10.1093/jxb/ert013
10.1074/jbc.M801406200
10.1186/1471-2105-15-275
10.1371/journal.pone.0050261
10.1039/c3mt00022b
10.1016/0092-8674(93)90529-Y
10.1371/journal.pone.0095800
10.1080/15226514.2011.604690
10.1111/j.1469-8137.2012.04227.x
10.1186/1752-0509-6-18
10.1101/gr.080127.108
10.3389/fphys.2015.00286
10.1093/jxb/ert240
10.1093/bioinformatics/btr430
10.1105/tpc.113.117473
10.1016/j.bbagrm.2007.09.003
10.1093/nar/gkp818
10.1371/journal.pone.0059423
10.1111/j.1469-8137.2010.03451.x
10.1371/journal.pone.0128089
10.1111/j.1365-313X.2010.04162.x
10.1097/01.qai.0000429267.82844.b6
10.1016/j.cub.2007.04.005
10.1007/978-1-4020-5578-2_10
10.1080/21655979.2016.1141838
10.1016/j.gene.2010.03.011
10.1371/journal.pone.0054148
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Shriram, Kumar, Devarumath, Khare and Wani. 2016 Shriram, Kumar, Devarumath, Khare and Wani
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Shriram, Kumar, Devarumath, Khare and Wani. 2016 Shriram, Kumar, Devarumath, Khare and Wani
DBID AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3389/fpls.2016.00817
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agriculture Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID PMC4906921
27379117
10_3389_fpls_2016_00817
Genre Journal Article
Review
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: SR/FT/LS-93/2011
– fundername: University Grants Commission
  grantid: 41-521/2012 (SR)
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c487t-a59cef18f42c5468c804804fa7e910e57d3d7349c525a0194dc88cdf58b2340d3
IEDL.DBID M7P
ISICitedReferencesCount 255
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377657700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-462X
IngestDate Thu Aug 21 13:40:32 EDT 2025
Fri Sep 05 08:09:00 EDT 2025
Mon Nov 24 23:40:48 EST 2025
Thu Jan 02 22:25:13 EST 2025
Sat Nov 29 01:55:42 EST 2025
Tue Nov 18 20:44:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords microRNA
post-transcriptional regulation
transgenics
abiotic stress
stress-responses
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-a59cef18f42c5468c804804fa7e910e57d3d7349c525a0194dc88cdf58b2340d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Nokwanda Makunga, Stellenbosch University, South Africa
Reviewed by: Biswapriya Biswavas Misra, University of Florida, USA; Taras P. Pasternak, Institute of Biology II, Germany
This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science
OpenAccessLink https://www.proquest.com/docview/3274994464?pq-origsite=%requestingapplication%
PMID 27379117
PQID 3274994464
PQPubID 7426805
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4906921
proquest_miscellaneous_1802472135
proquest_journals_3274994464
pubmed_primary_27379117
crossref_citationtrail_10_3389_fpls_2016_00817
crossref_primary_10_3389_fpls_2016_00817
PublicationCentury 2000
PublicationDate 2016-06-14
PublicationDateYYYYMMDD 2016-06-14
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-14
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2016
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Ni (B104) 2012; 427
Paul (B109) 2015; 6
Gao (B33) 2015; 62
Jha (B57) 2004; 43
Rhee (B118) 2015; 83
Chae (B16) 2015; 31
Wang (B141) 2015; 27
Moxon (B102) 2008; 18
Srivastava (B127) 2012; 64
Kawashima (B63) 2009; 57
Lee (B77) 1993; 75
Xin (B149) 2010; 10
Khare (B66) 2015; 252
Privalle (B112) 2012; 60
Sun (B131) 2015; 16
Pandey (B107) 2014; 9
Gielen (B36) 2012; 13
Hajyzadeh (B45) 2015; 555
Laubinger (B76) 2008; 105
Wang (B140) 2012; 196
Casadevall (B15) 2013; 25
Turan (B136) 2013; 250
Zhou (B171) 2013; 161
Baras (B5) 2015; 10
Khraiwesh (B68) 2012; 1819
Evers (B28) 2015; 16
Marín-González (B95) 2012; 196
Jin (B58) 2015; 10
Goswami (B38) 2014; 8
Kozomara (B69) 2014; 42
Tripathi (B135) 2015; 6
Deng (B24) 2015; 10
Ding (B26) 2011; 62
Rascio (B114) 2011; 180
Voinnet (B138) 2009; 136
Khraiwesh (B67) 2010; 140
Meng (B97) 2016; 179
Srivastava (B128) 2011; 14
Zhang (B160) 2015; 66
Hackenberg (B43) 2013; 20
R Lorenzetti (B113) 2016; 16
Gregory (B39) 2008; 14
Kumar (B75) 2009; 55
Mishra (B99) 2015; 34
Hsu (B49) 2011; 39
Zhou (B174) 2008; 70
Song (B125) 2016; 5
An (B4) 2014; 15
Zhou (B175) 2012b; 35
Zhang (B164) 2014a; 14
Lundmark (B91) 2010; 140
Rueda (B123) 2015; 43
Kant (B60) 2011; 7
Jeong (B55) 2013; 56
Hackenberg (B42) 2015; 13
Cao (B14) 2014; 15
Peng (B111) 2013; 8
Fischer (B31) 2013; 210
Zhang (B166) 2010; 38
Rosewick (B122) 2013; 62
Abdel-Ghany (B1) 2008; 283
Chen (B19) 2012; 235
Lee (B78) 2014; 65
Ma (B93) 2004; 45
Hong (B48) 2015; 13
Zhang (B161) 2015; 230
Chiang (B20) 2015; 10
Itaya (B52) 2007; 1779
Chaves (B17) 2015; 177
Kruszka (B71) 2012; 16
Xu (B150) 2013; 64
Liang (B85) 2012; 7
Yi (B155) 2015; 43
Forieri (B32) 2013; 4
Zhou (B173) 2012a; 63
Bonnet (B9) 2010; 26
Wani (B142) 2016
Kruszka (B70) 2014; 65
Jagadeeswaran (B53) 2014; 77
Li (B81) 2011; 11
Sunkar (B133) 2012; 17
Zhao (B168) 2012; 5
Bonnet (B10) 2004; 101
Yang (B154) 2013; 5
Moldovan (B101) 2010; 61
Wang (B139) 2013; 12
Li (B83) 2013; 200
Requejo (B117) 2005; 66
Li (B82) 2016; 67
Buiatti (B12) 2013; 8
Ripoll (B119) 2015; 1
Bottino (B11) 2013; 8
Jones-Rhoades (B59) 2006; 57
Zhang (B165) 2014b; 31
Liu (B89) 2012; 60
Remita (B116) 2015
Mangrauthia (B94) 2013
Meng (B96) 2013; 13
Yang (B153) 2013; 64
Xie (B147) 2015; 13
Ku (B72) 2015; 16
Cui (B23) 2015
Gupta (B41) 2014; 84
Liang (B86) 2010; 62
Waters (B143) 2012; 63
Gim (B37) 2014; 12
Diez (B25) 2014
Zhou (B170) 2010; 61
Khan (B65) 2011; 77
Rong (B121) 2014; 12
Srivastava (B126) 2009; 60
Fang (B30) 2007; 17
Meng (B98) 2011; 39
Zhai (B159) 2013; 147
Liang (B84) 2015; 5
Lv (B92) 2010; 459
Valdés-López (B137) 2010; 187
Fahlgren (B29) 2016; 32
Kawashima (B62) 2011; 66
Li (B80) 2010; 153
Reinhart (B115) 2002; 16
Sunkar (B132) 2006; 18
Xia (B146) 2012; 7
Yu (B156) 2012; 195
Jeong (B56) 2011; 23
Szczesniak (B134) 2011; 40
Guan (B40) 2013; 74
Hu (B50) 2011; 156
Li (B79) 2016; 231
Beauclair (B7) 2010; 62
Yang (B151) 2013; 36
Kulcheski (B73) 2011; 12
Pei (B110) 2013; 70
Yang (B152) 2011; 27
Numnark (B106) 2012; 13
Liu (B47) 2008; 14
Huang (B51) 2010; 8
Agarwal (B2) 2006; 25
Zhao (B169) 2013; 22
Boke (B8) 2015; 13
Silva (B124) 2012; 2012
Gao (B34) 2011; 38
Kumar (B74) 2010; 4
Ding (B27) 2016; 7
Chen (B18) 2012; 25
Zeng (B158) 2012; 12
Zeller (B157) 2009; 58
He (B46) 2014; 33
Wu (B144) 2013; 10
Patel (B108) 2016; 32
Gentile (B35) 2015; 6
Muñoz-Mérida (B103) 2012; 16
Rizwan (B120) 2016
Bulgakov (B13) 2015; 37
Sun (B129) 2012; 80
Kehr (B64) 2013; 4
Akdogan (B3) 2015; 16
Jagadeeswaran (B54) 2010; 11
Chinnusamy (B21) 2007
Zhou (B172) 2013; 83
Wu (B145) 2010; 38
Llave (B90) 2002; 297
Licausi (B87) 2011; 190
Nischal (B105) 2012; 7
Sun (B130) 2013; 14
Mittal (B100) 2016; 168
Hackenberg (B44) 2011; 39
Zhang (B162) 2016; 7
Barrera-Figueroa (B6) 2012; 12
Kantar (B61) 2010; 10
Zhao (B167) 2007; 354
Lin (B88) 2012; 6
Zhang (B163) 2013; 13
Xin (B148) 2011; 11
Couzigou (B22) 2015; 12
20381393 - Mol Cell. 2010 May 14;38(3):465-75
23720667 - Front Plant Sci. 2013 May 16;4:145
21607657 - Plant Mol Biol. 2011 Sep;77(1-2):47-58
27247036 - Nat Plants. 2015 Mar 30;1(4):15036
23162117 - J Exp Bot. 2013 Jan;64(1):303-15
22158467 - Plant Cell. 2011 Dec;23(12):4185-207
24759739 - PLoS One. 2014 Apr 23;9(4):e95800
22647959 - J Plant Physiol. 2012 Nov 1;169(16):1664-72
23003210 - J Agric Food Chem. 2012 Oct 17;60(41):10179-87
25183744 - J Exp Bot. 2014 Nov;65(20):6123-35
23076994 - Genes Nutr. 2013 May;8(3):255-70
20487378 - Physiol Plant. 2010 Sep 1;140(1):57-68
21473757 - BMC Plant Biol. 2011 Apr 07;11:61
24114216 - Genet Mol Res. 2013 Oct 07;12(4):4213-21
23000164 - Biochem Biophys Res Commun. 2012 Oct 19;427(2):330-5
24393105 - Plant Biotechnol J. 2014 May;12(4):468-79
19239888 - Cell. 2009 Feb 20;136(4):669-87
26996904 - Environ Sci Pollut Res Int. 2016 Sep;23 (18):17859-79
21515631 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W132-8
25658957 - PLoS One. 2015 Feb 06;10(2):e0117584
15272084 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6
22365280 - Trends Plant Sci. 2012 Apr;17(4):196-203
20089182 - BMC Genomics. 2010 Jan 20;11:52
22760473 - J Exp Bot. 2012 Jul;63(12):4597-613
25519760 - BMC Genomics. 2014 Dec 17;15:1130
17254555 - Biochem Biophys Res Commun. 2007 Mar 9;354(2):585-90
18653800 - Genome Res. 2008 Oct;18(10):1602-9
22537016 - New Phytol. 2012 Jul;195(1):97-112
25572837 - Plant Biotechnol J. 2015 Apr;13(3):355-69
20350593 - Gene. 2010 Jul 1;459(1-2):39-47
20128885 - Plant J. 2010 May;62(3):454-62
23792878 - Plant Physiol Biochem. 2013 Sep;70:221-34
20444207 - Plant Biotechnol J. 2010 Oct;8(8):887-99
23771582 - Plant Mol Biol. 2013 Sep;83(1-2):59-75
23975146 - Plant Mol Biol. 2014 Jan;84(1-2):1-18
20374528 - Plant J. 2010 Jun 1;62(6):1046-57
19528528 - J Exp Bot. 2009;60(12):3419-31
24909308 - J Cell Physiol. 2015 Jan;230(1):1-15
18408011 - J Biol Chem. 2008 Jun 6;283(23):15932-45
26277190 - Appl Biochem Biotechnol. 2015 Oct;177(4):879-908
23227161 - PLoS One. 2012;7(12):e50261
22862743 - BMC Plant Biol. 2012 Aug 03;12:132
19222804 - Plant J. 2009 Jun;58(6):1068-82
21317339 - Plant Physiol. 2011 Jul;156(3):1101-15
21895696 - Plant Cell Environ. 2012 Jan;35(1):86-99
26382195 - Bioinformatics. 2016 Jan 1;32(1):157-8
24164591 - Plant J. 2014 Jan;77(1):85-96
22434153 - Protoplasma. 2013 Feb;250(1):209-22
21455488 - PLoS Genet. 2011 Mar;7(3):e1002021
23725466 - BMC Bioinformatics. 2013 Jun 03;14:174
22639189 - Biometals. 2012 Oct;25(5):847-57
22253868 - PLoS One. 2012;7(1):e30039
18078843 - Biochim Biophys Acta. 2008 Feb;1779(2):99-107
12242443 - Science. 2002 Sep 20;297(5589):2053-6
18486559 - Dev Cell. 2008 Jun;14(6):854-66
25117656 - BMC Bioinformatics. 2014 Aug 12;15:275
25445265 - Gene. 2015 Jan 25;555(2):186-93
23155433 - PLoS One. 2012;7(11):e48951
21605713 - Biochim Biophys Acta. 2012 Feb;1819(2):137-48
24962998 - J Exp Bot. 2014 Sep;65(17):5049-62
25697792 - J Exp Bot. 2015 Apr;66(7):1749-61
17905409 - Chemosphere. 2008 Feb;70(8):1500-9
25330732 - BMC Plant Biol. 2014 Oct 21;14:271
26571139 - PLoS One. 2015 Nov 16;10(11):e0143066
23448274 - BMC Plant Biol. 2013 Mar 01;13:33
20336383 - Mol Biol Rep. 2011 Jan;38(1):237-42
20729483 - J Exp Bot. 2010 Oct;61(15):4157-68
26019179 - Nucleic Acids Res. 2015 Jul 1;43(W1):W467-73
16861386 - Plant Cell. 2006 Aug;18(8):2051-65
23579282 - Metallomics. 2013 Sep;5(9):1184-90
21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9
26466661 - J Exp Bot. 2016 Jan;67(1):175-94
20430753 - Bioinformatics. 2010 Jun 15;26(12):1566-8
20719744 - Nucleic Acids Res. 2011 Jan;39(Database issue):D181-7
15169940 - Plant Cell Physiol. 2004 May;45(5):583-9
16669754 - Annu Rev Plant Biol. 2006;57:19-53
22962679 - J Exp Bot. 2012 Oct;63(16):5903-18
25735537 - Plant Biotechnol J. 2015 Apr;13(3):409-20
26887375 - Funct Integr Genomics. 2016 May;16(3):235-42
26973678 - Front Plant Sci. 2016 Mar 01;7:235
26578966 - Front Physiol. 2015 Oct 26;6:286
18801012 - Plant J. 2009 Jan;57(2):313-21
25256573 - Bioinformatics. 2015 Jan 15;31(2):290-1
25398903 - Nucleic Acids Res. 2015 Jan;43(Database issue):D982-9
26400469 - RNA Biol. 2015;12(11):1178-80
22607471 - Physiol Plant. 2013 Feb;147(2):181-93
24975557 - Plant Biotechnol J. 2015 Jan;13(1):2-13
21401744 - Plant J. 2011 Jun;66(5):863-76
24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73
23017896 - Plant Sci. 2012 Nov;196:18-30
25888374 - BMC Genomics. 2015 Mar 17;16:197
21362738 - J Exp Bot. 2011 Jun;62(10):3563-73
26030752 - PLoS One. 2015 Jun 01;10(6):e0128089
21421358 - Plant Sci. 2011 Feb;180(2):169-81
24060047 - BMC Plant Biol. 2013 Sep 23;13:140
18356539 - RNA. 2008 May;14(5):836-43
17442570 - Curr Biol. 2007 May 1;17 (9):818-23
22567728 - Int J Phytoremediation. 2012 May-Jun;14(5):506-17
15964037 - Phytochemistry. 2005 Jul;66(13):1519-28
23778453 - RNA Biol. 2013 Jul;10(7):1087-92
21909758 - Planta. 2012 Feb;235(2):375-86
26248304 - J Cell Physiol. 2016 Feb;231(2):303-13
20840511 - New Phytol. 2011 Apr;190(2):442-56
23281648 - BMC Genomics. 2012;13 Suppl 7:S16
25914709 - Front Plant Sci. 2015 Apr 10;6:232
20676715 - Funct Integr Genomics. 2010 Nov;10(4):493-507
26901236 - Bioengineered. 2016;7(1):7-10
23849115 - Plant Sci. 2013 Sep;210:70-81
23443096 - Int J Mol Sci. 2012 Nov 27;13(12):15826-47
23365650 - PLoS One. 2013;8(1):e54148
21663675 - BMC Genomics. 2011 Jun 10;12:307
19808935 - Nucleic Acids Res. 2010 Jan;38(Database issue):D806-13
23382553 - J Exp Bot. 2013 Apr;64(6):1521-36
25863133 - Methods. 2015 Jul 15;83:80-7
26454275 - Bioinformatics. 2016 Feb 1;32(3):450-2
21874378 - Plant Mol Biol. 2012 Sep;80(1):17-36
25547963 - Protoplasma. 2015 Jul;252(4):1149-65
25755657 - Front Plant Sci. 2015 Feb 23;6:58
21775303 - Bioinformatics. 2011 Sep 15;27(18):2614-5
22112171 - BMC Plant Biol. 2011 Nov 23;11:170
23480361 - Plant J. 2013 Jun;74(5):840-51
26141043 - Funct Integr Genomics. 2016 May;16(3):221-33
26003096 - Biotechnol Lett. 2015 Sep;37(9):1719-27
22413876 - BMC Syst Biol. 2012 Mar 13;6:18
23544066 - PLoS One. 2013;8(3):e59423
26372557 - PLoS One. 2015 Sep 15;10(9):e0137990
26134148 - Sci Rep. 2015 Jul 02;5:11813
20085706 - Cell. 2010 Jan 8;140(1):111-22
23915383 - New Phytol. 2013 Dec;200(4):1102-15
20573268 - BMC Plant Biol. 2010 Jun 24;10:123
26542525 - BMC Bioinformatics. 2015 Nov 05;16:370
23266877 - DNA Res. 2013 Apr;20(2):109-25
26501263 - Int J Mol Sci. 2015 Oct 15;16(10):24532-54
23292790 - Plant Physiol. 2013 Mar;161(3):1375-91
25270639 - Bioinformatics. 2015 Jan 15;31(2):265-7
12101121 - Genes Dev. 2002 Jul 1;16(13):1616-26
24106494 - Front Plant Sci. 2013 Oct 02;4:357
8252621 - Cell. 1993 Dec 3;75(5):843-54
22712679 - J Agric Food Chem. 2012 Jul 4;60(26):6524-36
19815687 - J Exp Bot. 2010;61(1):165-77
22135287 - Nucleic Acids Res. 2012 Jan;40(Database issue):D198-204
23040172 - BMC Plant Biol. 2012 Oct 05;12:182
22803610 - New Phytol. 2012 Oct;196(1):139-48
26246393 - Curr Opin Plant Biol. 2015 Oct;27:118-24
25705168 - Genomics Inform. 2014 Dec;12(4):261-7
24413694 - Plant Cell Rep. 2014 Jun;33(6):831-6
24076976 - Plant Cell. 2013 Sep;25(9):3570-83
24014874 - J Exp Bot. 2013 Nov;64(14):4271-87
18550839 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8795-800
22433074 - OMICS. 2012 Apr;16(4):168-77
25641615 - Plant Biotechnol J. 2015 Apr;13(3):282-92
20508137 - Plant Physiol. 2010 Aug;153(4):1759-70
23651319 - Plant Cell Environ. 2013 Dec;36(12):2207-18
20553393 - New Phytol. 2010 Aug;187(3):805-18
References_xml – volume: 12
  start-page: 1178
  year: 2015
  ident: B22
  article-title: miRNA-encoded peptides (miPEPs): a new tool to analyze the roles of miRNAs in plant biology
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1094601
– volume: 1
  start-page: 15036
  year: 2015
  ident: B119
  article-title: microRNA regulation of fruit growth
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.36
– volume: 55
  start-page: 379
  year: 2009
  ident: B75
  article-title: Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340802595543
– volume: 13
  start-page: S16
  year: 2012
  ident: B106
  article-title: C- mii: a tool for plant miRNA and target identification
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-S7-S16
– volume: 66
  start-page: 1519
  year: 2005
  ident: B117
  article-title: Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2005.05.003
– volume: 26
  start-page: 1566
  year: 2010
  ident: B9
  article-title: TAPIR, a web server for the prediction of plant microRNA targets, including target mimics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq233
– volume: 13
  start-page: 33
  year: 2013
  ident: B163
  article-title: PASmiR: a literature-curated database form iRNA molecular regulation in plant response to abiotic stress
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-13-33
– volume: 10
  start-page: e0137990
  year: 2015
  ident: B24
  article-title: Global identification of microRNAs and their targets in barley under salinity stress
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0137990
– volume: 136
  start-page: 669
  year: 2009
  ident: B138
  article-title: Origin, biogenesis, and activity of plant microRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.046
– volume: 11
  start-page: 61
  year: 2011
  ident: B148
  article-title: Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-11-61
– volume: 200
  start-page: 1102
  year: 2013
  ident: B83
  article-title: Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor
  publication-title: New Phytol
  doi: 10.1111/nph.12434
– volume: 12
  start-page: 132
  year: 2012
  ident: B6
  article-title: High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-12-132
– volume: 37
  start-page: 1719
  year: 2015
  ident: B13
  article-title: New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-015-1863-8
– volume: 33
  start-page: 831
  year: 2014
  ident: B46
  article-title: Role of microRNAs in aluminum stress in plants
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-014-1565-z
– volume: 60
  start-page: 10179
  year: 2012
  ident: B112
  article-title: Development of an agricultural biotechnology crop product: testing from discovery to commercialization
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf302706e
– volume: 13
  start-page: 282
  year: 2015
  ident: B48
  article-title: Floral induction and flower formation- the role and potential applications of miRNAs
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12340
– volume: 297
  start-page: 2053
  year: 2002
  ident: B90
  article-title: Cleavage of Scarecrow-like mRNAtargets directed by a class of Arabidopsis miRNA
  publication-title: Science
  doi: 10.1126/science.1076311
– volume: 10
  start-page: e0117584
  year: 2015
  ident: B58
  article-title: Identification and characterization of micrornas from tree peony (Paeonia ostii) and their response to copper stress
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0117584
– volume: 11
  start-page: 52
  year: 2010
  ident: B54
  article-title: Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silk worm development
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-52
– volume: 18
  start-page: 2051
  year: 2006
  ident: B132
  article-title: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041673
– volume: 13
  start-page: 409
  year: 2015
  ident: B8
  article-title: Regulation of the alkaloid biosynthesis by miRNA in opium poppy
  publication-title: Plant Biotechnol. J
  doi: 10.1111/pbi.12346
– volume: 101
  start-page: 11511
  year: 2004
  ident: B10
  article-title: Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0404025101
– volume: 39
  start-page: W132
  year: 2011
  ident: B44
  article-title: miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr247
– volume: 45
  start-page: 583
  year: 2004
  ident: B93
  article-title: Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pch060
– volume: 23
  start-page: 4185
  year: 2011
  ident: B56
  article-title: Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.089045
– volume: 12
  start-page: 182
  year: 2012
  ident: B158
  article-title: Identification of wild soybean miRNAs and their target genes responsive to aluminum stress
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-12-182
– volume: 16
  start-page: 1616
  year: 2002
  ident: B115
  article-title: MicroRNAs in plants
  publication-title: Genes Dev.
  doi: 10.1101/gad.1004402
– volume: 60
  start-page: 6524
  year: 2012
  ident: B89
  article-title: Molecular identification and analysis of arsenite stress-responsive miRNAs in rice
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf300724t
– volume: 58
  start-page: 1068
  year: 2009
  ident: B157
  article-title: Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.03835.x
– volume: 13
  start-page: 15826
  year: 2012
  ident: B36
  article-title: MicroRNAs in metal stress: specific roles or secondary responses?
  publication-title: Int. J. Mol. Sci
  doi: 10.3390/ijms131215826
– volume: 70
  start-page: 1500
  year: 2008
  ident: B174
  article-title: Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants
  publication-title: Chemosphere
  doi: 10.1016/j.envexpbot.2008.06.001
– volume: 14
  start-page: 271
  year: 2014a
  ident: B164
  article-title: Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-014-0271-x
– volume: 140
  start-page: 57
  year: 2010
  ident: B91
  article-title: Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2010.01384.x
– volume: 12
  start-page: 4213
  year: 2013
  ident: B139
  article-title: Identification of UV-B-induced microRNAs in wheat
  publication-title: Genet. Mol. Res.
  doi: 10.4238/2013
– volume: 140
  start-page: 111
  year: 2010
  ident: B67
  article-title: Transcriptional control of gene expression by microRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.023
– volume: 10
  start-page: 1087
  year: 2013
  ident: B144
  article-title: mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing
  publication-title: RNA Biol.
  doi: 10.4161/rna.25193
– start-page: 15
  volume-title: Salt Stress in Plants
  year: 2013
  ident: B94
  article-title: MicroRNAs and their role in salt stress response in plants
  doi: 10.1007/978-1-4614-6108-1_2
– volume: 40
  start-page: D198
  year: 2011
  ident: B134
  article-title: miRNEST database: an integrative approach in microRNA search and annotation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1159
– volume: 83
  start-page: 59
  year: 2013
  ident: B172
  article-title: MicroRNA-mediated gene regulation: potential application for plant genetic engineering
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-013-0089-1
– volume: 14
  start-page: 854
  year: 2008
  ident: B39
  article-title: A link between RNA metabolism and silencing affecting Arabidopsis development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.04.005
– volume: 57
  start-page: 19
  year: 2006
  ident: B59
  article-title: MicroRNAs and their regulatory roles in plants
  publication-title: Annu. Rev. Plant Biol
  doi: 10.1146/annurev.arplant.57.032905.105218
– volume: 27
  start-page: 118
  year: 2015
  ident: B141
  article-title: More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.06.012
– volume: 66
  start-page: 1749
  year: 2015
  ident: B160
  article-title: MicroRNA: a new target for improving plant tolerance to abiotic stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv013
– volume: 36
  start-page: 2207
  year: 2013
  ident: B151
  article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.)
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12130
– year: 2016
  ident: B120
  article-title: Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-016-6436-4
– volume: 153
  start-page: 1759
  year: 2010
  ident: B80
  article-title: Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.156950
– volume: 179
  start-page: 283
  year: 2016
  ident: B97
  article-title: Plant miRNA function prediction based on functional similarity network and transductive multi-label classification algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.011
– volume: 61
  start-page: 4157
  year: 2010
  ident: B170
  article-title: Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq237
– volume: 8
  start-page: 697
  year: 2014
  ident: B38
  article-title: Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat (Triticum aestivum L.) under the heat stress
  publication-title: Aust. J. Crop Sci.
– volume: 555
  start-page: 186
  year: 2015
  ident: B45
  article-title: miR408 overexpression causes increased drought tolerance in chickpea
  publication-title: Gene
  doi: 10.1016/j.gene.2014.11.002
– volume: 8
  start-page: 887
  year: 2010
  ident: B51
  article-title: A set of miRNAs from Brassica napus in response to sulfate deficiency and cadmium stress
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2010.00517.x
– volume: 5
  start-page: 11813
  year: 2015
  ident: B84
  article-title: Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis
  publication-title: Sci. Rep.
  doi: 10.1038/srep11813
– volume: 16
  start-page: 221
  year: 2015
  ident: B3
  article-title: miRNA-based drought regulation in wheat
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-015-0452-1
– volume: 10
  start-page: 493
  year: 2010
  ident: B61
  article-title: Regulation of barley miRNAs upon dehydration stress correlated with target gene expression
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-010-0181-4
– volume: 38
  start-page: 237
  year: 2011
  ident: B34
  article-title: osa-MIR393: a salinity and alkaline stress-related microRNA gene
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-010-0100-8
– volume: 161
  start-page: 1375
  year: 2013
  ident: B171
  article-title: Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.208702
– volume: 156
  start-page: 1101
  year: 2011
  ident: B50
  article-title: LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.170209
– volume: 147
  start-page: 181
  year: 2013
  ident: B159
  article-title: Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2012.01653.x
– volume: 62
  start-page: 3563
  year: 2011
  ident: B26
  article-title: Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err046
– volume: 187
  start-page: 805
  year: 2010
  ident: B137
  article-title: MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03320.x
– volume: 14
  start-page: 836
  year: 2008
  ident: B47
  article-title: Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana
  publication-title: RNA
  doi: 10.1261/rna.895308
– volume: 168
  start-page: 2
  year: 2016
  ident: B100
  article-title: Role of microRNAs in rice plant under salt stress
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12241
– volume: 61
  start-page: 165
  year: 2010
  ident: B101
  article-title: Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp296
– volume: 65
  start-page: 6123
  year: 2014
  ident: B70
  article-title: Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru353
– volume: 17
  start-page: 196
  year: 2012
  ident: B133
  article-title: Functions of microRNAs in plant stress responses
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.01.010
– volume: 31
  start-page: 265
  year: 2015
  ident: B16
  article-title: BioVLAB-MMIA-NGS: microRNA-mRNA integrated analysis using high throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu614
– volume: 77
  start-page: 47
  year: 2011
  ident: B65
  article-title: MicroRNAs as regulators of root development and architecture
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9793-x
– volume: 39
  start-page: D181
  year: 2011
  ident: B98
  article-title: PmiRKB: a plant microRNA knowledge base
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq721
– volume: 196
  start-page: 18
  year: 2012
  ident: B95
  article-title: “And yet it moves”: cell-to-cell and long-distance signaling by plant microRNAs
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2012.07.009
– volume: 354
  start-page: 585
  year: 2007
  ident: B167
  article-title: Identification of drought-induced microRNAs in rice
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.01.022
– year: 2014
  ident: B25
  publication-title: Cobalt's Role in Plants.
– volume: 66
  start-page: 863
  year: 2011
  ident: B62
  article-title: Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04547.x
– start-page: 024893
  year: 2015
  ident: B116
  article-title: WMP: a novel comprehensive wheat miRNA database, including related bioinformatics software
  publication-title: BioRxiv
  doi: 10.1101/024893
– volume: 105
  start-page: 8795
  year: 2008
  ident: B76
  article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0802493105
– volume: 67
  start-page: 175
  year: 2016
  ident: B82
  article-title: Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv450
– volume: 64
  start-page: 303
  year: 2012
  ident: B127
  article-title: Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers333
– volume: 13
  start-page: 140
  year: 2013
  ident: B96
  article-title: Development associated microRNAs in grains of wheat (Triticum aestivum L.)
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-13-140
– volume: 22
  start-page: 113
  year: 2013
  ident: B169
  article-title: Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation
  publication-title: J. Plant Biochem. Biotechnol
  doi: 10.1007/s13562-012-0117-2
– volume: 16
  start-page: 370
  year: 2015
  ident: B28
  article-title: miRA: adaptable novel miRNA identification in plants using small RNA sequencing data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0798-3
– volume: 12
  start-page: 261
  year: 2014
  ident: B37
  article-title: Genome-wide identification and classification of microRNAs derived from repetitive elements
  publication-title: Genomics Inform.
  doi: 10.5808/GI.2014.12.4.261
– volume: 84
  start-page: 1
  year: 2014
  ident: B41
  article-title: MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-013-0120-6
– volume: 13
  start-page: 2
  year: 2015
  ident: B42
  article-title: Differential expression of microRNAs and other small RNAs in barley between water and drought conditions
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12220
– volume: 4
  issue: 357
  year: 2013
  ident: B32
  article-title: Toward new perspectives on the interaction of iron and sulfur metabolism in plants
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2013.00357
– volume: 7
  start-page: e48951
  year: 2012
  ident: B85
  article-title: Identification of nitrogen starvation responsive miRNAs in Arabidopsis thaliana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048951
– volume: 63
  start-page: 4597
  year: 2012a
  ident: B173
  article-title: Genome-wide identification of Brassica napus microRNA and their targets in response to cadmium
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers136
– volume: 5
  start-page: 56
  year: 2016
  ident: B125
  article-title: miR394 and its target gene LCR are involved in cold stress response in Arabidopsis
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2015.12.001
– volume: 32
  start-page: 450
  year: 2016
  ident: B108
  article-title: miTRATA: a web-based tool for microRNA truncation and tailing analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv583
– volume: 7
  start-page: e1002021
  year: 2011
  ident: B60
  article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002021
– volume: 250
  start-page: 209
  year: 2013
  ident: B136
  article-title: Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation
  publication-title: Protoplasma
  doi: 10.1007/s00709-012-0395-5
– volume: 6
  issue: 232
  year: 2015
  ident: B109
  article-title: miRNA regulation of nutrient homeostasis in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00232
– volume: 15
  start-page: 1130
  year: 2014
  ident: B14
  article-title: Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-1130
– volume: 12
  start-page: 307
  year: 2011
  ident: B73
  article-title: Identification of novel soybean microRNAs involved in abiotic and biotic stresses
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-307
– volume: 25
  start-page: 847
  year: 2012
  ident: B18
  article-title: Mercury toxicity, molecular response and tolerance in higher plants
  publication-title: Biometals
  doi: 10.1007/s10534-012-9560-8
– volume: 16
  start-page: 168
  year: 2012
  ident: B103
  article-title: Semirna: searching for plant miRNAs using target sequences
  publication-title: Omics
  doi: 10.1089/omi.2011.0115
– volume: 180
  start-page: 169
  year: 2011
  ident: B114
  article-title: Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.08.016
– volume: 16
  start-page: 235
  year: 2016
  ident: B113
  article-title: PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-016-0480-5
– volume: 39
  start-page: D163
  year: 2011
  ident: B49
  article-title: miRTarBase: a database curates experimentally validated microRNA-target interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1107
– volume: 60
  start-page: 3419
  year: 2009
  ident: B126
  article-title: Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp181
– volume: 235
  start-page: 375
  year: 2012
  ident: B19
  article-title: Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing
  publication-title: Planta
  doi: 10.1007/s00425-011-1514-9
– volume: 16
  start-page: 1664
  year: 2012
  ident: B71
  article-title: Role of microRNAs and other sRNAs of plants in their changing environments
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.03.009
– volume: 11
  start-page: 170
  year: 2011
  ident: B81
  article-title: Characterization of the stress associated microRNAs in Glycine max by deep sequencing
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-11-170
– volume: 34
  start-page: 553
  year: 2015
  ident: B99
  article-title: Discovering microRNAs and their targets in plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2015.1078614
– volume: 427
  start-page: 330
  year: 2012
  ident: B104
  article-title: Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.09.055
– volume: 252
  start-page: 1149
  year: 2015
  ident: B66
  article-title: Na+ and Cl− ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice
  publication-title: Protoplasma
  doi: 10.1007/s00709-014-0749-2
– volume: 10
  start-page: e0143066
  year: 2015
  ident: B5
  article-title: miRge - A multiplexed method of processing small RNA-seq data to determine microRNA entropy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0143066
– volume: 8
  start-page: 255
  year: 2013
  ident: B12
  article-title: The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view
  publication-title: Genes Nutr
  doi: 10.1007/s12263-012-0316-4
– start-page: 345
  volume-title: Advances in Plant Breeding Strategies
  year: 2016
  ident: B142
  article-title: Transgenic approaches for abiotic stress tolerance in crop plants
– volume: 25
  start-page: 1
  year: 2006
  ident: B2
  article-title: Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680500365232
– volume: 62
  start-page: 1046
  year: 2010
  ident: B86
  article-title: microRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04216.x
– volume: 83
  start-page: 80
  year: 2015
  ident: B118
  article-title: PlantMirnaT: miRNA and mRNA integrated analysis fully utilizing characteristics of plant sequencing data
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.04.003
– volume: 38
  start-page: 465
  year: 2010
  ident: B145
  article-title: DNA methylation mediated by a microRNAs pathway
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.03.008
– volume: 14
  start-page: 174
  year: 2013
  ident: B130
  article-title: PMTED: a plant microRNA target expression database
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-174
– volume: 20
  start-page: 109
  year: 2013
  ident: B43
  article-title: Comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions
  publication-title: DNA Res
  doi: 10.1093/dnares/dss037
– volume: 74
  start-page: 840
  year: 2013
  ident: B40
  article-title: Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/tpj.12169
– year: 2015
  ident: B23
  article-title: Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa)
  publication-title: Mol. Breed
  doi: 10.1007/s11032-015-0402-6
– volume: 7
  start-page: e30039
  year: 2012
  ident: B146
  article-title: OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030039
– volume: 5
  start-page: 604
  year: 2012
  ident: B168
  article-title: Comparative proteomic analysis of the effects of nitric oxide on alleviating Cd-induced toxicity in rice (Oryza sativa L.)
  publication-title: Plant Omics
– volume: 43
  start-page: W467
  year: 2015
  ident: B123
  article-title: sRNAtoolbox: an integrated collection of small RNA research tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv555
– volume: 43
  start-page: D982
  year: 2015
  ident: B155
  article-title: PNRD: a plant non-coding RNA database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1162
– volume: 56
  start-page: 187
  year: 2013
  ident: B55
  article-title: The role of rice microRNAs in abiotic stress responses
  publication-title: J. Plant Biol.
  doi: 10.1007/s12374-013-0213-4
– volume: 1819
  start-page: 137
  year: 2012
  ident: B68
  article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.05.001
– volume: 4
  start-page: 37
  year: 2010
  ident: B74
  article-title: Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/S11816-009-0118-3
– volume: 57
  start-page: 313
  year: 2009
  ident: B63
  article-title: Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03690.x
– volume: 231
  start-page: 303
  year: 2016
  ident: B79
  article-title: MicroRNAs in control of plant development
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25125
– volume: 210
  start-page: 70
  year: 2013
  ident: B31
  article-title: Manipulation of microRNA expression to improve nitrogen use efficiency
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2013.05.009
– volume: 177
  start-page: 879
  year: 2015
  ident: B17
  article-title: New Insights on coffea miRNAs: features and evolutionary conservation
  publication-title: Appl. Biochem. Biotechnol
  doi: 10.1007/s12010-015-1785-x
– volume: 16
  start-page: 24532
  year: 2015
  ident: B72
  article-title: Small RNAs in plant responses to abiotic stresses: regulatory roles and study methods
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms161024532
– volume: 35
  start-page: 86
  year: 2012b
  ident: B175
  article-title: Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02418.x
– volume: 230
  start-page: 1
  year: 2015
  ident: B161
  article-title: MicroRNA-Based Biotechnology for Plant Improvement
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.24685
– volume: 31
  start-page: 290
  year: 2014b
  ident: B165
  article-title: MTide: an integrated tool for the identification of miRNA-target interaction in plants
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu633
– volume: 10
  start-page: 123
  year: 2010
  ident: B149
  article-title: Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-10-123
– volume: 6
  issue: 58
  year: 2015
  ident: B35
  article-title: MicroRNAs and drought responses in sugarcane
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2015.00058
– volume: 65
  start-page: 5049
  year: 2014
  ident: B78
  article-title: MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru270
– volume: 63
  start-page: 5903
  year: 2012
  ident: B143
  article-title: Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/ers239
– volume: 4
  issue: 145
  year: 2013
  ident: B64
  article-title: Systemic regulation of mineral homeostasis by micro RNAs
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00145
– volume: 80
  start-page: 17
  year: 2012
  ident: B129
  article-title: MicroRNAs and their diverse functions in plants
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9817-6
– volume: 43
  start-page: 259
  year: 2004
  ident: B57
  article-title: Arsenic exposure alters activity behavior of key nitrogen assimilatory enzymes in growing rice plants
  publication-title: Plant Growth Regul.
  doi: 10.1023/B:GROW.0000045995.49365.df
– volume: 42
  start-page: D68
  year: 2014
  ident: B69
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1181
– volume: 32
  start-page: 157
  year: 2016
  ident: B29
  article-title: P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv534
– volume: 12
  start-page: 468
  year: 2014
  ident: B121
  article-title: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12153
– volume: 62
  start-page: 360
  year: 2015
  ident: B33
  article-title: Transgenic tomato overexpressing ath-miR399d improves growth under abiotic stress conditions
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443715030061
– volume: 195
  start-page: 97
  year: 2012
  ident: B156
  article-title: Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa)
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04154.x
– volume: 77
  start-page: 85
  year: 2014
  ident: B53
  article-title: Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/tpj.12364
– volume: 13
  start-page: 355
  year: 2015
  ident: B147
  article-title: Small RNA sequencing identifies miRNA roles in ovule and fibre development
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12296
– volume: 7
  issue: 235
  year: 2016
  ident: B27
  article-title: MicroRNA390 is involved in cadmium tolerance and accumulation in rice
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2016.00235
– volume: 70
  start-page: 221
  year: 2013
  ident: B110
  article-title: Identification and comparative analysis of low phosphate tolerance associated microRNAs in two maize genotypes
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2013.05.043
– volume: 16
  start-page: 197
  year: 2015
  ident: B131
  article-title: Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.)
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1416-5
– volume: 2012
  start-page: 219462
  year: 2012
  ident: B124
  article-title: Aluminium toxicity targets in plants
  publication-title: J. Bot.
  doi: 10.1155/2012/219462
– volume: 64
  start-page: 1521
  year: 2013
  ident: B153
  article-title: Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert013
– volume: 283
  start-page: 15932
  year: 2008
  ident: B1
  article-title: microRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801406200
– volume: 15
  start-page: 275
  year: 2014
  ident: B4
  article-title: miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-275
– volume: 7
  start-page: e50261
  year: 2012
  ident: B105
  article-title: Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0050261
– volume: 5
  start-page: 1184
  year: 2013
  ident: B154
  article-title: A potential role of microRNAs in regulating plant response to metal toxicity
  publication-title: Metallomics
  doi: 10.1039/c3mt00022b
– volume: 75
  start-page: 843
  year: 1993
  ident: B77
  article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90529-Y
– volume: 9
  start-page: e95800
  year: 2014
  ident: B107
  article-title: A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0095800
– volume: 14
  start-page: 506
  year: 2011
  ident: B128
  article-title: Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal
  publication-title: Int. J. Phytoremed
  doi: 10.1080/15226514.2011.604690
– volume: 196
  start-page: 139
  year: 2012
  ident: B140
  article-title: Functional characterization of the rice SPX−MFS family reveals a key role of OsSPX−MFS1 in controlling phosphate homeostasis in leaves
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04227.x
– volume: 6
  start-page: 18
  year: 2012
  ident: B88
  article-title: Crosstalk between transcription factors and microRNAs in human protein interaction network
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-6-18
– volume: 18
  start-page: 1602
  year: 2008
  ident: B102
  article-title: Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening
  publication-title: Genome Res.
  doi: 10.1101/gr.080127.108
– volume: 6
  issue: 286
  year: 2015
  ident: B135
  article-title: Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution
  publication-title: Front. Physiol
  doi: 10.3389/fphys.2015.00286
– volume: 64
  start-page: 4271
  year: 2013
  ident: B150
  article-title: Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert240
– volume: 27
  start-page: 2614
  year: 2011
  ident: B152
  article-title: miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr430
– volume: 25
  start-page: 3570
  year: 2013
  ident: B15
  article-title: Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117473
– volume: 1779
  start-page: 99
  year: 2007
  ident: B52
  article-title: Small RNAs in tomato fruit and leaf development
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2007.09.003
– volume: 38
  start-page: D806
  year: 2010
  ident: B166
  article-title: PMRD: plant microRNA database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp818
– volume: 8
  start-page: e59423
  year: 2013
  ident: B11
  article-title: High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0059423
– volume: 190
  start-page: 442
  year: 2011
  ident: B87
  article-title: Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03451.x
– volume: 10
  start-page: e0128089
  year: 2015
  ident: B20
  article-title: Dietary microRNA database (DMD): an archive database and analytic tool for food-borne microRNAs
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0128089
– volume: 62
  start-page: 454
  year: 2010
  ident: B7
  article-title: microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04162.x
– volume: 62
  start-page: 66
  year: 2013
  ident: B122
  article-title: ST105 Deep sequencing reveals abundant Pol III retroviral microRNA cluster in Bovine Leukemia Virus-induced leukemia
  publication-title: J. Acq. Imm. Def. Syndr.
  doi: 10.1097/01.qai.0000429267.82844.b6
– volume: 17
  start-page: 818
  year: 2007
  ident: B30
  article-title: Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants
  publication-title: Curr. Biol
  doi: 10.1016/j.cub.2007.04.005
– start-page: 223
  volume-title: Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops
  year: 2007
  ident: B21
  article-title: Small RNAs: big role in abiotic stress tolerance of plants
  doi: 10.1007/978-1-4020-5578-2_10
– volume: 7
  start-page: 7
  year: 2016
  ident: B162
  article-title: MicroRNA, a new target for engineering new crop varieties
  publication-title: Bioengineered
  doi: 10.1080/21655979.2016.1141838
– volume: 459
  start-page: 39
  year: 2010
  ident: B92
  article-title: Profiling of cold-stress-responsive miRNAs in rice by microarrays
  publication-title: Gene
  doi: 10.1016/j.gene.2010.03.011
– volume: 8
  start-page: e54148
  year: 2013
  ident: B111
  article-title: Characterization and expression patterns of microRNAs involved in rice grain filling
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0054148
– reference: 21362738 - J Exp Bot. 2011 Jun;62(10):3563-73
– reference: 25705168 - Genomics Inform. 2014 Dec;12(4):261-7
– reference: 19808935 - Nucleic Acids Res. 2010 Jan;38(Database issue):D806-13
– reference: 20089182 - BMC Genomics. 2010 Jan 20;11:52
– reference: 24393105 - Plant Biotechnol J. 2014 May;12(4):468-79
– reference: 25270639 - Bioinformatics. 2015 Jan 15;31(2):265-7
– reference: 25888374 - BMC Genomics. 2015 Mar 17;16:197
– reference: 26454275 - Bioinformatics. 2016 Feb 1;32(3):450-2
– reference: 18356539 - RNA. 2008 May;14(5):836-43
– reference: 23162117 - J Exp Bot. 2013 Jan;64(1):303-15
– reference: 26578966 - Front Physiol. 2015 Oct 26;6:286
– reference: 22567728 - Int J Phytoremediation. 2012 May-Jun;14(5):506-17
– reference: 26246393 - Curr Opin Plant Biol. 2015 Oct;27:118-24
– reference: 23155433 - PLoS One. 2012;7(11):e48951
– reference: 24014874 - J Exp Bot. 2013 Nov;64(14):4271-87
– reference: 25330732 - BMC Plant Biol. 2014 Oct 21;14:271
– reference: 22253868 - PLoS One. 2012;7(1):e30039
– reference: 26901236 - Bioengineered. 2016;7(1):7-10
– reference: 24413694 - Plant Cell Rep. 2014 Jun;33(6):831-6
– reference: 26996904 - Environ Sci Pollut Res Int. 2016 Sep;23 (18):17859-79
– reference: 21401744 - Plant J. 2011 Jun;66(5):863-76
– reference: 21455488 - PLoS Genet. 2011 Mar;7(3):e1002021
– reference: 24076976 - Plant Cell. 2013 Sep;25(9):3570-83
– reference: 20719744 - Nucleic Acids Res. 2011 Jan;39(Database issue):D181-7
– reference: 21607657 - Plant Mol Biol. 2011 Sep;77(1-2):47-58
– reference: 21317339 - Plant Physiol. 2011 Jul;156(3):1101-15
– reference: 21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9
– reference: 20381393 - Mol Cell. 2010 May 14;38(3):465-75
– reference: 20336383 - Mol Biol Rep. 2011 Jan;38(1):237-42
– reference: 20350593 - Gene. 2010 Jul 1;459(1-2):39-47
– reference: 20508137 - Plant Physiol. 2010 Aug;153(4):1759-70
– reference: 26382195 - Bioinformatics. 2016 Jan 1;32(1):157-8
– reference: 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73
– reference: 20487378 - Physiol Plant. 2010 Sep 1;140(1):57-68
– reference: 12101121 - Genes Dev. 2002 Jul 1;16(13):1616-26
– reference: 26372557 - PLoS One. 2015 Sep 15;10(9):e0137990
– reference: 21515631 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W132-8
– reference: 25572837 - Plant Biotechnol J. 2015 Apr;13(3):355-69
– reference: 22607471 - Physiol Plant. 2013 Feb;147(2):181-93
– reference: 21895696 - Plant Cell Environ. 2012 Jan;35(1):86-99
– reference: 21663675 - BMC Genomics. 2011 Jun 10;12:307
– reference: 23382553 - J Exp Bot. 2013 Apr;64(6):1521-36
– reference: 19222804 - Plant J. 2009 Jun;58(6):1068-82
– reference: 25547963 - Protoplasma. 2015 Jul;252(4):1149-65
– reference: 26973678 - Front Plant Sci. 2016 Mar 01;7:235
– reference: 22862743 - BMC Plant Biol. 2012 Aug 03;12:132
– reference: 23040172 - BMC Plant Biol. 2012 Oct 05;12:182
– reference: 23480361 - Plant J. 2013 Jun;74(5):840-51
– reference: 22135287 - Nucleic Acids Res. 2012 Jan;40(Database issue):D198-204
– reference: 23003210 - J Agric Food Chem. 2012 Oct 17;60(41):10179-87
– reference: 24114216 - Genet Mol Res. 2013 Oct 07;12(4):4213-21
– reference: 18653800 - Genome Res. 2008 Oct;18(10):1602-9
– reference: 22647959 - J Plant Physiol. 2012 Nov 1;169(16):1664-72
– reference: 25914709 - Front Plant Sci. 2015 Apr 10;6:232
– reference: 17905409 - Chemosphere. 2008 Feb;70(8):1500-9
– reference: 22413876 - BMC Syst Biol. 2012 Mar 13;6:18
– reference: 26542525 - BMC Bioinformatics. 2015 Nov 05;16:370
– reference: 22537016 - New Phytol. 2012 Jul;195(1):97-112
– reference: 22803610 - New Phytol. 2012 Oct;196(1):139-48
– reference: 19528528 - J Exp Bot. 2009;60(12):3419-31
– reference: 26400469 - RNA Biol. 2015;12(11):1178-80
– reference: 20444207 - Plant Biotechnol J. 2010 Oct;8(8):887-99
– reference: 15272084 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6
– reference: 23266877 - DNA Res. 2013 Apr;20(2):109-25
– reference: 20676715 - Funct Integr Genomics. 2010 Nov;10(4):493-507
– reference: 18408011 - J Biol Chem. 2008 Jun 6;283(23):15932-45
– reference: 20573268 - BMC Plant Biol. 2010 Jun 24;10:123
– reference: 26571139 - PLoS One. 2015 Nov 16;10(11):e0143066
– reference: 24962998 - J Exp Bot. 2014 Sep;65(17):5049-62
– reference: 12242443 - Science. 2002 Sep 20;297(5589):2053-6
– reference: 16669754 - Annu Rev Plant Biol. 2006;57:19-53
– reference: 23915383 - New Phytol. 2013 Dec;200(4):1102-15
– reference: 23292790 - Plant Physiol. 2013 Mar;161(3):1375-91
– reference: 25445265 - Gene. 2015 Jan 25;555(2):186-93
– reference: 15169940 - Plant Cell Physiol. 2004 May;45(5):583-9
– reference: 23544066 - PLoS One. 2013;8(3):e59423
– reference: 23771582 - Plant Mol Biol. 2013 Sep;83(1-2):59-75
– reference: 22639189 - Biometals. 2012 Oct;25(5):847-57
– reference: 27247036 - Nat Plants. 2015 Mar 30;1(4):15036
– reference: 24164591 - Plant J. 2014 Jan;77(1):85-96
– reference: 22760473 - J Exp Bot. 2012 Jul;63(12):4597-613
– reference: 23227161 - PLoS One. 2012;7(12):e50261
– reference: 26501263 - Int J Mol Sci. 2015 Oct 15;16(10):24532-54
– reference: 26887375 - Funct Integr Genomics. 2016 May;16(3):235-42
– reference: 25117656 - BMC Bioinformatics. 2014 Aug 12;15:275
– reference: 25256573 - Bioinformatics. 2015 Jan 15;31(2):290-1
– reference: 8252621 - Cell. 1993 Dec 3;75(5):843-54
– reference: 25863133 - Methods. 2015 Jul 15;83:80-7
– reference: 22158467 - Plant Cell. 2011 Dec;23(12):4185-207
– reference: 22712679 - J Agric Food Chem. 2012 Jul 4;60(26):6524-36
– reference: 23579282 - Metallomics. 2013 Sep;5(9):1184-90
– reference: 21605713 - Biochim Biophys Acta. 2012 Feb;1819(2):137-48
– reference: 23720667 - Front Plant Sci. 2013 May 16;4:145
– reference: 21421358 - Plant Sci. 2011 Feb;180(2):169-81
– reference: 23365650 - PLoS One. 2013;8(1):e54148
– reference: 23076994 - Genes Nutr. 2013 May;8(3):255-70
– reference: 20128885 - Plant J. 2010 May;62(3):454-62
– reference: 25755657 - Front Plant Sci. 2015 Feb 23;6:58
– reference: 23017896 - Plant Sci. 2012 Nov;196:18-30
– reference: 25641615 - Plant Biotechnol J. 2015 Apr;13(3):282-92
– reference: 26248304 - J Cell Physiol. 2016 Feb;231(2):303-13
– reference: 20374528 - Plant J. 2010 Jun 1;62(6):1046-57
– reference: 23975146 - Plant Mol Biol. 2014 Jan;84(1-2):1-18
– reference: 25398903 - Nucleic Acids Res. 2015 Jan;43(Database issue):D982-9
– reference: 18078843 - Biochim Biophys Acta. 2008 Feb;1779(2):99-107
– reference: 23448274 - BMC Plant Biol. 2013 Mar 01;13:33
– reference: 22365280 - Trends Plant Sci. 2012 Apr;17(4):196-203
– reference: 18550839 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8795-800
– reference: 25697792 - J Exp Bot. 2015 Apr;66(7):1749-61
– reference: 26141043 - Funct Integr Genomics. 2016 May;16(3):221-33
– reference: 21909758 - Planta. 2012 Feb;235(2):375-86
– reference: 20729483 - J Exp Bot. 2010 Oct;61(15):4157-68
– reference: 20085706 - Cell. 2010 Jan 8;140(1):111-22
– reference: 24060047 - BMC Plant Biol. 2013 Sep 23;13:140
– reference: 23443096 - Int J Mol Sci. 2012 Nov 27;13(12):15826-47
– reference: 23849115 - Plant Sci. 2013 Sep;210:70-81
– reference: 23778453 - RNA Biol. 2013 Jul;10(7):1087-92
– reference: 25519760 - BMC Genomics. 2014 Dec 17;15:1130
– reference: 26003096 - Biotechnol Lett. 2015 Sep;37(9):1719-27
– reference: 26466661 - J Exp Bot. 2016 Jan;67(1):175-94
– reference: 17442570 - Curr Biol. 2007 May 1;17 (9):818-23
– reference: 18801012 - Plant J. 2009 Jan;57(2):313-21
– reference: 24909308 - J Cell Physiol. 2015 Jan;230(1):1-15
– reference: 20430753 - Bioinformatics. 2010 Jun 15;26(12):1566-8
– reference: 26134148 - Sci Rep. 2015 Jul 02;5:11813
– reference: 23725466 - BMC Bioinformatics. 2013 Jun 03;14:174
– reference: 26019179 - Nucleic Acids Res. 2015 Jul 1;43(W1):W467-73
– reference: 24759739 - PLoS One. 2014 Apr 23;9(4):e95800
– reference: 23000164 - Biochem Biophys Res Commun. 2012 Oct 19;427(2):330-5
– reference: 20553393 - New Phytol. 2010 Aug;187(3):805-18
– reference: 23651319 - Plant Cell Environ. 2013 Dec;36(12):2207-18
– reference: 21874378 - Plant Mol Biol. 2012 Sep;80(1):17-36
– reference: 17254555 - Biochem Biophys Res Commun. 2007 Mar 9;354(2):585-90
– reference: 26030752 - PLoS One. 2015 Jun 01;10(6):e0128089
– reference: 21473757 - BMC Plant Biol. 2011 Apr 07;11:61
– reference: 19239888 - Cell. 2009 Feb 20;136(4):669-87
– reference: 22112171 - BMC Plant Biol. 2011 Nov 23;11:170
– reference: 15964037 - Phytochemistry. 2005 Jul;66(13):1519-28
– reference: 23281648 - BMC Genomics. 2012;13 Suppl 7:S16
– reference: 22962679 - J Exp Bot. 2012 Oct;63(16):5903-18
– reference: 16861386 - Plant Cell. 2006 Aug;18(8):2051-65
– reference: 25735537 - Plant Biotechnol J. 2015 Apr;13(3):409-20
– reference: 21775303 - Bioinformatics. 2011 Sep 15;27(18):2614-5
– reference: 20840511 - New Phytol. 2011 Apr;190(2):442-56
– reference: 18486559 - Dev Cell. 2008 Jun;14(6):854-66
– reference: 22433074 - OMICS. 2012 Apr;16(4):168-77
– reference: 26277190 - Appl Biochem Biotechnol. 2015 Oct;177(4):879-908
– reference: 24975557 - Plant Biotechnol J. 2015 Jan;13(1):2-13
– reference: 25183744 - J Exp Bot. 2014 Nov;65(20):6123-35
– reference: 22434153 - Protoplasma. 2013 Feb;250(1):209-22
– reference: 25658957 - PLoS One. 2015 Feb 06;10(2):e0117584
– reference: 23792878 - Plant Physiol Biochem. 2013 Sep;70:221-34
– reference: 24106494 - Front Plant Sci. 2013 Oct 02;4:357
– reference: 19815687 - J Exp Bot. 2010;61(1):165-77
SSID ssj0000500997
Score 2.5548167
SecondaryResourceType review_article
Snippet The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have...
The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 817
SubjectTerms Abiotic stress
Biosynthesis
Crops
DNA methylation
Down-regulation
Drought
Environmental factors
Epigenetics
Flowers & plants
Gene expression
Heavy metals
Metabolism
Metabolites
MicroRNAs
miRNA
Pattern recognition
Plant growth
Plant Science
Plant species
Plant tolerance
Plants (botany)
Post-transcription
Proteins
Signal transduction
Software
Transgenic plants
Title MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants
URI https://www.ncbi.nlm.nih.gov/pubmed/27379117
https://www.proquest.com/docview/3274994464
https://www.proquest.com/docview/1802472135
https://pubmed.ncbi.nlm.nih.gov/PMC4906921
Volume 7
WOSCitedRecordID wos000377657700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M0K
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M7P
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: BENPR
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: PIMPY
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7Rx4FLedOl7cpIHLiEJrGN7VO1RVuB0K6iskjLKUocR6y0SpYmReLCb2fGyYa2CC5IkS-2E8fj8XwzHs8AvCLHJ6kjHog4soEokBVzacugyJSNjCKx0CWbUPO5Xi5N0hvcmt6tcrsn-o26qC3ZyE85qk_GoPIizjbfAsoaRaerfQqNHdijKAmxd91LBhtLKAkAqS6iD-pi5rTcrClGd0QnENonKbshjP5AmHcdJW9InosH_zvmh3DQY0426RbJI7jnqsewf14jLvzxBKYz8sm7nE8ahk9St-Q_hM0X3ke8YYhq2SRf1diZffI3S9iiXjtKyOHYqmKU9qhtnsLni-ni3fugT64QWNRR2iCTxroy0qWILdJLW023y0WZKYcIwklV8EJxYayMZYY4UBRWa1uUUucxF2HBn8FuVVfuEBjyfZSHSGZllcgKpXlpQxeWeZ4h2nN8BG-2s5zaPvI4JcBYp6iBEFlSIktKZEk9WUbweuiw6YJu_L3p8Xbq0577mvT3vI_g5VCNfEOHIVnl6usmpch3AtVfLkfwvKPy8C2EdAqFAL5c3aL_0IBict-uqVZffWxuYcK3Jo5e_HtYR3CffoFcziJxDLvt1bU7gX37vV01V2PYUUs9hr3z6Ty5HHsrAZaz8OPYL28qf06xPvkwS778AvSZApE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VbSW48H5sW8BIIHEJTWK7tg8ILdCqq3ZXK1ikcgqJ44iVVsnSpKD-qf5GZvKiBcGtB6Tc_Egcf575xh7PADwnxyepA-6JMLCeSHEpJtJmXhorGxhFaqFJNqGmU318bGZrcN7dhSG3yk4m1oI6LSztke9wNJ-MQeNFvFl98yhrFJ2udik0GlgcurMfaLKVr8fvcX5fhOH-3vzdgddmFfAskvPKi6WxLgt0JkKLH6qtpmvVIouVQ9XppEp5qrgwVoYyRgIkUqu1TTOpk5ALP-XY7zVYFwT2AazPxpPZ535Xx5dEuVQTQwitP7OTrZYUFTygMw9dp0W7oP7-4LS_u2Ze0HX7t_63v3Qbbrasmo2aZXAH1lx-FzbeFsh8z-7B3oS8Dj9MRyXDZ1ZU5CGF1ee1F3zJkLezUbIosDH7WN-dYfNi6SjliGOLnFFip6q8D5-uZAgPYJAXuXsEDCVbkPgIZGWViFOleWZ952dJEiOfdXwIr7pZjWwbW51SfCwjtLEIBhHBICIYRDUMhvCyb7Bqwor8vep2N9VRK1_K6Nc8D-FZX4ySgY574twVp2VEsf0EGvhcDuFhg6r-XUhaFao57FxdwltfgaKOXy7JF1_r6OPC-LsmDDb__VlP4frBfHIUHY2nh1twg4ZDDnaB2IZBdXLqHsOG_V4typMn7RJi8OWq8fgT_oxYkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNAs+As+Potential+Targets+for+Abiotic+Stress+Tolerance+in+Plants&rft.jtitle=Frontiers+in+plant+science&rft.au=Shriram%2C+Varsha&rft.au=Kumar%2C+Vinay&rft.au=Devarumath%2C+Rachayya+M.&rft.au=Khare%2C+Tushar+S.&rft.date=2016-06-14&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=7&rft_id=info:doi/10.3389%2Ffpls.2016.00817&rft_id=info%3Apmid%2F27379117&rft.externalDocID=PMC4906921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon