MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants
The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous...
Uloženo v:
| Vydáno v: | Frontiers in plant science Ročník 7; s. 817 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Media SA
14.06.2016
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1664-462X, 1664-462X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. |
|---|---|
| AbstractList | The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. |
| Author | Wani, Shabir H. Shriram, Varsha Devarumath, Rachayya M. Khare, Tushar S. Kumar, Vinay |
| AuthorAffiliation | 1 Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University Pune, India 3 Molecular Biology and Genetic Engineering Section, Vasantdada Sugar Institute Pune, India 2 Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University Pune, India 4 Division of Genetics and Plant Breeding, Faculty of Agriculture WADURA, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, India |
| AuthorAffiliation_xml | – name: 1 Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University Pune, India – name: 3 Molecular Biology and Genetic Engineering Section, Vasantdada Sugar Institute Pune, India – name: 4 Division of Genetics and Plant Breeding, Faculty of Agriculture WADURA, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, India – name: 2 Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University Pune, India |
| Author_xml | – sequence: 1 givenname: Varsha surname: Shriram fullname: Shriram, Varsha – sequence: 2 givenname: Vinay surname: Kumar fullname: Kumar, Vinay – sequence: 3 givenname: Rachayya M. surname: Devarumath fullname: Devarumath, Rachayya M. – sequence: 4 givenname: Tushar S. surname: Khare fullname: Khare, Tushar S. – sequence: 5 givenname: Shabir H. surname: Wani fullname: Wani, Shabir H. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27379117$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtLAzEUhYMoVqtrdzLgxk3bJJNMko1QSn1AfaAV3IU0k6kp00lNUsF_b2qraMFwIYF893DuPYdgt3GNAeAEwW6ec9GrFnXoYoiKLoQcsR1wgIqCdEiBX3Z_vVvgOIQZTIdCKATbBy3MciYQYgdgeGu1d493_ZClenDRNNGqOhsrPzUxZJXzWX9iXbQ6e4rehJCNXW28arTJbJM91KqJ4QjsVaoO5nhzt8Hz5XA8uO6M7q9uBv1RRxPOYkdRoU2FeEWwpqTgmkOSqlLMCAQNZWVespwITTFVEAlSas51WVE-wTmBZd4GF2vdxXIyN6VOZr2q5cLbufIf0ikr__409lVO3bskAhYCoyRwvhHw7m1pQpRzG7Sp0xTGLYNEHGLCEkgTeraFztzSN2k8mWNGhCCkIIk6_e3ox8r3hhNA10BacwjeVFLbqKJ1K4O2lgjKVZhyFaZchSm_wkx9va2-b-n_Oj4BJ2Og8Q |
| CitedBy_id | crossref_primary_10_13005_bbra_2914 crossref_primary_10_29254_2077_4214_2023_1_168_36_43 crossref_primary_10_3389_fgene_2022_880195 crossref_primary_10_1007_s00344_022_10801_3 crossref_primary_10_1007_s00425_024_04375_5 crossref_primary_10_1007_s12229_016_9173_y crossref_primary_10_1093_plphys_kiad033 crossref_primary_10_1007_s11240_023_02517_3 crossref_primary_10_1007_s11738_020_3013_8 crossref_primary_10_1016_j_plantsci_2023_111834 crossref_primary_10_1016_j_ymeth_2024_05_008 crossref_primary_10_1080_15592324_2017_1284724 crossref_primary_10_3390_ijms26136385 crossref_primary_10_1007_s11103_018_0761_6 crossref_primary_10_1007_s11240_023_02458_x crossref_primary_10_1111_ppl_13714 crossref_primary_10_1093_plphys_kiae127 crossref_primary_10_1007_s10725_017_0289_9 crossref_primary_10_1080_07388551_2018_1524824 crossref_primary_10_1080_14620316_2019_1702481 crossref_primary_10_1007_s00299_017_2192_2 crossref_primary_10_1007_s40502_023_00709_9 crossref_primary_10_1007_s00425_021_03669_2 crossref_primary_10_15446_rev_colomb_biote_v23n2_88487 crossref_primary_10_1007_s10142_023_01014_2 crossref_primary_10_1016_j_ygeno_2018_11_022 crossref_primary_10_3390_ijms23073695 crossref_primary_10_1007_s12038_020_00034_5 crossref_primary_10_3390_plants13050641 crossref_primary_10_1007_s42729_024_01957_w crossref_primary_10_1007_s10811_019_01903_9 crossref_primary_10_1007_s13205_019_1942_y crossref_primary_10_1016_j_plgene_2017_04_005 crossref_primary_10_1016_j_gpb_2017_01_007 crossref_primary_10_3390_horticulturae3020031 crossref_primary_10_1007_s44169_025_00083_7 crossref_primary_10_1007_s11240_025_03097_0 crossref_primary_10_1007_s12033_018_0100_9 crossref_primary_10_3390_ijms20174306 crossref_primary_10_1007_s11105_019_01180_3 crossref_primary_10_1016_j_plaphy_2020_03_022 crossref_primary_10_1007_s40502_019_0436_6 crossref_primary_10_1016_j_bcab_2018_03_024 crossref_primary_10_1007_s42535_025_01320_z crossref_primary_10_1007_s12038_020_00084_9 crossref_primary_10_1007_s13205_021_02857_x crossref_primary_10_1111_plb_13378 crossref_primary_10_1111_ppl_13736 crossref_primary_10_1134_S0006297918090031 crossref_primary_10_1007_s11756_021_00763_4 crossref_primary_10_3390_plants10030504 crossref_primary_10_3390_plants11233371 crossref_primary_10_1038_s42003_025_08077_w crossref_primary_10_3390_ijms222212519 crossref_primary_10_1371_journal_pone_0182629 crossref_primary_10_3389_fpls_2017_00864 crossref_primary_10_1016_j_jplph_2022_153740 crossref_primary_10_1155_2018_1451894 crossref_primary_10_1016_j_mcp_2020_101576 crossref_primary_10_1093_pcp_pcz131 crossref_primary_10_3390_ijms21249394 crossref_primary_10_1093_jxb_ery168 crossref_primary_10_1007_s00425_018_2906_x crossref_primary_10_1016_j_rsci_2018_06_001 crossref_primary_10_3390_ijms20061267 crossref_primary_10_1007_s00425_020_03366_6 crossref_primary_10_1016_j_egg_2022_100125 crossref_primary_10_1093_nsr_nwz142 crossref_primary_10_3389_fpls_2020_00003 crossref_primary_10_1186_s12870_021_03108_0 crossref_primary_10_1111_ppl_13592 crossref_primary_10_1007_s11356_021_17039_8 crossref_primary_10_1002_ps_5043 crossref_primary_10_1016_j_ecoenv_2023_114881 crossref_primary_10_1093_plphys_kiaf003 crossref_primary_10_1007_s00344_023_11193_8 crossref_primary_10_1093_pcp_pcaa079 crossref_primary_10_3390_ijms23169280 crossref_primary_10_3389_fpls_2017_00565 crossref_primary_10_3390_ijms23158642 crossref_primary_10_1007_s00344_020_10294_y crossref_primary_10_1007_s10311_022_01474_1 crossref_primary_10_1016_j_agrcom_2023_100014 crossref_primary_10_1016_j_plaphy_2023_107978 crossref_primary_10_3390_ijms19103239 crossref_primary_10_1016_j_plantsci_2023_111620 crossref_primary_10_1016_j_plaphy_2020_10_004 crossref_primary_10_1016_j_chemosphere_2022_135196 crossref_primary_10_1016_j_envexpbot_2018_10_003 crossref_primary_10_1186_s12870_018_1561_5 crossref_primary_10_1111_jac_70045 crossref_primary_10_1007_s11033_019_04793_9 crossref_primary_10_1007_s11033_022_07179_6 crossref_primary_10_1016_j_scitotenv_2018_10_340 crossref_primary_10_1111_tpj_13557 crossref_primary_10_1007_s11104_020_04564_7 crossref_primary_10_1139_gen_2020_0089 crossref_primary_10_1007_s00299_021_02705_5 crossref_primary_10_3390_ijms25042177 crossref_primary_10_3390_ijms23031612 crossref_primary_10_1016_j_gene_2022_146283 crossref_primary_10_3389_fpls_2021_726762 crossref_primary_10_3389_fpls_2022_919243 crossref_primary_10_3390_ijms22179311 crossref_primary_10_1007_s13205_022_03115_4 crossref_primary_10_1038_s41598_019_38932_w crossref_primary_10_3390_cells11182806 crossref_primary_10_1155_2017_4975146 crossref_primary_10_1007_s11104_024_06745_0 crossref_primary_10_3390_ijms20153766 crossref_primary_10_1094_MPMI_10_19_0302_R crossref_primary_10_1371_journal_pone_0183524 crossref_primary_10_1016_j_plantsci_2020_110622 crossref_primary_10_1016_j_ygeno_2018_01_007 crossref_primary_10_1016_j_tplants_2024_05_011 crossref_primary_10_1186_s40066_022_00369_2 crossref_primary_10_1016_j_plaphy_2019_02_015 crossref_primary_10_1007_s00299_017_2210_4 crossref_primary_10_3390_life11040289 crossref_primary_10_1016_j_sajb_2024_02_019 crossref_primary_10_3390_ijms23158724 crossref_primary_10_3389_fpls_2017_00374 crossref_primary_10_3390_ijms21218258 crossref_primary_10_1007_s11738_018_2718_4 crossref_primary_10_1016_j_ijbiomac_2023_125172 crossref_primary_10_1016_j_plaphy_2019_10_042 crossref_primary_10_3389_fmicb_2024_1408926 crossref_primary_10_3389_fpls_2021_629314 crossref_primary_10_3390_ijms24054639 crossref_primary_10_1007_s12038_020_00088_5 crossref_primary_10_1186_s12864_017_3526_8 crossref_primary_10_3390_membranes11120984 crossref_primary_10_1007_s00344_021_10476_2 crossref_primary_10_1007_s13199_020_00703_x crossref_primary_10_1016_j_scitotenv_2020_140682 crossref_primary_10_1007_s10529_017_2302_9 crossref_primary_10_1007_s10142_018_0619_7 crossref_primary_10_1111_ppl_13451 crossref_primary_10_1007_s13562_021_00718_5 crossref_primary_10_1016_j_plgene_2017_05_013 crossref_primary_10_3390_app112110068 crossref_primary_10_1007_s11356_017_8593_5 crossref_primary_10_1038_s41598_018_34012_7 crossref_primary_10_1007_s11270_024_07372_2 crossref_primary_10_1186_s13007_024_01158_7 crossref_primary_10_1007_s00299_020_02649_2 crossref_primary_10_1016_j_jbiotec_2020_12_019 crossref_primary_10_1007_s00425_022_03997_x crossref_primary_10_1016_j_plantsci_2017_12_003 crossref_primary_10_3390_plants9101367 crossref_primary_10_3390_agronomy10121920 crossref_primary_10_1038_s41598_020_59981_6 crossref_primary_10_1007_s10142_024_01520_x crossref_primary_10_1016_j_plgene_2021_100281 crossref_primary_10_1007_s00344_019_09951_8 crossref_primary_10_1007_s00344_025_11627_5 crossref_primary_10_1007_s00709_022_01775_w crossref_primary_10_1016_j_envexpbot_2021_104705 crossref_primary_10_1007_s13205_018_1521_7 crossref_primary_10_1016_j_plantsci_2021_110823 crossref_primary_10_1007_s11738_018_2803_8 crossref_primary_10_1155_2020_6649746 crossref_primary_10_1016_j_plaphy_2021_02_007 crossref_primary_10_3390_plants14030410 crossref_primary_10_1016_j_gene_2018_12_042 crossref_primary_10_1111_maec_12806 crossref_primary_10_1016_j_plantsci_2024_111995 crossref_primary_10_1016_j_plgene_2025_100531 crossref_primary_10_1016_j_ygeno_2020_05_002 crossref_primary_10_1016_j_plantsci_2024_111993 crossref_primary_10_1111_pce_13021 crossref_primary_10_1007_s11103_022_01328_y crossref_primary_10_1111_pbi_13116 crossref_primary_10_1093_jxb_eraa188 crossref_primary_10_1016_j_ygeno_2021_06_034 crossref_primary_10_3390_plants12101991 crossref_primary_10_1007_s00344_024_11266_2 crossref_primary_10_1016_j_ygeno_2021_12_020 crossref_primary_10_1038_s41598_019_51100_4 crossref_primary_10_1111_pbi_13913 crossref_primary_10_1080_07352689_2023_2227485 crossref_primary_10_1016_j_fsi_2018_09_079 crossref_primary_10_1007_s40502_017_0326_8 crossref_primary_10_3390_genes8060156 crossref_primary_10_3389_fpls_2022_844149 crossref_primary_10_3390_ijms22147687 crossref_primary_10_3390_ijms232314755 crossref_primary_10_1016_j_jclepro_2023_139512 crossref_primary_10_1111_ppl_13521 crossref_primary_10_2478_sg_2023_0018 crossref_primary_10_3389_fpls_2019_00360 crossref_primary_10_1093_bib_bbab075 crossref_primary_10_3389_fpls_2017_00378 crossref_primary_10_1186_s12870_019_1679_0 crossref_primary_10_1007_s13752_023_00433_5 crossref_primary_10_1007_s10725_021_00762_0 crossref_primary_10_1007_s12298_019_00716_x crossref_primary_10_1016_j_plaphy_2018_08_027 crossref_primary_10_1007_s00425_019_03331_y crossref_primary_10_3389_fpls_2022_965745 crossref_primary_10_1016_j_plaphy_2021_07_004 crossref_primary_10_1093_pcp_pcz068 crossref_primary_10_1007_s00344_021_10376_5 crossref_primary_10_1111_jipb_13903 crossref_primary_10_1007_s10311_018_0741_8 crossref_primary_10_1016_j_cpb_2021_100213 crossref_primary_10_1016_j_scitotenv_2024_177732 crossref_primary_10_1016_j_ygeno_2019_03_004 crossref_primary_10_1016_j_envres_2022_114282 crossref_primary_10_1016_j_jece_2021_105198 crossref_primary_10_3390_cells9040901 crossref_primary_10_1007_s12298_022_01163_x crossref_primary_10_1007_s40502_017_0327_7 crossref_primary_10_3390_f13101685 crossref_primary_10_1007_s00709_022_01822_6 crossref_primary_10_2478_s11756_019_00397_7 crossref_primary_10_1007_s40502_017_0342_8 crossref_primary_10_1007_s10142_025_01568_3 crossref_primary_10_1016_j_envexpbot_2020_104207 crossref_primary_10_3390_f11040384 crossref_primary_10_1111_nph_19939 crossref_primary_10_3390_agronomy8070118 |
| Cites_doi | 10.1080/15476286.2015.1094601 10.1038/nplants.2015.36 10.1080/03650340802595543 10.1186/1471-2164-13-S7-S16 10.1016/j.phytochem.2005.05.003 10.1093/bioinformatics/btq233 10.1186/1471-2229-13-33 10.1371/journal.pone.0137990 10.1016/j.cell.2009.01.046 10.1186/1471-2229-11-61 10.1111/nph.12434 10.1186/1471-2229-12-132 10.1007/s10529-015-1863-8 10.1007/s00299-014-1565-z 10.1021/jf302706e 10.1111/pbi.12340 10.1126/science.1076311 10.1371/journal.pone.0117584 10.1186/1471-2164-11-52 10.1105/tpc.106.041673 10.1111/pbi.12346 10.1073/pnas.0404025101 10.1093/nar/gkr247 10.1093/pcp/pch060 10.1105/tpc.111.089045 10.1186/1471-2229-12-182 10.1101/gad.1004402 10.1021/jf300724t 10.1111/j.1365-313X.2009.03835.x 10.3390/ijms131215826 10.1016/j.envexpbot.2008.06.001 10.1186/s12870-014-0271-x 10.1111/j.1399-3054.2010.01384.x 10.4238/2013 10.1016/j.cell.2009.12.023 10.4161/rna.25193 10.1007/978-1-4614-6108-1_2 10.1093/nar/gkr1159 10.1007/s11103-013-0089-1 10.1016/j.devcel.2008.04.005 10.1146/annurev.arplant.57.032905.105218 10.1016/j.pbi.2015.06.012 10.1093/jxb/erv013 10.1111/pce.12130 10.1007/s11356-016-6436-4 10.1104/pp.110.156950 10.1016/j.neucom.2015.12.011 10.1093/jxb/erq237 10.1016/j.gene.2014.11.002 10.1111/j.1467-7652.2010.00517.x 10.1038/srep11813 10.1007/s10142-015-0452-1 10.1007/s10142-010-0181-4 10.1007/s11033-010-0100-8 10.1104/pp.112.208702 10.1104/pp.110.170209 10.1111/j.1399-3054.2012.01653.x 10.1093/jxb/err046 10.1111/j.1469-8137.2010.03320.x 10.1261/rna.895308 10.1111/aab.12241 10.1093/jxb/erp296 10.1093/jxb/eru353 10.1016/j.tplants.2012.01.010 10.1093/bioinformatics/btu614 10.1007/s11103-011-9793-x 10.1093/nar/gkq721 10.1016/j.plantsci.2012.07.009 10.1016/j.bbrc.2007.01.022 10.1111/j.1365-313X.2011.04547.x 10.1101/024893 10.1073/pnas.0802493105 10.1093/jxb/erv450 10.1093/jxb/ers333 10.1186/1471-2229-13-140 10.1007/s13562-012-0117-2 10.1186/s12859-015-0798-3 10.5808/GI.2014.12.4.261 10.1007/s11103-013-0120-6 10.1111/pbi.12220 10.3389/fpls.2013.00357 10.1371/journal.pone.0048951 10.1093/jxb/ers136 10.1016/j.plgene.2015.12.001 10.1093/bioinformatics/btv583 10.1371/journal.pgen.1002021 10.1007/s00709-012-0395-5 10.3389/fpls.2015.00232 10.1186/1471-2164-15-1130 10.1186/1471-2164-12-307 10.1007/s10534-012-9560-8 10.1089/omi.2011.0115 10.1016/j.plantsci.2010.08.016 10.1007/s10142-016-0480-5 10.1093/nar/gkq1107 10.1093/jxb/erp181 10.1007/s00425-011-1514-9 10.1016/j.jplph.2012.03.009 10.1186/1471-2229-11-170 10.1080/07352689.2015.1078614 10.1016/j.bbrc.2012.09.055 10.1007/s00709-014-0749-2 10.1371/journal.pone.0143066 10.1007/s12263-012-0316-4 10.1080/07352680500365232 10.1111/j.1365-313X.2010.04216.x 10.1016/j.ymeth.2015.04.003 10.1016/j.molcel.2010.03.008 10.1186/1471-2105-14-174 10.1093/dnares/dss037 10.1111/tpj.12169 10.1007/s11032-015-0402-6 10.1371/journal.pone.0030039 10.1093/nar/gkv555 10.1093/nar/gku1162 10.1007/s12374-013-0213-4 10.1016/j.bbagrm.2011.05.001 10.1007/S11816-009-0118-3 10.1111/j.1365-313X.2008.03690.x 10.1002/jcp.25125 10.1016/j.plantsci.2013.05.009 10.1007/s12010-015-1785-x 10.3390/ijms161024532 10.1111/j.1365-3040.2011.02418.x 10.1002/jcp.24685 10.1093/bioinformatics/btu633 10.1186/1471-2229-10-123 10.3389/fpls.2015.00058 10.1093/jxb/eru270 10.1093/jxb/ers239 10.3389/fpls.2013.00145 10.1007/s11103-011-9817-6 10.1023/B:GROW.0000045995.49365.df 10.1093/nar/gkt1181 10.1093/bioinformatics/btv534 10.1111/pbi.12153 10.1134/S1021443715030061 10.1111/j.1469-8137.2012.04154.x 10.1111/tpj.12364 10.1111/pbi.12296 10.3389/fpls.2016.00235 10.1016/j.plaphy.2013.05.043 10.1186/s12864-015-1416-5 10.1155/2012/219462 10.1093/jxb/ert013 10.1074/jbc.M801406200 10.1186/1471-2105-15-275 10.1371/journal.pone.0050261 10.1039/c3mt00022b 10.1016/0092-8674(93)90529-Y 10.1371/journal.pone.0095800 10.1080/15226514.2011.604690 10.1111/j.1469-8137.2012.04227.x 10.1186/1752-0509-6-18 10.1101/gr.080127.108 10.3389/fphys.2015.00286 10.1093/jxb/ert240 10.1093/bioinformatics/btr430 10.1105/tpc.113.117473 10.1016/j.bbagrm.2007.09.003 10.1093/nar/gkp818 10.1371/journal.pone.0059423 10.1111/j.1469-8137.2010.03451.x 10.1371/journal.pone.0128089 10.1111/j.1365-313X.2010.04162.x 10.1097/01.qai.0000429267.82844.b6 10.1016/j.cub.2007.04.005 10.1007/978-1-4020-5578-2_10 10.1080/21655979.2016.1141838 10.1016/j.gene.2010.03.011 10.1371/journal.pone.0054148 |
| ContentType | Journal Article |
| Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Shriram, Kumar, Devarumath, Khare and Wani. 2016 Shriram, Kumar, Devarumath, Khare and Wani |
| Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Shriram, Kumar, Devarumath, Khare and Wani. 2016 Shriram, Kumar, Devarumath, Khare and Wani |
| DBID | AAYXX CITATION NPM 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3389/fpls.2016.00817 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1664-462X |
| ExternalDocumentID | PMC4906921 27379117 10_3389_fpls_2016_00817 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: SR/FT/LS-93/2011 – fundername: University Grants Commission grantid: 41-521/2012 (SR) |
| GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IGS IPNFZ ISR NPM RIG 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c487t-a59cef18f42c5468c804804fa7e910e57d3d7349c525a0194dc88cdf58b2340d3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 255 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377657700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-462X |
| IngestDate | Thu Aug 21 13:40:32 EDT 2025 Fri Sep 05 08:09:00 EDT 2025 Mon Nov 24 23:40:48 EST 2025 Thu Jan 02 22:25:13 EST 2025 Sat Nov 29 01:55:42 EST 2025 Tue Nov 18 20:44:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | microRNA post-transcriptional regulation transgenics abiotic stress stress-responses |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-a59cef18f42c5468c804804fa7e910e57d3d7349c525a0194dc88cdf58b2340d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by: Nokwanda Makunga, Stellenbosch University, South Africa Reviewed by: Biswapriya Biswavas Misra, University of Florida, USA; Taras P. Pasternak, Institute of Biology II, Germany This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science |
| OpenAccessLink | https://www.proquest.com/docview/3274994464?pq-origsite=%requestingapplication% |
| PMID | 27379117 |
| PQID | 3274994464 |
| PQPubID | 7426805 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4906921 proquest_miscellaneous_1802472135 proquest_journals_3274994464 pubmed_primary_27379117 crossref_citationtrail_10_3389_fpls_2016_00817 crossref_primary_10_3389_fpls_2016_00817 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-14 |
| PublicationDateYYYYMMDD | 2016-06-14 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in plant science |
| PublicationTitleAlternate | Front Plant Sci |
| PublicationYear | 2016 |
| Publisher | Frontiers Media SA Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
| References | Ni (B104) 2012; 427 Paul (B109) 2015; 6 Gao (B33) 2015; 62 Jha (B57) 2004; 43 Rhee (B118) 2015; 83 Chae (B16) 2015; 31 Wang (B141) 2015; 27 Moxon (B102) 2008; 18 Srivastava (B127) 2012; 64 Kawashima (B63) 2009; 57 Lee (B77) 1993; 75 Xin (B149) 2010; 10 Khare (B66) 2015; 252 Privalle (B112) 2012; 60 Sun (B131) 2015; 16 Pandey (B107) 2014; 9 Gielen (B36) 2012; 13 Hajyzadeh (B45) 2015; 555 Laubinger (B76) 2008; 105 Wang (B140) 2012; 196 Casadevall (B15) 2013; 25 Turan (B136) 2013; 250 Zhou (B171) 2013; 161 Baras (B5) 2015; 10 Khraiwesh (B68) 2012; 1819 Evers (B28) 2015; 16 Marín-González (B95) 2012; 196 Jin (B58) 2015; 10 Goswami (B38) 2014; 8 Kozomara (B69) 2014; 42 Tripathi (B135) 2015; 6 Deng (B24) 2015; 10 Ding (B26) 2011; 62 Rascio (B114) 2011; 180 Voinnet (B138) 2009; 136 Khraiwesh (B67) 2010; 140 Meng (B97) 2016; 179 Srivastava (B128) 2011; 14 Zhang (B160) 2015; 66 Hackenberg (B43) 2013; 20 R Lorenzetti (B113) 2016; 16 Gregory (B39) 2008; 14 Kumar (B75) 2009; 55 Mishra (B99) 2015; 34 Hsu (B49) 2011; 39 Zhou (B174) 2008; 70 Song (B125) 2016; 5 An (B4) 2014; 15 Zhou (B175) 2012b; 35 Zhang (B164) 2014a; 14 Lundmark (B91) 2010; 140 Rueda (B123) 2015; 43 Kant (B60) 2011; 7 Jeong (B55) 2013; 56 Hackenberg (B42) 2015; 13 Cao (B14) 2014; 15 Peng (B111) 2013; 8 Fischer (B31) 2013; 210 Zhang (B166) 2010; 38 Rosewick (B122) 2013; 62 Abdel-Ghany (B1) 2008; 283 Chen (B19) 2012; 235 Lee (B78) 2014; 65 Ma (B93) 2004; 45 Hong (B48) 2015; 13 Zhang (B161) 2015; 230 Chiang (B20) 2015; 10 Itaya (B52) 2007; 1779 Chaves (B17) 2015; 177 Kruszka (B71) 2012; 16 Xu (B150) 2013; 64 Liang (B85) 2012; 7 Yi (B155) 2015; 43 Forieri (B32) 2013; 4 Zhou (B173) 2012a; 63 Bonnet (B9) 2010; 26 Wani (B142) 2016 Kruszka (B70) 2014; 65 Jagadeeswaran (B53) 2014; 77 Li (B81) 2011; 11 Sunkar (B133) 2012; 17 Zhao (B168) 2012; 5 Bonnet (B10) 2004; 101 Yang (B154) 2013; 5 Moldovan (B101) 2010; 61 Wang (B139) 2013; 12 Li (B83) 2013; 200 Requejo (B117) 2005; 66 Li (B82) 2016; 67 Buiatti (B12) 2013; 8 Ripoll (B119) 2015; 1 Bottino (B11) 2013; 8 Jones-Rhoades (B59) 2006; 57 Zhang (B165) 2014b; 31 Liu (B89) 2012; 60 Remita (B116) 2015 Mangrauthia (B94) 2013 Meng (B96) 2013; 13 Yang (B153) 2013; 64 Xie (B147) 2015; 13 Ku (B72) 2015; 16 Cui (B23) 2015 Gupta (B41) 2014; 84 Liang (B86) 2010; 62 Waters (B143) 2012; 63 Gim (B37) 2014; 12 Diez (B25) 2014 Zhou (B170) 2010; 61 Khan (B65) 2011; 77 Rong (B121) 2014; 12 Srivastava (B126) 2009; 60 Fang (B30) 2007; 17 Meng (B98) 2011; 39 Zhai (B159) 2013; 147 Liang (B84) 2015; 5 Lv (B92) 2010; 459 Valdés-López (B137) 2010; 187 Fahlgren (B29) 2016; 32 Kawashima (B62) 2011; 66 Li (B80) 2010; 153 Reinhart (B115) 2002; 16 Sunkar (B132) 2006; 18 Xia (B146) 2012; 7 Yu (B156) 2012; 195 Jeong (B56) 2011; 23 Szczesniak (B134) 2011; 40 Guan (B40) 2013; 74 Hu (B50) 2011; 156 Li (B79) 2016; 231 Beauclair (B7) 2010; 62 Yang (B151) 2013; 36 Kulcheski (B73) 2011; 12 Pei (B110) 2013; 70 Yang (B152) 2011; 27 Numnark (B106) 2012; 13 Liu (B47) 2008; 14 Huang (B51) 2010; 8 Agarwal (B2) 2006; 25 Zhao (B169) 2013; 22 Boke (B8) 2015; 13 Silva (B124) 2012; 2012 Gao (B34) 2011; 38 Kumar (B74) 2010; 4 Ding (B27) 2016; 7 Chen (B18) 2012; 25 Zeng (B158) 2012; 12 Zeller (B157) 2009; 58 He (B46) 2014; 33 Wu (B144) 2013; 10 Patel (B108) 2016; 32 Gentile (B35) 2015; 6 Muñoz-Mérida (B103) 2012; 16 Rizwan (B120) 2016 Bulgakov (B13) 2015; 37 Sun (B129) 2012; 80 Kehr (B64) 2013; 4 Akdogan (B3) 2015; 16 Jagadeeswaran (B54) 2010; 11 Chinnusamy (B21) 2007 Zhou (B172) 2013; 83 Wu (B145) 2010; 38 Llave (B90) 2002; 297 Licausi (B87) 2011; 190 Nischal (B105) 2012; 7 Sun (B130) 2013; 14 Mittal (B100) 2016; 168 Hackenberg (B44) 2011; 39 Zhang (B162) 2016; 7 Barrera-Figueroa (B6) 2012; 12 Kantar (B61) 2010; 10 Zhao (B167) 2007; 354 Lin (B88) 2012; 6 Zhang (B163) 2013; 13 Xin (B148) 2011; 11 Couzigou (B22) 2015; 12 20381393 - Mol Cell. 2010 May 14;38(3):465-75 23720667 - Front Plant Sci. 2013 May 16;4:145 21607657 - Plant Mol Biol. 2011 Sep;77(1-2):47-58 27247036 - Nat Plants. 2015 Mar 30;1(4):15036 23162117 - J Exp Bot. 2013 Jan;64(1):303-15 22158467 - Plant Cell. 2011 Dec;23(12):4185-207 24759739 - PLoS One. 2014 Apr 23;9(4):e95800 22647959 - J Plant Physiol. 2012 Nov 1;169(16):1664-72 23003210 - J Agric Food Chem. 2012 Oct 17;60(41):10179-87 25183744 - J Exp Bot. 2014 Nov;65(20):6123-35 23076994 - Genes Nutr. 2013 May;8(3):255-70 20487378 - Physiol Plant. 2010 Sep 1;140(1):57-68 21473757 - BMC Plant Biol. 2011 Apr 07;11:61 24114216 - Genet Mol Res. 2013 Oct 07;12(4):4213-21 23000164 - Biochem Biophys Res Commun. 2012 Oct 19;427(2):330-5 24393105 - Plant Biotechnol J. 2014 May;12(4):468-79 19239888 - Cell. 2009 Feb 20;136(4):669-87 26996904 - Environ Sci Pollut Res Int. 2016 Sep;23 (18):17859-79 21515631 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W132-8 25658957 - PLoS One. 2015 Feb 06;10(2):e0117584 15272084 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6 22365280 - Trends Plant Sci. 2012 Apr;17(4):196-203 20089182 - BMC Genomics. 2010 Jan 20;11:52 22760473 - J Exp Bot. 2012 Jul;63(12):4597-613 25519760 - BMC Genomics. 2014 Dec 17;15:1130 17254555 - Biochem Biophys Res Commun. 2007 Mar 9;354(2):585-90 18653800 - Genome Res. 2008 Oct;18(10):1602-9 22537016 - New Phytol. 2012 Jul;195(1):97-112 25572837 - Plant Biotechnol J. 2015 Apr;13(3):355-69 20350593 - Gene. 2010 Jul 1;459(1-2):39-47 20128885 - Plant J. 2010 May;62(3):454-62 23792878 - Plant Physiol Biochem. 2013 Sep;70:221-34 20444207 - Plant Biotechnol J. 2010 Oct;8(8):887-99 23771582 - Plant Mol Biol. 2013 Sep;83(1-2):59-75 23975146 - Plant Mol Biol. 2014 Jan;84(1-2):1-18 20374528 - Plant J. 2010 Jun 1;62(6):1046-57 19528528 - J Exp Bot. 2009;60(12):3419-31 24909308 - J Cell Physiol. 2015 Jan;230(1):1-15 18408011 - J Biol Chem. 2008 Jun 6;283(23):15932-45 26277190 - Appl Biochem Biotechnol. 2015 Oct;177(4):879-908 23227161 - PLoS One. 2012;7(12):e50261 22862743 - BMC Plant Biol. 2012 Aug 03;12:132 19222804 - Plant J. 2009 Jun;58(6):1068-82 21317339 - Plant Physiol. 2011 Jul;156(3):1101-15 21895696 - Plant Cell Environ. 2012 Jan;35(1):86-99 26382195 - Bioinformatics. 2016 Jan 1;32(1):157-8 24164591 - Plant J. 2014 Jan;77(1):85-96 22434153 - Protoplasma. 2013 Feb;250(1):209-22 21455488 - PLoS Genet. 2011 Mar;7(3):e1002021 23725466 - BMC Bioinformatics. 2013 Jun 03;14:174 22639189 - Biometals. 2012 Oct;25(5):847-57 22253868 - PLoS One. 2012;7(1):e30039 18078843 - Biochim Biophys Acta. 2008 Feb;1779(2):99-107 12242443 - Science. 2002 Sep 20;297(5589):2053-6 18486559 - Dev Cell. 2008 Jun;14(6):854-66 25117656 - BMC Bioinformatics. 2014 Aug 12;15:275 25445265 - Gene. 2015 Jan 25;555(2):186-93 23155433 - PLoS One. 2012;7(11):e48951 21605713 - Biochim Biophys Acta. 2012 Feb;1819(2):137-48 24962998 - J Exp Bot. 2014 Sep;65(17):5049-62 25697792 - J Exp Bot. 2015 Apr;66(7):1749-61 17905409 - Chemosphere. 2008 Feb;70(8):1500-9 25330732 - BMC Plant Biol. 2014 Oct 21;14:271 26571139 - PLoS One. 2015 Nov 16;10(11):e0143066 23448274 - BMC Plant Biol. 2013 Mar 01;13:33 20336383 - Mol Biol Rep. 2011 Jan;38(1):237-42 20729483 - J Exp Bot. 2010 Oct;61(15):4157-68 26019179 - Nucleic Acids Res. 2015 Jul 1;43(W1):W467-73 16861386 - Plant Cell. 2006 Aug;18(8):2051-65 23579282 - Metallomics. 2013 Sep;5(9):1184-90 21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9 26466661 - J Exp Bot. 2016 Jan;67(1):175-94 20430753 - Bioinformatics. 2010 Jun 15;26(12):1566-8 20719744 - Nucleic Acids Res. 2011 Jan;39(Database issue):D181-7 15169940 - Plant Cell Physiol. 2004 May;45(5):583-9 16669754 - Annu Rev Plant Biol. 2006;57:19-53 22962679 - J Exp Bot. 2012 Oct;63(16):5903-18 25735537 - Plant Biotechnol J. 2015 Apr;13(3):409-20 26887375 - Funct Integr Genomics. 2016 May;16(3):235-42 26973678 - Front Plant Sci. 2016 Mar 01;7:235 26578966 - Front Physiol. 2015 Oct 26;6:286 18801012 - Plant J. 2009 Jan;57(2):313-21 25256573 - Bioinformatics. 2015 Jan 15;31(2):290-1 25398903 - Nucleic Acids Res. 2015 Jan;43(Database issue):D982-9 26400469 - RNA Biol. 2015;12(11):1178-80 22607471 - Physiol Plant. 2013 Feb;147(2):181-93 24975557 - Plant Biotechnol J. 2015 Jan;13(1):2-13 21401744 - Plant J. 2011 Jun;66(5):863-76 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 23017896 - Plant Sci. 2012 Nov;196:18-30 25888374 - BMC Genomics. 2015 Mar 17;16:197 21362738 - J Exp Bot. 2011 Jun;62(10):3563-73 26030752 - PLoS One. 2015 Jun 01;10(6):e0128089 21421358 - Plant Sci. 2011 Feb;180(2):169-81 24060047 - BMC Plant Biol. 2013 Sep 23;13:140 18356539 - RNA. 2008 May;14(5):836-43 17442570 - Curr Biol. 2007 May 1;17 (9):818-23 22567728 - Int J Phytoremediation. 2012 May-Jun;14(5):506-17 15964037 - Phytochemistry. 2005 Jul;66(13):1519-28 23778453 - RNA Biol. 2013 Jul;10(7):1087-92 21909758 - Planta. 2012 Feb;235(2):375-86 26248304 - J Cell Physiol. 2016 Feb;231(2):303-13 20840511 - New Phytol. 2011 Apr;190(2):442-56 23281648 - BMC Genomics. 2012;13 Suppl 7:S16 25914709 - Front Plant Sci. 2015 Apr 10;6:232 20676715 - Funct Integr Genomics. 2010 Nov;10(4):493-507 26901236 - Bioengineered. 2016;7(1):7-10 23849115 - Plant Sci. 2013 Sep;210:70-81 23443096 - Int J Mol Sci. 2012 Nov 27;13(12):15826-47 23365650 - PLoS One. 2013;8(1):e54148 21663675 - BMC Genomics. 2011 Jun 10;12:307 19808935 - Nucleic Acids Res. 2010 Jan;38(Database issue):D806-13 23382553 - J Exp Bot. 2013 Apr;64(6):1521-36 25863133 - Methods. 2015 Jul 15;83:80-7 26454275 - Bioinformatics. 2016 Feb 1;32(3):450-2 21874378 - Plant Mol Biol. 2012 Sep;80(1):17-36 25547963 - Protoplasma. 2015 Jul;252(4):1149-65 25755657 - Front Plant Sci. 2015 Feb 23;6:58 21775303 - Bioinformatics. 2011 Sep 15;27(18):2614-5 22112171 - BMC Plant Biol. 2011 Nov 23;11:170 23480361 - Plant J. 2013 Jun;74(5):840-51 26141043 - Funct Integr Genomics. 2016 May;16(3):221-33 26003096 - Biotechnol Lett. 2015 Sep;37(9):1719-27 22413876 - BMC Syst Biol. 2012 Mar 13;6:18 23544066 - PLoS One. 2013;8(3):e59423 26372557 - PLoS One. 2015 Sep 15;10(9):e0137990 26134148 - Sci Rep. 2015 Jul 02;5:11813 20085706 - Cell. 2010 Jan 8;140(1):111-22 23915383 - New Phytol. 2013 Dec;200(4):1102-15 20573268 - BMC Plant Biol. 2010 Jun 24;10:123 26542525 - BMC Bioinformatics. 2015 Nov 05;16:370 23266877 - DNA Res. 2013 Apr;20(2):109-25 26501263 - Int J Mol Sci. 2015 Oct 15;16(10):24532-54 23292790 - Plant Physiol. 2013 Mar;161(3):1375-91 25270639 - Bioinformatics. 2015 Jan 15;31(2):265-7 12101121 - Genes Dev. 2002 Jul 1;16(13):1616-26 24106494 - Front Plant Sci. 2013 Oct 02;4:357 8252621 - Cell. 1993 Dec 3;75(5):843-54 22712679 - J Agric Food Chem. 2012 Jul 4;60(26):6524-36 19815687 - J Exp Bot. 2010;61(1):165-77 22135287 - Nucleic Acids Res. 2012 Jan;40(Database issue):D198-204 23040172 - BMC Plant Biol. 2012 Oct 05;12:182 22803610 - New Phytol. 2012 Oct;196(1):139-48 26246393 - Curr Opin Plant Biol. 2015 Oct;27:118-24 25705168 - Genomics Inform. 2014 Dec;12(4):261-7 24413694 - Plant Cell Rep. 2014 Jun;33(6):831-6 24076976 - Plant Cell. 2013 Sep;25(9):3570-83 24014874 - J Exp Bot. 2013 Nov;64(14):4271-87 18550839 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8795-800 22433074 - OMICS. 2012 Apr;16(4):168-77 25641615 - Plant Biotechnol J. 2015 Apr;13(3):282-92 20508137 - Plant Physiol. 2010 Aug;153(4):1759-70 23651319 - Plant Cell Environ. 2013 Dec;36(12):2207-18 20553393 - New Phytol. 2010 Aug;187(3):805-18 |
| References_xml | – volume: 12 start-page: 1178 year: 2015 ident: B22 article-title: miRNA-encoded peptides (miPEPs): a new tool to analyze the roles of miRNAs in plant biology publication-title: RNA Biol. doi: 10.1080/15476286.2015.1094601 – volume: 1 start-page: 15036 year: 2015 ident: B119 article-title: microRNA regulation of fruit growth publication-title: Nat. Plants doi: 10.1038/nplants.2015.36 – volume: 55 start-page: 379 year: 2009 ident: B75 article-title: Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340802595543 – volume: 13 start-page: S16 year: 2012 ident: B106 article-title: C- mii: a tool for plant miRNA and target identification publication-title: BMC Genomics doi: 10.1186/1471-2164-13-S7-S16 – volume: 66 start-page: 1519 year: 2005 ident: B117 article-title: Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity publication-title: Phytochemistry doi: 10.1016/j.phytochem.2005.05.003 – volume: 26 start-page: 1566 year: 2010 ident: B9 article-title: TAPIR, a web server for the prediction of plant microRNA targets, including target mimics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq233 – volume: 13 start-page: 33 year: 2013 ident: B163 article-title: PASmiR: a literature-curated database form iRNA molecular regulation in plant response to abiotic stress publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-33 – volume: 10 start-page: e0137990 year: 2015 ident: B24 article-title: Global identification of microRNAs and their targets in barley under salinity stress publication-title: PLoS ONE doi: 10.1371/journal.pone.0137990 – volume: 136 start-page: 669 year: 2009 ident: B138 article-title: Origin, biogenesis, and activity of plant microRNAs publication-title: Cell doi: 10.1016/j.cell.2009.01.046 – volume: 11 start-page: 61 year: 2011 ident: B148 article-title: Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-11-61 – volume: 200 start-page: 1102 year: 2013 ident: B83 article-title: Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor publication-title: New Phytol doi: 10.1111/nph.12434 – volume: 12 start-page: 132 year: 2012 ident: B6 article-title: High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-12-132 – volume: 37 start-page: 1719 year: 2015 ident: B13 article-title: New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs publication-title: Biotechnol. Lett. doi: 10.1007/s10529-015-1863-8 – volume: 33 start-page: 831 year: 2014 ident: B46 article-title: Role of microRNAs in aluminum stress in plants publication-title: Plant Cell Rep. doi: 10.1007/s00299-014-1565-z – volume: 60 start-page: 10179 year: 2012 ident: B112 article-title: Development of an agricultural biotechnology crop product: testing from discovery to commercialization publication-title: J. Agric. Food Chem. doi: 10.1021/jf302706e – volume: 13 start-page: 282 year: 2015 ident: B48 article-title: Floral induction and flower formation- the role and potential applications of miRNAs publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12340 – volume: 297 start-page: 2053 year: 2002 ident: B90 article-title: Cleavage of Scarecrow-like mRNAtargets directed by a class of Arabidopsis miRNA publication-title: Science doi: 10.1126/science.1076311 – volume: 10 start-page: e0117584 year: 2015 ident: B58 article-title: Identification and characterization of micrornas from tree peony (Paeonia ostii) and their response to copper stress publication-title: PLoS ONE doi: 10.1371/journal.pone.0117584 – volume: 11 start-page: 52 year: 2010 ident: B54 article-title: Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silk worm development publication-title: BMC Genomics doi: 10.1186/1471-2164-11-52 – volume: 18 start-page: 2051 year: 2006 ident: B132 article-title: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance publication-title: Plant Cell doi: 10.1105/tpc.106.041673 – volume: 13 start-page: 409 year: 2015 ident: B8 article-title: Regulation of the alkaloid biosynthesis by miRNA in opium poppy publication-title: Plant Biotechnol. J doi: 10.1111/pbi.12346 – volume: 101 start-page: 11511 year: 2004 ident: B10 article-title: Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0404025101 – volume: 39 start-page: W132 year: 2011 ident: B44 article-title: miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr247 – volume: 45 start-page: 583 year: 2004 ident: B93 article-title: Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots publication-title: Plant Cell Physiol doi: 10.1093/pcp/pch060 – volume: 23 start-page: 4185 year: 2011 ident: B56 article-title: Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage publication-title: Plant Cell doi: 10.1105/tpc.111.089045 – volume: 12 start-page: 182 year: 2012 ident: B158 article-title: Identification of wild soybean miRNAs and their target genes responsive to aluminum stress publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-12-182 – volume: 16 start-page: 1616 year: 2002 ident: B115 article-title: MicroRNAs in plants publication-title: Genes Dev. doi: 10.1101/gad.1004402 – volume: 60 start-page: 6524 year: 2012 ident: B89 article-title: Molecular identification and analysis of arsenite stress-responsive miRNAs in rice publication-title: J. Agric. Food Chem. doi: 10.1021/jf300724t – volume: 58 start-page: 1068 year: 2009 ident: B157 article-title: Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03835.x – volume: 13 start-page: 15826 year: 2012 ident: B36 article-title: MicroRNAs in metal stress: specific roles or secondary responses? publication-title: Int. J. Mol. Sci doi: 10.3390/ijms131215826 – volume: 70 start-page: 1500 year: 2008 ident: B174 article-title: Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants publication-title: Chemosphere doi: 10.1016/j.envexpbot.2008.06.001 – volume: 14 start-page: 271 year: 2014a ident: B164 article-title: Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0271-x – volume: 140 start-page: 57 year: 2010 ident: B91 article-title: Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.2010.01384.x – volume: 12 start-page: 4213 year: 2013 ident: B139 article-title: Identification of UV-B-induced microRNAs in wheat publication-title: Genet. Mol. Res. doi: 10.4238/2013 – volume: 140 start-page: 111 year: 2010 ident: B67 article-title: Transcriptional control of gene expression by microRNAs publication-title: Cell doi: 10.1016/j.cell.2009.12.023 – volume: 10 start-page: 1087 year: 2013 ident: B144 article-title: mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing publication-title: RNA Biol. doi: 10.4161/rna.25193 – start-page: 15 volume-title: Salt Stress in Plants year: 2013 ident: B94 article-title: MicroRNAs and their role in salt stress response in plants doi: 10.1007/978-1-4614-6108-1_2 – volume: 40 start-page: D198 year: 2011 ident: B134 article-title: miRNEST database: an integrative approach in microRNA search and annotation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1159 – volume: 83 start-page: 59 year: 2013 ident: B172 article-title: MicroRNA-mediated gene regulation: potential application for plant genetic engineering publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0089-1 – volume: 14 start-page: 854 year: 2008 ident: B39 article-title: A link between RNA metabolism and silencing affecting Arabidopsis development publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.04.005 – volume: 57 start-page: 19 year: 2006 ident: B59 article-title: MicroRNAs and their regulatory roles in plants publication-title: Annu. Rev. Plant Biol doi: 10.1146/annurev.arplant.57.032905.105218 – volume: 27 start-page: 118 year: 2015 ident: B141 article-title: More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.06.012 – volume: 66 start-page: 1749 year: 2015 ident: B160 article-title: MicroRNA: a new target for improving plant tolerance to abiotic stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv013 – volume: 36 start-page: 2207 year: 2013 ident: B151 article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.) publication-title: Plant Cell Environ. doi: 10.1111/pce.12130 – year: 2016 ident: B120 article-title: Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-016-6436-4 – volume: 153 start-page: 1759 year: 2010 ident: B80 article-title: Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation publication-title: Plant Physiol. doi: 10.1104/pp.110.156950 – volume: 179 start-page: 283 year: 2016 ident: B97 article-title: Plant miRNA function prediction based on functional similarity network and transductive multi-label classification algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.011 – volume: 61 start-page: 4157 year: 2010 ident: B170 article-title: Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq237 – volume: 8 start-page: 697 year: 2014 ident: B38 article-title: Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat (Triticum aestivum L.) under the heat stress publication-title: Aust. J. Crop Sci. – volume: 555 start-page: 186 year: 2015 ident: B45 article-title: miR408 overexpression causes increased drought tolerance in chickpea publication-title: Gene doi: 10.1016/j.gene.2014.11.002 – volume: 8 start-page: 887 year: 2010 ident: B51 article-title: A set of miRNAs from Brassica napus in response to sulfate deficiency and cadmium stress publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2010.00517.x – volume: 5 start-page: 11813 year: 2015 ident: B84 article-title: Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis publication-title: Sci. Rep. doi: 10.1038/srep11813 – volume: 16 start-page: 221 year: 2015 ident: B3 article-title: miRNA-based drought regulation in wheat publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-015-0452-1 – volume: 10 start-page: 493 year: 2010 ident: B61 article-title: Regulation of barley miRNAs upon dehydration stress correlated with target gene expression publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-010-0181-4 – volume: 38 start-page: 237 year: 2011 ident: B34 article-title: osa-MIR393: a salinity and alkaline stress-related microRNA gene publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-010-0100-8 – volume: 161 start-page: 1375 year: 2013 ident: B171 article-title: Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass publication-title: Plant Physiol. doi: 10.1104/pp.112.208702 – volume: 156 start-page: 1101 year: 2011 ident: B50 article-title: LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice publication-title: Plant Physiol doi: 10.1104/pp.110.170209 – volume: 147 start-page: 181 year: 2013 ident: B159 article-title: Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2012.01653.x – volume: 62 start-page: 3563 year: 2011 ident: B26 article-title: Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa) publication-title: J. Exp. Bot. doi: 10.1093/jxb/err046 – volume: 187 start-page: 805 year: 2010 ident: B137 article-title: MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03320.x – volume: 14 start-page: 836 year: 2008 ident: B47 article-title: Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana publication-title: RNA doi: 10.1261/rna.895308 – volume: 168 start-page: 2 year: 2016 ident: B100 article-title: Role of microRNAs in rice plant under salt stress publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12241 – volume: 61 start-page: 165 year: 2010 ident: B101 article-title: Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp296 – volume: 65 start-page: 6123 year: 2014 ident: B70 article-title: Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru353 – volume: 17 start-page: 196 year: 2012 ident: B133 article-title: Functions of microRNAs in plant stress responses publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.01.010 – volume: 31 start-page: 265 year: 2015 ident: B16 article-title: BioVLAB-MMIA-NGS: microRNA-mRNA integrated analysis using high throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu614 – volume: 77 start-page: 47 year: 2011 ident: B65 article-title: MicroRNAs as regulators of root development and architecture publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9793-x – volume: 39 start-page: D181 year: 2011 ident: B98 article-title: PmiRKB: a plant microRNA knowledge base publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq721 – volume: 196 start-page: 18 year: 2012 ident: B95 article-title: “And yet it moves”: cell-to-cell and long-distance signaling by plant microRNAs publication-title: Plant Sci doi: 10.1016/j.plantsci.2012.07.009 – volume: 354 start-page: 585 year: 2007 ident: B167 article-title: Identification of drought-induced microRNAs in rice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.01.022 – year: 2014 ident: B25 publication-title: Cobalt's Role in Plants. – volume: 66 start-page: 863 year: 2011 ident: B62 article-title: Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04547.x – start-page: 024893 year: 2015 ident: B116 article-title: WMP: a novel comprehensive wheat miRNA database, including related bioinformatics software publication-title: BioRxiv doi: 10.1101/024893 – volume: 105 start-page: 8795 year: 2008 ident: B76 article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0802493105 – volume: 67 start-page: 175 year: 2016 ident: B82 article-title: Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv450 – volume: 64 start-page: 303 year: 2012 ident: B127 article-title: Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers333 – volume: 13 start-page: 140 year: 2013 ident: B96 article-title: Development associated microRNAs in grains of wheat (Triticum aestivum L.) publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-140 – volume: 22 start-page: 113 year: 2013 ident: B169 article-title: Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation publication-title: J. Plant Biochem. Biotechnol doi: 10.1007/s13562-012-0117-2 – volume: 16 start-page: 370 year: 2015 ident: B28 article-title: miRA: adaptable novel miRNA identification in plants using small RNA sequencing data publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0798-3 – volume: 12 start-page: 261 year: 2014 ident: B37 article-title: Genome-wide identification and classification of microRNAs derived from repetitive elements publication-title: Genomics Inform. doi: 10.5808/GI.2014.12.4.261 – volume: 84 start-page: 1 year: 2014 ident: B41 article-title: MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0120-6 – volume: 13 start-page: 2 year: 2015 ident: B42 article-title: Differential expression of microRNAs and other small RNAs in barley between water and drought conditions publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12220 – volume: 4 issue: 357 year: 2013 ident: B32 article-title: Toward new perspectives on the interaction of iron and sulfur metabolism in plants publication-title: Front. Plant Sci doi: 10.3389/fpls.2013.00357 – volume: 7 start-page: e48951 year: 2012 ident: B85 article-title: Identification of nitrogen starvation responsive miRNAs in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0048951 – volume: 63 start-page: 4597 year: 2012a ident: B173 article-title: Genome-wide identification of Brassica napus microRNA and their targets in response to cadmium publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers136 – volume: 5 start-page: 56 year: 2016 ident: B125 article-title: miR394 and its target gene LCR are involved in cold stress response in Arabidopsis publication-title: Plant Gene doi: 10.1016/j.plgene.2015.12.001 – volume: 32 start-page: 450 year: 2016 ident: B108 article-title: miTRATA: a web-based tool for microRNA truncation and tailing analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv583 – volume: 7 start-page: e1002021 year: 2011 ident: B60 article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002021 – volume: 250 start-page: 209 year: 2013 ident: B136 article-title: Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation publication-title: Protoplasma doi: 10.1007/s00709-012-0395-5 – volume: 6 issue: 232 year: 2015 ident: B109 article-title: miRNA regulation of nutrient homeostasis in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00232 – volume: 15 start-page: 1130 year: 2014 ident: B14 article-title: Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis publication-title: BMC Genomics doi: 10.1186/1471-2164-15-1130 – volume: 12 start-page: 307 year: 2011 ident: B73 article-title: Identification of novel soybean microRNAs involved in abiotic and biotic stresses publication-title: BMC Genomics doi: 10.1186/1471-2164-12-307 – volume: 25 start-page: 847 year: 2012 ident: B18 article-title: Mercury toxicity, molecular response and tolerance in higher plants publication-title: Biometals doi: 10.1007/s10534-012-9560-8 – volume: 16 start-page: 168 year: 2012 ident: B103 article-title: Semirna: searching for plant miRNAs using target sequences publication-title: Omics doi: 10.1089/omi.2011.0115 – volume: 180 start-page: 169 year: 2011 ident: B114 article-title: Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.08.016 – volume: 16 start-page: 235 year: 2016 ident: B113 article-title: PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-016-0480-5 – volume: 39 start-page: D163 year: 2011 ident: B49 article-title: miRTarBase: a database curates experimentally validated microRNA-target interactions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1107 – volume: 60 start-page: 3419 year: 2009 ident: B126 article-title: Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp181 – volume: 235 start-page: 375 year: 2012 ident: B19 article-title: Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing publication-title: Planta doi: 10.1007/s00425-011-1514-9 – volume: 16 start-page: 1664 year: 2012 ident: B71 article-title: Role of microRNAs and other sRNAs of plants in their changing environments publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.03.009 – volume: 11 start-page: 170 year: 2011 ident: B81 article-title: Characterization of the stress associated microRNAs in Glycine max by deep sequencing publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-11-170 – volume: 34 start-page: 553 year: 2015 ident: B99 article-title: Discovering microRNAs and their targets in plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2015.1078614 – volume: 427 start-page: 330 year: 2012 ident: B104 article-title: Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.09.055 – volume: 252 start-page: 1149 year: 2015 ident: B66 article-title: Na+ and Cl− ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice publication-title: Protoplasma doi: 10.1007/s00709-014-0749-2 – volume: 10 start-page: e0143066 year: 2015 ident: B5 article-title: miRge - A multiplexed method of processing small RNA-seq data to determine microRNA entropy publication-title: PLoS ONE doi: 10.1371/journal.pone.0143066 – volume: 8 start-page: 255 year: 2013 ident: B12 article-title: The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view publication-title: Genes Nutr doi: 10.1007/s12263-012-0316-4 – start-page: 345 volume-title: Advances in Plant Breeding Strategies year: 2016 ident: B142 article-title: Transgenic approaches for abiotic stress tolerance in crop plants – volume: 25 start-page: 1 year: 2006 ident: B2 article-title: Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680500365232 – volume: 62 start-page: 1046 year: 2010 ident: B86 article-title: microRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04216.x – volume: 83 start-page: 80 year: 2015 ident: B118 article-title: PlantMirnaT: miRNA and mRNA integrated analysis fully utilizing characteristics of plant sequencing data publication-title: Methods doi: 10.1016/j.ymeth.2015.04.003 – volume: 38 start-page: 465 year: 2010 ident: B145 article-title: DNA methylation mediated by a microRNAs pathway publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.03.008 – volume: 14 start-page: 174 year: 2013 ident: B130 article-title: PMTED: a plant microRNA target expression database publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-174 – volume: 20 start-page: 109 year: 2013 ident: B43 article-title: Comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions publication-title: DNA Res doi: 10.1093/dnares/dss037 – volume: 74 start-page: 840 year: 2013 ident: B40 article-title: Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis publication-title: Plant J. doi: 10.1111/tpj.12169 – year: 2015 ident: B23 article-title: Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa) publication-title: Mol. Breed doi: 10.1007/s11032-015-0402-6 – volume: 7 start-page: e30039 year: 2012 ident: B146 article-title: OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice publication-title: PLoS ONE doi: 10.1371/journal.pone.0030039 – volume: 5 start-page: 604 year: 2012 ident: B168 article-title: Comparative proteomic analysis of the effects of nitric oxide on alleviating Cd-induced toxicity in rice (Oryza sativa L.) publication-title: Plant Omics – volume: 43 start-page: W467 year: 2015 ident: B123 article-title: sRNAtoolbox: an integrated collection of small RNA research tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv555 – volume: 43 start-page: D982 year: 2015 ident: B155 article-title: PNRD: a plant non-coding RNA database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1162 – volume: 56 start-page: 187 year: 2013 ident: B55 article-title: The role of rice microRNAs in abiotic stress responses publication-title: J. Plant Biol. doi: 10.1007/s12374-013-0213-4 – volume: 1819 start-page: 137 year: 2012 ident: B68 article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.05.001 – volume: 4 start-page: 37 year: 2010 ident: B74 article-title: Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene publication-title: Plant Biotechnol. Rep. doi: 10.1007/S11816-009-0118-3 – volume: 57 start-page: 313 year: 2009 ident: B63 article-title: Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03690.x – volume: 231 start-page: 303 year: 2016 ident: B79 article-title: MicroRNAs in control of plant development publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25125 – volume: 210 start-page: 70 year: 2013 ident: B31 article-title: Manipulation of microRNA expression to improve nitrogen use efficiency publication-title: Plant Sci. doi: 10.1016/j.plantsci.2013.05.009 – volume: 177 start-page: 879 year: 2015 ident: B17 article-title: New Insights on coffea miRNAs: features and evolutionary conservation publication-title: Appl. Biochem. Biotechnol doi: 10.1007/s12010-015-1785-x – volume: 16 start-page: 24532 year: 2015 ident: B72 article-title: Small RNAs in plant responses to abiotic stresses: regulatory roles and study methods publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161024532 – volume: 35 start-page: 86 year: 2012b ident: B175 article-title: Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02418.x – volume: 230 start-page: 1 year: 2015 ident: B161 article-title: MicroRNA-Based Biotechnology for Plant Improvement publication-title: J Cell Physiol. doi: 10.1002/jcp.24685 – volume: 31 start-page: 290 year: 2014b ident: B165 article-title: MTide: an integrated tool for the identification of miRNA-target interaction in plants publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu633 – volume: 10 start-page: 123 year: 2010 ident: B149 article-title: Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-10-123 – volume: 6 issue: 58 year: 2015 ident: B35 article-title: MicroRNAs and drought responses in sugarcane publication-title: Front. Plant Sci doi: 10.3389/fpls.2015.00058 – volume: 65 start-page: 5049 year: 2014 ident: B78 article-title: MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru270 – volume: 63 start-page: 5903 year: 2012 ident: B143 article-title: Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana publication-title: J. Exp. Bot doi: 10.1093/jxb/ers239 – volume: 4 issue: 145 year: 2013 ident: B64 article-title: Systemic regulation of mineral homeostasis by micro RNAs publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00145 – volume: 80 start-page: 17 year: 2012 ident: B129 article-title: MicroRNAs and their diverse functions in plants publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9817-6 – volume: 43 start-page: 259 year: 2004 ident: B57 article-title: Arsenic exposure alters activity behavior of key nitrogen assimilatory enzymes in growing rice plants publication-title: Plant Growth Regul. doi: 10.1023/B:GROW.0000045995.49365.df – volume: 42 start-page: D68 year: 2014 ident: B69 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1181 – volume: 32 start-page: 157 year: 2016 ident: B29 article-title: P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv534 – volume: 12 start-page: 468 year: 2014 ident: B121 article-title: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12153 – volume: 62 start-page: 360 year: 2015 ident: B33 article-title: Transgenic tomato overexpressing ath-miR399d improves growth under abiotic stress conditions publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443715030061 – volume: 195 start-page: 97 year: 2012 ident: B156 article-title: Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa) publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04154.x – volume: 77 start-page: 85 year: 2014 ident: B53 article-title: Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis publication-title: Plant J. doi: 10.1111/tpj.12364 – volume: 13 start-page: 355 year: 2015 ident: B147 article-title: Small RNA sequencing identifies miRNA roles in ovule and fibre development publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12296 – volume: 7 issue: 235 year: 2016 ident: B27 article-title: MicroRNA390 is involved in cadmium tolerance and accumulation in rice publication-title: Front. Plant Sci doi: 10.3389/fpls.2016.00235 – volume: 70 start-page: 221 year: 2013 ident: B110 article-title: Identification and comparative analysis of low phosphate tolerance associated microRNAs in two maize genotypes publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2013.05.043 – volume: 16 start-page: 197 year: 2015 ident: B131 article-title: Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.) publication-title: BMC Genomics doi: 10.1186/s12864-015-1416-5 – volume: 2012 start-page: 219462 year: 2012 ident: B124 article-title: Aluminium toxicity targets in plants publication-title: J. Bot. doi: 10.1155/2012/219462 – volume: 64 start-page: 1521 year: 2013 ident: B153 article-title: Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert013 – volume: 283 start-page: 15932 year: 2008 ident: B1 article-title: microRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801406200 – volume: 15 start-page: 275 year: 2014 ident: B4 article-title: miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-275 – volume: 7 start-page: e50261 year: 2012 ident: B105 article-title: Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes publication-title: PLoS ONE doi: 10.1371/journal.pone.0050261 – volume: 5 start-page: 1184 year: 2013 ident: B154 article-title: A potential role of microRNAs in regulating plant response to metal toxicity publication-title: Metallomics doi: 10.1039/c3mt00022b – volume: 75 start-page: 843 year: 1993 ident: B77 article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 publication-title: Cell doi: 10.1016/0092-8674(93)90529-Y – volume: 9 start-page: e95800 year: 2014 ident: B107 article-title: A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum publication-title: PLoS ONE doi: 10.1371/journal.pone.0095800 – volume: 14 start-page: 506 year: 2011 ident: B128 article-title: Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal publication-title: Int. J. Phytoremed doi: 10.1080/15226514.2011.604690 – volume: 196 start-page: 139 year: 2012 ident: B140 article-title: Functional characterization of the rice SPX−MFS family reveals a key role of OsSPX−MFS1 in controlling phosphate homeostasis in leaves publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04227.x – volume: 6 start-page: 18 year: 2012 ident: B88 article-title: Crosstalk between transcription factors and microRNAs in human protein interaction network publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-6-18 – volume: 18 start-page: 1602 year: 2008 ident: B102 article-title: Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening publication-title: Genome Res. doi: 10.1101/gr.080127.108 – volume: 6 issue: 286 year: 2015 ident: B135 article-title: Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution publication-title: Front. Physiol doi: 10.3389/fphys.2015.00286 – volume: 64 start-page: 4271 year: 2013 ident: B150 article-title: Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert240 – volume: 27 start-page: 2614 year: 2011 ident: B152 article-title: miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr430 – volume: 25 start-page: 3570 year: 2013 ident: B15 article-title: Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves publication-title: Plant Cell doi: 10.1105/tpc.113.117473 – volume: 1779 start-page: 99 year: 2007 ident: B52 article-title: Small RNAs in tomato fruit and leaf development publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2007.09.003 – volume: 38 start-page: D806 year: 2010 ident: B166 article-title: PMRD: plant microRNA database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp818 – volume: 8 start-page: e59423 year: 2013 ident: B11 article-title: High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane publication-title: PLoS ONE doi: 10.1371/journal.pone.0059423 – volume: 190 start-page: 442 year: 2011 ident: B87 article-title: Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03451.x – volume: 10 start-page: e0128089 year: 2015 ident: B20 article-title: Dietary microRNA database (DMD): an archive database and analytic tool for food-borne microRNAs publication-title: PLoS ONE doi: 10.1371/journal.pone.0128089 – volume: 62 start-page: 454 year: 2010 ident: B7 article-title: microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04162.x – volume: 62 start-page: 66 year: 2013 ident: B122 article-title: ST105 Deep sequencing reveals abundant Pol III retroviral microRNA cluster in Bovine Leukemia Virus-induced leukemia publication-title: J. Acq. Imm. Def. Syndr. doi: 10.1097/01.qai.0000429267.82844.b6 – volume: 17 start-page: 818 year: 2007 ident: B30 article-title: Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants publication-title: Curr. Biol doi: 10.1016/j.cub.2007.04.005 – start-page: 223 volume-title: Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops year: 2007 ident: B21 article-title: Small RNAs: big role in abiotic stress tolerance of plants doi: 10.1007/978-1-4020-5578-2_10 – volume: 7 start-page: 7 year: 2016 ident: B162 article-title: MicroRNA, a new target for engineering new crop varieties publication-title: Bioengineered doi: 10.1080/21655979.2016.1141838 – volume: 459 start-page: 39 year: 2010 ident: B92 article-title: Profiling of cold-stress-responsive miRNAs in rice by microarrays publication-title: Gene doi: 10.1016/j.gene.2010.03.011 – volume: 8 start-page: e54148 year: 2013 ident: B111 article-title: Characterization and expression patterns of microRNAs involved in rice grain filling publication-title: PLoS ONE doi: 10.1371/journal.pone.0054148 – reference: 21362738 - J Exp Bot. 2011 Jun;62(10):3563-73 – reference: 25705168 - Genomics Inform. 2014 Dec;12(4):261-7 – reference: 19808935 - Nucleic Acids Res. 2010 Jan;38(Database issue):D806-13 – reference: 20089182 - BMC Genomics. 2010 Jan 20;11:52 – reference: 24393105 - Plant Biotechnol J. 2014 May;12(4):468-79 – reference: 25270639 - Bioinformatics. 2015 Jan 15;31(2):265-7 – reference: 25888374 - BMC Genomics. 2015 Mar 17;16:197 – reference: 26454275 - Bioinformatics. 2016 Feb 1;32(3):450-2 – reference: 18356539 - RNA. 2008 May;14(5):836-43 – reference: 23162117 - J Exp Bot. 2013 Jan;64(1):303-15 – reference: 26578966 - Front Physiol. 2015 Oct 26;6:286 – reference: 22567728 - Int J Phytoremediation. 2012 May-Jun;14(5):506-17 – reference: 26246393 - Curr Opin Plant Biol. 2015 Oct;27:118-24 – reference: 23155433 - PLoS One. 2012;7(11):e48951 – reference: 24014874 - J Exp Bot. 2013 Nov;64(14):4271-87 – reference: 25330732 - BMC Plant Biol. 2014 Oct 21;14:271 – reference: 22253868 - PLoS One. 2012;7(1):e30039 – reference: 26901236 - Bioengineered. 2016;7(1):7-10 – reference: 24413694 - Plant Cell Rep. 2014 Jun;33(6):831-6 – reference: 26996904 - Environ Sci Pollut Res Int. 2016 Sep;23 (18):17859-79 – reference: 21401744 - Plant J. 2011 Jun;66(5):863-76 – reference: 21455488 - PLoS Genet. 2011 Mar;7(3):e1002021 – reference: 24076976 - Plant Cell. 2013 Sep;25(9):3570-83 – reference: 20719744 - Nucleic Acids Res. 2011 Jan;39(Database issue):D181-7 – reference: 21607657 - Plant Mol Biol. 2011 Sep;77(1-2):47-58 – reference: 21317339 - Plant Physiol. 2011 Jul;156(3):1101-15 – reference: 21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9 – reference: 20381393 - Mol Cell. 2010 May 14;38(3):465-75 – reference: 20336383 - Mol Biol Rep. 2011 Jan;38(1):237-42 – reference: 20350593 - Gene. 2010 Jul 1;459(1-2):39-47 – reference: 20508137 - Plant Physiol. 2010 Aug;153(4):1759-70 – reference: 26382195 - Bioinformatics. 2016 Jan 1;32(1):157-8 – reference: 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 – reference: 20487378 - Physiol Plant. 2010 Sep 1;140(1):57-68 – reference: 12101121 - Genes Dev. 2002 Jul 1;16(13):1616-26 – reference: 26372557 - PLoS One. 2015 Sep 15;10(9):e0137990 – reference: 21515631 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W132-8 – reference: 25572837 - Plant Biotechnol J. 2015 Apr;13(3):355-69 – reference: 22607471 - Physiol Plant. 2013 Feb;147(2):181-93 – reference: 21895696 - Plant Cell Environ. 2012 Jan;35(1):86-99 – reference: 21663675 - BMC Genomics. 2011 Jun 10;12:307 – reference: 23382553 - J Exp Bot. 2013 Apr;64(6):1521-36 – reference: 19222804 - Plant J. 2009 Jun;58(6):1068-82 – reference: 25547963 - Protoplasma. 2015 Jul;252(4):1149-65 – reference: 26973678 - Front Plant Sci. 2016 Mar 01;7:235 – reference: 22862743 - BMC Plant Biol. 2012 Aug 03;12:132 – reference: 23040172 - BMC Plant Biol. 2012 Oct 05;12:182 – reference: 23480361 - Plant J. 2013 Jun;74(5):840-51 – reference: 22135287 - Nucleic Acids Res. 2012 Jan;40(Database issue):D198-204 – reference: 23003210 - J Agric Food Chem. 2012 Oct 17;60(41):10179-87 – reference: 24114216 - Genet Mol Res. 2013 Oct 07;12(4):4213-21 – reference: 18653800 - Genome Res. 2008 Oct;18(10):1602-9 – reference: 22647959 - J Plant Physiol. 2012 Nov 1;169(16):1664-72 – reference: 25914709 - Front Plant Sci. 2015 Apr 10;6:232 – reference: 17905409 - Chemosphere. 2008 Feb;70(8):1500-9 – reference: 22413876 - BMC Syst Biol. 2012 Mar 13;6:18 – reference: 26542525 - BMC Bioinformatics. 2015 Nov 05;16:370 – reference: 22537016 - New Phytol. 2012 Jul;195(1):97-112 – reference: 22803610 - New Phytol. 2012 Oct;196(1):139-48 – reference: 19528528 - J Exp Bot. 2009;60(12):3419-31 – reference: 26400469 - RNA Biol. 2015;12(11):1178-80 – reference: 20444207 - Plant Biotechnol J. 2010 Oct;8(8):887-99 – reference: 15272084 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6 – reference: 23266877 - DNA Res. 2013 Apr;20(2):109-25 – reference: 20676715 - Funct Integr Genomics. 2010 Nov;10(4):493-507 – reference: 18408011 - J Biol Chem. 2008 Jun 6;283(23):15932-45 – reference: 20573268 - BMC Plant Biol. 2010 Jun 24;10:123 – reference: 26571139 - PLoS One. 2015 Nov 16;10(11):e0143066 – reference: 24962998 - J Exp Bot. 2014 Sep;65(17):5049-62 – reference: 12242443 - Science. 2002 Sep 20;297(5589):2053-6 – reference: 16669754 - Annu Rev Plant Biol. 2006;57:19-53 – reference: 23915383 - New Phytol. 2013 Dec;200(4):1102-15 – reference: 23292790 - Plant Physiol. 2013 Mar;161(3):1375-91 – reference: 25445265 - Gene. 2015 Jan 25;555(2):186-93 – reference: 15169940 - Plant Cell Physiol. 2004 May;45(5):583-9 – reference: 23544066 - PLoS One. 2013;8(3):e59423 – reference: 23771582 - Plant Mol Biol. 2013 Sep;83(1-2):59-75 – reference: 22639189 - Biometals. 2012 Oct;25(5):847-57 – reference: 27247036 - Nat Plants. 2015 Mar 30;1(4):15036 – reference: 24164591 - Plant J. 2014 Jan;77(1):85-96 – reference: 22760473 - J Exp Bot. 2012 Jul;63(12):4597-613 – reference: 23227161 - PLoS One. 2012;7(12):e50261 – reference: 26501263 - Int J Mol Sci. 2015 Oct 15;16(10):24532-54 – reference: 26887375 - Funct Integr Genomics. 2016 May;16(3):235-42 – reference: 25117656 - BMC Bioinformatics. 2014 Aug 12;15:275 – reference: 25256573 - Bioinformatics. 2015 Jan 15;31(2):290-1 – reference: 8252621 - Cell. 1993 Dec 3;75(5):843-54 – reference: 25863133 - Methods. 2015 Jul 15;83:80-7 – reference: 22158467 - Plant Cell. 2011 Dec;23(12):4185-207 – reference: 22712679 - J Agric Food Chem. 2012 Jul 4;60(26):6524-36 – reference: 23579282 - Metallomics. 2013 Sep;5(9):1184-90 – reference: 21605713 - Biochim Biophys Acta. 2012 Feb;1819(2):137-48 – reference: 23720667 - Front Plant Sci. 2013 May 16;4:145 – reference: 21421358 - Plant Sci. 2011 Feb;180(2):169-81 – reference: 23365650 - PLoS One. 2013;8(1):e54148 – reference: 23076994 - Genes Nutr. 2013 May;8(3):255-70 – reference: 20128885 - Plant J. 2010 May;62(3):454-62 – reference: 25755657 - Front Plant Sci. 2015 Feb 23;6:58 – reference: 23017896 - Plant Sci. 2012 Nov;196:18-30 – reference: 25641615 - Plant Biotechnol J. 2015 Apr;13(3):282-92 – reference: 26248304 - J Cell Physiol. 2016 Feb;231(2):303-13 – reference: 20374528 - Plant J. 2010 Jun 1;62(6):1046-57 – reference: 23975146 - Plant Mol Biol. 2014 Jan;84(1-2):1-18 – reference: 25398903 - Nucleic Acids Res. 2015 Jan;43(Database issue):D982-9 – reference: 18078843 - Biochim Biophys Acta. 2008 Feb;1779(2):99-107 – reference: 23448274 - BMC Plant Biol. 2013 Mar 01;13:33 – reference: 22365280 - Trends Plant Sci. 2012 Apr;17(4):196-203 – reference: 18550839 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8795-800 – reference: 25697792 - J Exp Bot. 2015 Apr;66(7):1749-61 – reference: 26141043 - Funct Integr Genomics. 2016 May;16(3):221-33 – reference: 21909758 - Planta. 2012 Feb;235(2):375-86 – reference: 20729483 - J Exp Bot. 2010 Oct;61(15):4157-68 – reference: 20085706 - Cell. 2010 Jan 8;140(1):111-22 – reference: 24060047 - BMC Plant Biol. 2013 Sep 23;13:140 – reference: 23443096 - Int J Mol Sci. 2012 Nov 27;13(12):15826-47 – reference: 23849115 - Plant Sci. 2013 Sep;210:70-81 – reference: 23778453 - RNA Biol. 2013 Jul;10(7):1087-92 – reference: 25519760 - BMC Genomics. 2014 Dec 17;15:1130 – reference: 26003096 - Biotechnol Lett. 2015 Sep;37(9):1719-27 – reference: 26466661 - J Exp Bot. 2016 Jan;67(1):175-94 – reference: 17442570 - Curr Biol. 2007 May 1;17 (9):818-23 – reference: 18801012 - Plant J. 2009 Jan;57(2):313-21 – reference: 24909308 - J Cell Physiol. 2015 Jan;230(1):1-15 – reference: 20430753 - Bioinformatics. 2010 Jun 15;26(12):1566-8 – reference: 26134148 - Sci Rep. 2015 Jul 02;5:11813 – reference: 23725466 - BMC Bioinformatics. 2013 Jun 03;14:174 – reference: 26019179 - Nucleic Acids Res. 2015 Jul 1;43(W1):W467-73 – reference: 24759739 - PLoS One. 2014 Apr 23;9(4):e95800 – reference: 23000164 - Biochem Biophys Res Commun. 2012 Oct 19;427(2):330-5 – reference: 20553393 - New Phytol. 2010 Aug;187(3):805-18 – reference: 23651319 - Plant Cell Environ. 2013 Dec;36(12):2207-18 – reference: 21874378 - Plant Mol Biol. 2012 Sep;80(1):17-36 – reference: 17254555 - Biochem Biophys Res Commun. 2007 Mar 9;354(2):585-90 – reference: 26030752 - PLoS One. 2015 Jun 01;10(6):e0128089 – reference: 21473757 - BMC Plant Biol. 2011 Apr 07;11:61 – reference: 19239888 - Cell. 2009 Feb 20;136(4):669-87 – reference: 22112171 - BMC Plant Biol. 2011 Nov 23;11:170 – reference: 15964037 - Phytochemistry. 2005 Jul;66(13):1519-28 – reference: 23281648 - BMC Genomics. 2012;13 Suppl 7:S16 – reference: 22962679 - J Exp Bot. 2012 Oct;63(16):5903-18 – reference: 16861386 - Plant Cell. 2006 Aug;18(8):2051-65 – reference: 25735537 - Plant Biotechnol J. 2015 Apr;13(3):409-20 – reference: 21775303 - Bioinformatics. 2011 Sep 15;27(18):2614-5 – reference: 20840511 - New Phytol. 2011 Apr;190(2):442-56 – reference: 18486559 - Dev Cell. 2008 Jun;14(6):854-66 – reference: 22433074 - OMICS. 2012 Apr;16(4):168-77 – reference: 26277190 - Appl Biochem Biotechnol. 2015 Oct;177(4):879-908 – reference: 24975557 - Plant Biotechnol J. 2015 Jan;13(1):2-13 – reference: 25183744 - J Exp Bot. 2014 Nov;65(20):6123-35 – reference: 22434153 - Protoplasma. 2013 Feb;250(1):209-22 – reference: 25658957 - PLoS One. 2015 Feb 06;10(2):e0117584 – reference: 23792878 - Plant Physiol Biochem. 2013 Sep;70:221-34 – reference: 24106494 - Front Plant Sci. 2013 Oct 02;4:357 – reference: 19815687 - J Exp Bot. 2010;61(1):165-77 |
| SSID | ssj0000500997 |
| Score | 2.5548167 |
| SecondaryResourceType | review_article |
| Snippet | The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have... The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 817 |
| SubjectTerms | Abiotic stress Biosynthesis Crops DNA methylation Down-regulation Drought Environmental factors Epigenetics Flowers & plants Gene expression Heavy metals Metabolism Metabolites MicroRNAs miRNA Pattern recognition Plant growth Plant Science Plant species Plant tolerance Plants (botany) Post-transcription Proteins Signal transduction Software Transgenic plants |
| Title | MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27379117 https://www.proquest.com/docview/3274994464 https://www.proquest.com/docview/1802472135 https://pubmed.ncbi.nlm.nih.gov/PMC4906921 |
| Volume | 7 |
| WOSCitedRecordID | wos000377657700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M0K dateStart: 20110301 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M7P dateStart: 20110301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: BENPR dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: PIMPY dateStart: 20110301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7Rx4FLedOl7cpIHLiEJrGN7VO1RVuB0K6iskjLKUocR6y0SpYmReLCb2fGyYa2CC5IkS-2E8fj8XwzHs8AvCLHJ6kjHog4soEokBVzacugyJSNjCKx0CWbUPO5Xi5N0hvcmt6tcrsn-o26qC3ZyE85qk_GoPIizjbfAsoaRaerfQqNHdijKAmxd91LBhtLKAkAqS6iD-pi5rTcrClGd0QnENonKbshjP5AmHcdJW9InosH_zvmh3DQY0426RbJI7jnqsewf14jLvzxBKYz8sm7nE8ahk9St-Q_hM0X3ke8YYhq2SRf1diZffI3S9iiXjtKyOHYqmKU9qhtnsLni-ni3fugT64QWNRR2iCTxroy0qWILdJLW023y0WZKYcIwklV8EJxYayMZYY4UBRWa1uUUucxF2HBn8FuVVfuEBjyfZSHSGZllcgKpXlpQxeWeZ4h2nN8BG-2s5zaPvI4JcBYp6iBEFlSIktKZEk9WUbweuiw6YJu_L3p8Xbq0577mvT3vI_g5VCNfEOHIVnl6usmpch3AtVfLkfwvKPy8C2EdAqFAL5c3aL_0IBict-uqVZffWxuYcK3Jo5e_HtYR3CffoFcziJxDLvt1bU7gX37vV01V2PYUUs9hr3z6Ty5HHsrAZaz8OPYL28qf06xPvkwS778AvSZApE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VbSW48H5sW8BIIHEJTWK7tg8ILdCqq3ZXK1ikcgqJ44iVVsnSpKD-qf5GZvKiBcGtB6Tc_Egcf575xh7PADwnxyepA-6JMLCeSHEpJtJmXhorGxhFaqFJNqGmU318bGZrcN7dhSG3yk4m1oI6LSztke9wNJ-MQeNFvFl98yhrFJ2udik0GlgcurMfaLKVr8fvcX5fhOH-3vzdgddmFfAskvPKi6WxLgt0JkKLH6qtpmvVIouVQ9XppEp5qrgwVoYyRgIkUqu1TTOpk5ALP-XY7zVYFwT2AazPxpPZ535Xx5dEuVQTQwitP7OTrZYUFTygMw9dp0W7oP7-4LS_u2Ze0HX7t_63v3Qbbrasmo2aZXAH1lx-FzbeFsh8z-7B3oS8Dj9MRyXDZ1ZU5CGF1ee1F3zJkLezUbIosDH7WN-dYfNi6SjliGOLnFFip6q8D5-uZAgPYJAXuXsEDCVbkPgIZGWViFOleWZ952dJEiOfdXwIr7pZjWwbW51SfCwjtLEIBhHBICIYRDUMhvCyb7Bqwor8vep2N9VRK1_K6Nc8D-FZX4ySgY574twVp2VEsf0EGvhcDuFhg6r-XUhaFao57FxdwltfgaKOXy7JF1_r6OPC-LsmDDb__VlP4frBfHIUHY2nh1twg4ZDDnaB2IZBdXLqHsOG_V4typMn7RJi8OWq8fgT_oxYkQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNAs+As+Potential+Targets+for+Abiotic+Stress+Tolerance+in+Plants&rft.jtitle=Frontiers+in+plant+science&rft.au=Shriram%2C+Varsha&rft.au=Kumar%2C+Vinay&rft.au=Devarumath%2C+Rachayya+M.&rft.au=Khare%2C+Tushar+S.&rft.date=2016-06-14&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=7&rft_id=info:doi/10.3389%2Ffpls.2016.00817&rft_id=info%3Apmid%2F27379117&rft.externalDocID=PMC4906921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |