Training Radial Basis Function Neural Networks for Classification via Class-Specific Clustering
In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vect...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 27; číslo 12; s. 2458 - 2471 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations. |
|---|---|
| AbstractList | In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations. In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations.In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations. |
| Author | Raitoharju, Jenni Kiranyaz, Serkan Gabbouj, Moncef |
| Author_xml | – sequence: 1 givenname: Jenni surname: Raitoharju fullname: Raitoharju, Jenni email: jenni.raitoharju@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland – sequence: 2 givenname: Serkan surname: Kiranyaz fullname: Kiranyaz, Serkan email: mkiranyaz@qu.edu.qa organization: Dept. of Electr. Eng., Qatar Univ., Doha, Qatar – sequence: 3 givenname: Moncef surname: Gabbouj fullname: Gabbouj, Moncef email: moncef.gabbouj@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26625424$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9vGyEQxVGUKEkTf4FEqlbqpZd1Ydhl4dhadRvJcqTakXJDmB0i0vWuC7uJ-u2L_9SHHMKF4en3Bpj3gZy2XYuE3DA6ZoyqL8v5fLYYA2XlGApVgRQn5BKYgBy4lKfHunq8IKMYn2lagpaiUOfkAoSAsoDikuhlML717VP2y9TeNNk3E33MpkNre9-12RyHkNQ59q9d-B0z14Vs0pgYvfPW7JAXb_ZSvtig3erpOMQeQ2p7Tc6caSKODvsVeZh-X05-5rP7H3eTr7PcFrLqcyVYzZytKsOoqLmTXNCV4UqWvMK6trgqGKCzwiUFeC1WLFWCQgGKgnD8inze992E7s-AsddrHy02jWmxG6JmMv2ZVwpkQj-9QZ-7IbTpdYkqABgoqRL18UANqzXWehP82oS_-v_oEgB7wIYuxoDuiDCqtxHpXUR6G5E-RJRM8o3J-n43xj7l0Lxvvd1bPSIe76o4LwWT_B_1751c |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3454296 crossref_primary_10_1007_s00500_023_09207_4 crossref_primary_10_1016_j_eswa_2024_124565 crossref_primary_10_1016_j_ast_2019_01_033 crossref_primary_10_1007_s12652_021_03405_4 crossref_primary_10_1016_j_swevo_2019_06_002 crossref_primary_10_1016_j_neucom_2019_02_047 crossref_primary_10_1007_s10836_019_05816_w crossref_primary_10_1016_j_cose_2021_102431 crossref_primary_10_1016_j_procs_2020_03_321 crossref_primary_10_1177_0954407019846378 crossref_primary_10_1007_s12065_022_00758_3 crossref_primary_10_1007_s12559_024_10388_9 crossref_primary_10_1109_TFUZZ_2019_2956903 crossref_primary_10_1109_TNNLS_2018_2827952 crossref_primary_10_1109_TETC_2019_2901272 crossref_primary_10_1007_s41870_022_00991_0 crossref_primary_10_1016_j_swevo_2017_01_003 crossref_primary_10_1265_ehpm_22_00084 crossref_primary_10_1109_TNNLS_2017_2705658 crossref_primary_10_1016_j_isatra_2020_05_030 crossref_primary_10_1007_s13042_018_0843_4 crossref_primary_10_1016_j_compchemeng_2025_109080 crossref_primary_10_3233_JIFS_179279 crossref_primary_10_3390_s20051479 crossref_primary_10_1109_TSMC_2021_3076747 crossref_primary_10_1155_2021_6941258 crossref_primary_10_1016_j_ijleo_2022_168876 crossref_primary_10_1109_TFUZZ_2022_3146985 crossref_primary_10_1109_TNNLS_2017_2748952 crossref_primary_10_1016_j_procs_2018_10_398 crossref_primary_10_1016_j_neucom_2021_04_040 crossref_primary_10_1109_JSEN_2018_2813984 crossref_primary_10_1016_j_neucom_2020_09_026 crossref_primary_10_21597_jist_1502928 crossref_primary_10_1109_ACCESS_2023_3327916 |
| Cites_doi | 10.1049/ip-d.1993.0058 10.1016/S0893-6080(01)00027-2 10.1016/S0003-2670(01)01506-9 10.1016/j.matcom.2011.01.016 10.1109/TNN.2006.880860 10.1109/TNN.2003.813841 10.1016/j.jbi.2014.03.008 10.1109/72.701174 10.1016/j.neucom.2007.06.003 10.1109/72.857766 10.2307/2033241 10.1016/S0031-3203(02)00231-5 10.1109/ICNN.1995.488968 10.1016/j.fss.2011.08.011 10.1016/0893-6080(95)00029-Y 10.1016/S0167-8655(97)00121-9 10.1109/TSMCB.2009.2015054 10.1016/j.neucom.2011.06.031 10.1016/j.patcog.2004.02.014 10.1109/TNNLS.2012.2185059 10.1109/TNN.2003.820657 10.1016/j.neucom.2005.06.014 10.1016/j.eswa.2011.09.082 10.1023/A:1026289910256 10.1109/TNN.2002.1000134 10.1109/TNN.2004.836229 10.1109/TIE.2011.2164773 10.1016/j.future.2004.03.013 10.1109/TNN.2006.880583 10.1007/978-0-387-74159-8_5 10.1109/ICTTA.2006.1684625 10.1162/neco.1989.1.2.281 10.1109/5.58326 10.1007/s00521-004-0404-5 10.1016/j.jcp.2007.11.016 10.1016/j.knosys.2010.11.001 10.1109/TIE.2013.2258299 10.1016/j.cor.2010.05.001 10.1109/ICPR.1996.547643 10.1016/j.fss.2012.10.004 10.1109/TNN.2004.841796 10.1109/FOCS.2009.14 10.1145/355984.355989 10.1016/S0893-6080(97)00002-6 10.1109/TNNLS.2012.2226748 10.1007/978-3-642-37846-1 10.1109/ICEC.1998.699146 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2015.2497286 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2471 |
| ExternalDocumentID | 26625424 10_1109_TNNLS_2015_2497286 7335618 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c487t-961d1fc77a106d3f8360ba398537eddceb412efc6f85323d6b1f85602429026f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388919600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Nov 09 14:39:54 EST 2025 Sun Oct 05 00:15:11 EDT 2025 Thu Apr 03 06:59:24 EDT 2025 Tue Nov 18 22:41:42 EST 2025 Sat Nov 29 01:39:53 EST 2025 Tue Aug 26 16:42:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-961d1fc77a106d3f8360ba398537eddceb412efc6f85323d6b1f85602429026f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4631-9298 |
| PMID | 26625424 |
| PQID | 1842212989 |
| PQPubID | 85436 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_26625424 crossref_primary_10_1109_TNNLS_2015_2497286 ieee_primary_7335618 proquest_journals_1842212989 crossref_citationtrail_10_1109_TNNLS_2015_2497286 proquest_miscellaneous_1826637928 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-01 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref14 ref53 ref52 demšar (ref59) 2006; 7 ref55 ref11 haykin (ref15) 1999 ref10 ref17 ref16 ref19 ref18 ref50 er (ref6) 2002; 13 ref46 ref45 ref48 ref47 ref41 ref44 ref43 sun (ref56) 2006 ref49 omran (ref51) 2002 ref8 ref9 ref4 ref3 ref5 ref40 (ref57) 2015 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 lichman (ref58) 2013 ref2 ref1 poggio (ref12) 1989 duda (ref42) 2000 wettschereck (ref7) 1992; 4 ref24 ref23 ref26 ref25 ref20 ref22 ref21 bochkanov (ref54) 2015 hwang (ref39) 1994 ref28 ref27 koutroumbas (ref38) 2002 ref29 |
| References_xml | – ident: ref31 doi: 10.1049/ip-d.1993.0058 – ident: ref10 doi: 10.1016/S0893-6080(01)00027-2 – year: 2000 ident: ref42 publication-title: Pattern Classification – ident: ref9 doi: 10.1016/S0003-2670(01)01506-9 – ident: ref17 doi: 10.1016/j.matcom.2011.01.016 – ident: ref14 doi: 10.1109/TNN.2006.880860 – ident: ref18 doi: 10.1109/TNN.2003.813841 – ident: ref1 doi: 10.1016/j.jbi.2014.03.008 – ident: ref36 doi: 10.1109/72.701174 – ident: ref23 doi: 10.1016/j.neucom.2007.06.003 – start-page: 18 year: 2002 ident: ref51 article-title: Image classification using particle swarm optimization publication-title: Proc Asia-Pacific Conf Simulated Evol Learn – ident: ref32 doi: 10.1109/72.857766 – ident: ref52 doi: 10.2307/2033241 – ident: ref29 doi: 10.1016/S0031-3203(02)00231-5 – volume: 4 start-page: 1133 year: 1992 ident: ref7 article-title: Improving the performance of radial basis function networks by learning center locations publication-title: Proc Adv Neural Inf Process Syst – ident: ref48 doi: 10.1109/ICNN.1995.488968 – ident: ref30 doi: 10.1016/j.fss.2011.08.011 – ident: ref8 doi: 10.1016/0893-6080(95)00029-Y – volume: 7 start-page: 1 year: 2006 ident: ref59 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref53 doi: 10.1016/S0167-8655(97)00121-9 – year: 2015 ident: ref57 publication-title: Tampere Center for Scientific Computing – ident: ref46 doi: 10.1109/TSMCB.2009.2015054 – year: 1999 ident: ref15 publication-title: Neural Networks A Comprehensive Foundation – year: 1989 ident: ref12 article-title: A theory of networks for approximation and learning – start-page: 592 year: 2006 ident: ref56 article-title: Boosting for learning multiple classes with imbalanced class distribution publication-title: Proc 6th Int Conf Data Mining – ident: ref27 doi: 10.1016/j.neucom.2011.06.031 – ident: ref35 doi: 10.1016/j.patcog.2004.02.014 – ident: ref25 doi: 10.1109/TNNLS.2012.2185059 – year: 2013 ident: ref58 publication-title: UCI Machine Learning Repository – ident: ref19 doi: 10.1109/TNN.2003.820657 – ident: ref37 doi: 10.1016/j.neucom.2005.06.014 – ident: ref47 doi: 10.1016/j.eswa.2011.09.082 – ident: ref24 doi: 10.1023/A:1026289910256 – volume: 13 start-page: 697 year: 2002 ident: ref6 article-title: Face recognition with radial basis function (RBF) neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.1000134 – ident: ref41 doi: 10.1109/TNN.2004.836229 – ident: ref3 doi: 10.1109/TIE.2011.2164773 – ident: ref11 doi: 10.1016/j.future.2004.03.013 – start-page: 283 year: 2002 ident: ref38 article-title: A novel algorithm for training radial basis function networks publication-title: Proceedings 2nd Hellenic Conf on AI – year: 2015 ident: ref54 publication-title: alglib – ident: ref21 doi: 10.1109/TNN.2006.880583 – start-page: 1500 year: 1994 ident: ref39 article-title: A neural network model APC-III and its application to unconstrained handwritten digit recognition publication-title: Proc Int Conf Neural Inf Process – ident: ref44 doi: 10.1007/978-0-387-74159-8_5 – ident: ref45 doi: 10.1109/ICTTA.2006.1684625 – ident: ref16 doi: 10.1162/neco.1989.1.2.281 – ident: ref13 doi: 10.1109/5.58326 – ident: ref20 doi: 10.1007/s00521-004-0404-5 – ident: ref28 doi: 10.1016/j.jcp.2007.11.016 – ident: ref4 doi: 10.1016/j.knosys.2010.11.001 – ident: ref2 doi: 10.1109/TIE.2013.2258299 – ident: ref26 doi: 10.1016/j.cor.2010.05.001 – ident: ref40 doi: 10.1109/ICPR.1996.547643 – ident: ref34 doi: 10.1016/j.fss.2012.10.004 – ident: ref33 doi: 10.1109/TNN.2004.841796 – ident: ref43 doi: 10.1109/FOCS.2009.14 – ident: ref55 doi: 10.1145/355984.355989 – ident: ref5 doi: 10.1016/S0893-6080(97)00002-6 – ident: ref22 doi: 10.1109/TNNLS.2012.2226748 – ident: ref50 doi: 10.1007/978-3-642-37846-1 – ident: ref49 doi: 10.1109/ICEC.1998.699146 |
| SSID | ssj0000605649 |
| Score | 2.4088466 |
| Snippet | In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2458 |
| SubjectTerms | Algorithms Centroids Classification Clustering Clustering algorithms Clustering methods Computational neuroscience Heuristic algorithms Neural networks Neurons Optimization Particle swarm optimization particle swarm optimization (PSO) Radial basis function radial basis function networks (RBFNNs) supervised learning Training |
| Title | Training Radial Basis Function Neural Networks for Classification via Class-Specific Clustering |
| URI | https://ieeexplore.ieee.org/document/7335618 https://www.ncbi.nlm.nih.gov/pubmed/26625424 https://www.proquest.com/docview/1842212989 https://www.proquest.com/docview/1826637928 |
| Volume | 27 |
| WOSCitedRecordID | wos000388919600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EMvTdP0sWkaFOitdbKSvJZ1TEqWHooJ7Rb2ZmRpBAtht8S7-f2ZkR9QSAO92bIsC8-ImU-amQ_gs3chWjSzDK30BFBmedZY57Iog0WbB6Vik8gmTFWVy6W93YOvYy4MIqbgM7zgy3SWHzZ-x1tll0ZrMvflPuwbY7pcrXE_ZUp-eZG8XSULlSltlkOOzNReLqrqxy8O5JpdEN4wqmTqIrJNBI9U_pdJShwr_3Y3k9mZH_7fhF_Dq969FFedPhzBHq7fwOFA3SD6lXwM9aKnhhA_uTjBnbh27aoVc7JyLCnBNTuoteqCxFtBrq1I_JkcWZSEKR5WrmvKEoc9tdPtjusu0LBv4ff8ZvHte9ZzLWSeIMs2s4UMMnpjHGHEoCPndjROW7LmBkPw2ORSYfRFpBalQ9FIuirYwluCcVG_g4P1Zo0fQEQ--vR59BpNPs2xmblYOKdL52WjMUxADr-79n0hcubDuKsTIJnaOkmrZmnVvbQm8GV8509XhuPZ3scsi7FnL4YJnA5SrfuV2taEcBWZb1vaCZyPj2mN8cGJW-Nmx31IVbSxioZ432nDOPagRCdPf_MjvKSZFV0AzCkcbO93-Ale-Iftqr0_I0VelmdJkR8BiPrtag |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qK9gXa1u1p7VNwTfd9vKxm82jLT0qnovoCfcWsvmAg3JXunf9-zvJfoCgQt92s9ls2Jkw80tm5gfw0RoXlJd55hW1CFBykdXKmCxQp7wSjrFQJ7IJWVXlfK5-bMHnIRfGe5-Cz_x5vExn-W5lN3Gr7EJyjua-fAY7uRCMttlaw47KGD3zIvm7jBYsY1zO-yyZsbqYVdX0Vwzlys8RcUhWRvIitE4IkJj4wygllpV_O5zJ8Ez2njblV_CyczDJl1Yj9mHLLw9grydvIN1aPgQ968ghyM9YnuCWXJpm0ZAJ2rkoKxKrdmBr1YaJNwSdW5IYNGNsURIneViYtilLLPbYjrebWHkBh30NvyfXs6ubrGNbyCyClnWmCuposFIaRImOh5jdURuu0J5L75z1taDMB1sEbGHcFTXFqyLaeIVALvA3sL1cLf0RkBAPP60IlnspxsLXuQmFMbw0ltbcuxHQ_ndr25Uij4wYtzpBkrHSSVo6Skt30hrBp-Gdu7YQx397H0ZZDD07MYzguJeq7tZqoxHjMjTgqlQjOBse4yqLRydm6Veb2AdVhUvFcIi3rTYMY_dK9O7v3zyFFzez71M9_Vp9ew-7OMuiDYc5hu31_cZ_gOf2Yb1o7k-SOj8Cb2PvyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Radial+Basis+Function+Neural+Networks+for+Classification+via+Class-Specific+Clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Raitoharju%2C+Jenni&rft.au=Kiranyaz%2C+Serkan&rft.au=Gabbouj%2C+Moncef&rft.date=2016-12-01&rft.eissn=2162-2388&rft.volume=27&rft.issue=12&rft.spage=2458&rft_id=info:doi/10.1109%2FTNNLS.2015.2497286&rft_id=info%3Apmid%2F26625424&rft.externalDocID=26625424 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |