Training Radial Basis Function Neural Networks for Classification via Class-Specific Clustering

In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vect...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 27; číslo 12; s. 2458 - 2471
Hlavní autori: Raitoharju, Jenni, Kiranyaz, Serkan, Gabbouj, Moncef
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations.
AbstractList In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations.
In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations.In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations.
Author Raitoharju, Jenni
Kiranyaz, Serkan
Gabbouj, Moncef
Author_xml – sequence: 1
  givenname: Jenni
  surname: Raitoharju
  fullname: Raitoharju, Jenni
  email: jenni.raitoharju@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
– sequence: 2
  givenname: Serkan
  surname: Kiranyaz
  fullname: Kiranyaz, Serkan
  email: mkiranyaz@qu.edu.qa
  organization: Dept. of Electr. Eng., Qatar Univ., Doha, Qatar
– sequence: 3
  givenname: Moncef
  surname: Gabbouj
  fullname: Gabbouj, Moncef
  email: moncef.gabbouj@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26625424$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vGyEQxVGUKEkTf4FEqlbqpZd1Ydhl4dhadRvJcqTakXJDmB0i0vWuC7uJ-u2L_9SHHMKF4en3Bpj3gZy2XYuE3DA6ZoyqL8v5fLYYA2XlGApVgRQn5BKYgBy4lKfHunq8IKMYn2lagpaiUOfkAoSAsoDikuhlML717VP2y9TeNNk3E33MpkNre9-12RyHkNQ59q9d-B0z14Vs0pgYvfPW7JAXb_ZSvtig3erpOMQeQ2p7Tc6caSKODvsVeZh-X05-5rP7H3eTr7PcFrLqcyVYzZytKsOoqLmTXNCV4UqWvMK6trgqGKCzwiUFeC1WLFWCQgGKgnD8inze992E7s-AsddrHy02jWmxG6JmMv2ZVwpkQj-9QZ-7IbTpdYkqABgoqRL18UANqzXWehP82oS_-v_oEgB7wIYuxoDuiDCqtxHpXUR6G5E-RJRM8o3J-n43xj7l0Lxvvd1bPSIe76o4LwWT_B_1751c
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3454296
crossref_primary_10_1007_s00500_023_09207_4
crossref_primary_10_1016_j_eswa_2024_124565
crossref_primary_10_1016_j_ast_2019_01_033
crossref_primary_10_1007_s12652_021_03405_4
crossref_primary_10_1016_j_swevo_2019_06_002
crossref_primary_10_1016_j_neucom_2019_02_047
crossref_primary_10_1007_s10836_019_05816_w
crossref_primary_10_1016_j_cose_2021_102431
crossref_primary_10_1016_j_procs_2020_03_321
crossref_primary_10_1177_0954407019846378
crossref_primary_10_1007_s12065_022_00758_3
crossref_primary_10_1007_s12559_024_10388_9
crossref_primary_10_1109_TFUZZ_2019_2956903
crossref_primary_10_1109_TNNLS_2018_2827952
crossref_primary_10_1109_TETC_2019_2901272
crossref_primary_10_1007_s41870_022_00991_0
crossref_primary_10_1016_j_swevo_2017_01_003
crossref_primary_10_1265_ehpm_22_00084
crossref_primary_10_1109_TNNLS_2017_2705658
crossref_primary_10_1016_j_isatra_2020_05_030
crossref_primary_10_1007_s13042_018_0843_4
crossref_primary_10_1016_j_compchemeng_2025_109080
crossref_primary_10_3233_JIFS_179279
crossref_primary_10_3390_s20051479
crossref_primary_10_1109_TSMC_2021_3076747
crossref_primary_10_1155_2021_6941258
crossref_primary_10_1016_j_ijleo_2022_168876
crossref_primary_10_1109_TFUZZ_2022_3146985
crossref_primary_10_1109_TNNLS_2017_2748952
crossref_primary_10_1016_j_procs_2018_10_398
crossref_primary_10_1016_j_neucom_2021_04_040
crossref_primary_10_1109_JSEN_2018_2813984
crossref_primary_10_1016_j_neucom_2020_09_026
crossref_primary_10_21597_jist_1502928
crossref_primary_10_1109_ACCESS_2023_3327916
Cites_doi 10.1049/ip-d.1993.0058
10.1016/S0893-6080(01)00027-2
10.1016/S0003-2670(01)01506-9
10.1016/j.matcom.2011.01.016
10.1109/TNN.2006.880860
10.1109/TNN.2003.813841
10.1016/j.jbi.2014.03.008
10.1109/72.701174
10.1016/j.neucom.2007.06.003
10.1109/72.857766
10.2307/2033241
10.1016/S0031-3203(02)00231-5
10.1109/ICNN.1995.488968
10.1016/j.fss.2011.08.011
10.1016/0893-6080(95)00029-Y
10.1016/S0167-8655(97)00121-9
10.1109/TSMCB.2009.2015054
10.1016/j.neucom.2011.06.031
10.1016/j.patcog.2004.02.014
10.1109/TNNLS.2012.2185059
10.1109/TNN.2003.820657
10.1016/j.neucom.2005.06.014
10.1016/j.eswa.2011.09.082
10.1023/A:1026289910256
10.1109/TNN.2002.1000134
10.1109/TNN.2004.836229
10.1109/TIE.2011.2164773
10.1016/j.future.2004.03.013
10.1109/TNN.2006.880583
10.1007/978-0-387-74159-8_5
10.1109/ICTTA.2006.1684625
10.1162/neco.1989.1.2.281
10.1109/5.58326
10.1007/s00521-004-0404-5
10.1016/j.jcp.2007.11.016
10.1016/j.knosys.2010.11.001
10.1109/TIE.2013.2258299
10.1016/j.cor.2010.05.001
10.1109/ICPR.1996.547643
10.1016/j.fss.2012.10.004
10.1109/TNN.2004.841796
10.1109/FOCS.2009.14
10.1145/355984.355989
10.1016/S0893-6080(97)00002-6
10.1109/TNNLS.2012.2226748
10.1007/978-3-642-37846-1
10.1109/ICEC.1998.699146
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2015.2497286
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2471
ExternalDocumentID 26625424
10_1109_TNNLS_2015_2497286
7335618
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c487t-961d1fc77a106d3f8360ba398537eddceb412efc6f85323d6b1f85602429026f3
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388919600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Nov 09 14:39:54 EST 2025
Sun Oct 05 00:15:11 EDT 2025
Thu Apr 03 06:59:24 EDT 2025
Tue Nov 18 22:41:42 EST 2025
Sat Nov 29 01:39:53 EST 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-961d1fc77a106d3f8360ba398537eddceb412efc6f85323d6b1f85602429026f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4631-9298
PMID 26625424
PQID 1842212989
PQPubID 85436
PageCount 14
ParticipantIDs pubmed_primary_26625424
crossref_primary_10_1109_TNNLS_2015_2497286
ieee_primary_7335618
proquest_journals_1842212989
crossref_citationtrail_10_1109_TNNLS_2015_2497286
proquest_miscellaneous_1826637928
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref14
ref53
ref52
demšar (ref59) 2006; 7
ref55
ref11
haykin (ref15) 1999
ref10
ref17
ref16
ref19
ref18
ref50
er (ref6) 2002; 13
ref46
ref45
ref48
ref47
ref41
ref44
ref43
sun (ref56) 2006
ref49
omran (ref51) 2002
ref8
ref9
ref4
ref3
ref5
ref40
(ref57) 2015
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
lichman (ref58) 2013
ref2
ref1
poggio (ref12) 1989
duda (ref42) 2000
wettschereck (ref7) 1992; 4
ref24
ref23
ref26
ref25
ref20
ref22
ref21
bochkanov (ref54) 2015
hwang (ref39) 1994
ref28
ref27
koutroumbas (ref38) 2002
ref29
References_xml – ident: ref31
  doi: 10.1049/ip-d.1993.0058
– ident: ref10
  doi: 10.1016/S0893-6080(01)00027-2
– year: 2000
  ident: ref42
  publication-title: Pattern Classification
– ident: ref9
  doi: 10.1016/S0003-2670(01)01506-9
– ident: ref17
  doi: 10.1016/j.matcom.2011.01.016
– ident: ref14
  doi: 10.1109/TNN.2006.880860
– ident: ref18
  doi: 10.1109/TNN.2003.813841
– ident: ref1
  doi: 10.1016/j.jbi.2014.03.008
– ident: ref36
  doi: 10.1109/72.701174
– ident: ref23
  doi: 10.1016/j.neucom.2007.06.003
– start-page: 18
  year: 2002
  ident: ref51
  article-title: Image classification using particle swarm optimization
  publication-title: Proc Asia-Pacific Conf Simulated Evol Learn
– ident: ref32
  doi: 10.1109/72.857766
– ident: ref52
  doi: 10.2307/2033241
– ident: ref29
  doi: 10.1016/S0031-3203(02)00231-5
– volume: 4
  start-page: 1133
  year: 1992
  ident: ref7
  article-title: Improving the performance of radial basis function networks by learning center locations
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref48
  doi: 10.1109/ICNN.1995.488968
– ident: ref30
  doi: 10.1016/j.fss.2011.08.011
– ident: ref8
  doi: 10.1016/0893-6080(95)00029-Y
– volume: 7
  start-page: 1
  year: 2006
  ident: ref59
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref53
  doi: 10.1016/S0167-8655(97)00121-9
– year: 2015
  ident: ref57
  publication-title: Tampere Center for Scientific Computing
– ident: ref46
  doi: 10.1109/TSMCB.2009.2015054
– year: 1999
  ident: ref15
  publication-title: Neural Networks A Comprehensive Foundation
– year: 1989
  ident: ref12
  article-title: A theory of networks for approximation and learning
– start-page: 592
  year: 2006
  ident: ref56
  article-title: Boosting for learning multiple classes with imbalanced class distribution
  publication-title: Proc 6th Int Conf Data Mining
– ident: ref27
  doi: 10.1016/j.neucom.2011.06.031
– ident: ref35
  doi: 10.1016/j.patcog.2004.02.014
– ident: ref25
  doi: 10.1109/TNNLS.2012.2185059
– year: 2013
  ident: ref58
  publication-title: UCI Machine Learning Repository
– ident: ref19
  doi: 10.1109/TNN.2003.820657
– ident: ref37
  doi: 10.1016/j.neucom.2005.06.014
– ident: ref47
  doi: 10.1016/j.eswa.2011.09.082
– ident: ref24
  doi: 10.1023/A:1026289910256
– volume: 13
  start-page: 697
  year: 2002
  ident: ref6
  article-title: Face recognition with radial basis function (RBF) neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1000134
– ident: ref41
  doi: 10.1109/TNN.2004.836229
– ident: ref3
  doi: 10.1109/TIE.2011.2164773
– ident: ref11
  doi: 10.1016/j.future.2004.03.013
– start-page: 283
  year: 2002
  ident: ref38
  article-title: A novel algorithm for training radial basis function networks
  publication-title: Proceedings 2nd Hellenic Conf on AI
– year: 2015
  ident: ref54
  publication-title: alglib
– ident: ref21
  doi: 10.1109/TNN.2006.880583
– start-page: 1500
  year: 1994
  ident: ref39
  article-title: A neural network model APC-III and its application to unconstrained handwritten digit recognition
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref44
  doi: 10.1007/978-0-387-74159-8_5
– ident: ref45
  doi: 10.1109/ICTTA.2006.1684625
– ident: ref16
  doi: 10.1162/neco.1989.1.2.281
– ident: ref13
  doi: 10.1109/5.58326
– ident: ref20
  doi: 10.1007/s00521-004-0404-5
– ident: ref28
  doi: 10.1016/j.jcp.2007.11.016
– ident: ref4
  doi: 10.1016/j.knosys.2010.11.001
– ident: ref2
  doi: 10.1109/TIE.2013.2258299
– ident: ref26
  doi: 10.1016/j.cor.2010.05.001
– ident: ref40
  doi: 10.1109/ICPR.1996.547643
– ident: ref34
  doi: 10.1016/j.fss.2012.10.004
– ident: ref33
  doi: 10.1109/TNN.2004.841796
– ident: ref43
  doi: 10.1109/FOCS.2009.14
– ident: ref55
  doi: 10.1145/355984.355989
– ident: ref5
  doi: 10.1016/S0893-6080(97)00002-6
– ident: ref22
  doi: 10.1109/TNNLS.2012.2226748
– ident: ref50
  doi: 10.1007/978-3-642-37846-1
– ident: ref49
  doi: 10.1109/ICEC.1998.699146
SSID ssj0000605649
Score 2.4088466
Snippet In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2458
SubjectTerms Algorithms
Centroids
Classification
Clustering
Clustering algorithms
Clustering methods
Computational neuroscience
Heuristic algorithms
Neural networks
Neurons
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
Radial basis function
radial basis function networks (RBFNNs)
supervised learning
Training
Title Training Radial Basis Function Neural Networks for Classification via Class-Specific Clustering
URI https://ieeexplore.ieee.org/document/7335618
https://www.ncbi.nlm.nih.gov/pubmed/26625424
https://www.proquest.com/docview/1842212989
https://www.proquest.com/docview/1826637928
Volume 27
WOSCitedRecordID wos000388919600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EMvTdP0sWkaFOitdbKSvJZ1TEqWHooJ7Rb2ZmRpBAtht8S7-f2ZkR9QSAO92bIsC8-ImU-amQ_gs3chWjSzDK30BFBmedZY57Iog0WbB6Vik8gmTFWVy6W93YOvYy4MIqbgM7zgy3SWHzZ-x1tll0ZrMvflPuwbY7pcrXE_ZUp-eZG8XSULlSltlkOOzNReLqrqxy8O5JpdEN4wqmTqIrJNBI9U_pdJShwr_3Y3k9mZH_7fhF_Dq969FFedPhzBHq7fwOFA3SD6lXwM9aKnhhA_uTjBnbh27aoVc7JyLCnBNTuoteqCxFtBrq1I_JkcWZSEKR5WrmvKEoc9tdPtjusu0LBv4ff8ZvHte9ZzLWSeIMs2s4UMMnpjHGHEoCPndjROW7LmBkPw2ORSYfRFpBalQ9FIuirYwluCcVG_g4P1Zo0fQEQ--vR59BpNPs2xmblYOKdL52WjMUxADr-79n0hcubDuKsTIJnaOkmrZmnVvbQm8GV8509XhuPZ3scsi7FnL4YJnA5SrfuV2taEcBWZb1vaCZyPj2mN8cGJW-Nmx31IVbSxioZ432nDOPagRCdPf_MjvKSZFV0AzCkcbO93-Ale-Iftqr0_I0VelmdJkR8BiPrtag
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qK9gXa1u1p7VNwTfd9vKxm82jLT0qnovoCfcWsvmAg3JXunf9-zvJfoCgQt92s9ls2Jkw80tm5gfw0RoXlJd55hW1CFBykdXKmCxQp7wSjrFQJ7IJWVXlfK5-bMHnIRfGe5-Cz_x5vExn-W5lN3Gr7EJyjua-fAY7uRCMttlaw47KGD3zIvm7jBYsY1zO-yyZsbqYVdX0Vwzlys8RcUhWRvIitE4IkJj4wygllpV_O5zJ8Ez2njblV_CyczDJl1Yj9mHLLw9grydvIN1aPgQ968ghyM9YnuCWXJpm0ZAJ2rkoKxKrdmBr1YaJNwSdW5IYNGNsURIneViYtilLLPbYjrebWHkBh30NvyfXs6ubrGNbyCyClnWmCuposFIaRImOh5jdURuu0J5L75z1taDMB1sEbGHcFTXFqyLaeIVALvA3sL1cLf0RkBAPP60IlnspxsLXuQmFMbw0ltbcuxHQ_ndr25Uij4wYtzpBkrHSSVo6Skt30hrBp-Gdu7YQx397H0ZZDD07MYzguJeq7tZqoxHjMjTgqlQjOBse4yqLRydm6Veb2AdVhUvFcIi3rTYMY_dK9O7v3zyFFzez71M9_Vp9ew-7OMuiDYc5hu31_cZ_gOf2Yb1o7k-SOj8Cb2PvyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Radial+Basis+Function+Neural+Networks+for+Classification+via+Class-Specific+Clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Raitoharju%2C+Jenni&rft.au=Kiranyaz%2C+Serkan&rft.au=Gabbouj%2C+Moncef&rft.date=2016-12-01&rft.eissn=2162-2388&rft.volume=27&rft.issue=12&rft.spage=2458&rft_id=info:doi/10.1109%2FTNNLS.2015.2497286&rft_id=info%3Apmid%2F26625424&rft.externalDocID=26625424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon