Capsules for biomedical image segmentation

•First ever capsule network for image segmentation.•Reduced memory burden: locally-constrained routing and transformation matrix sharing.•Introduced novel deconvolutional capsules to create encoder-decoder architecture.•Extended the reconstruction regularization to the segmentation task.•Outperforme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis Jg. 68; S. 101889
Hauptverfasser: LaLonde, Rodney, Xu, Ziyue, Irmakci, Ismail, Jain, Sanjay, Bagci, Ulas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.02.2021
Elsevier BV
Schlagworte:
ISSN:1361-8415, 1361-8423, 1361-8423
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •First ever capsule network for image segmentation.•Reduced memory burden: locally-constrained routing and transformation matrix sharing.•Introduced novel deconvolutional capsules to create encoder-decoder architecture.•Extended the reconstruction regularization to the segmentation task.•Outperformed existing methods across five clinical and preclinical datasets for lung segmentation from CT scans. [Display omitted] Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of “deconvolutional” capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects’ thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules’ ability to generalize to unseen handling of rotations/reflections on natural images.
AbstractList Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of "deconvolutional" capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects' thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules' ability to generalize to unseen handling of rotations/reflections on natural images.Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of "deconvolutional" capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects' thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules' ability to generalize to unseen handling of rotations/reflections on natural images.
Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of “deconvolutional” capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects’ thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules’ ability to generalize to unseen handling of rotations/reflections on natural images.
•First ever capsule network for image segmentation.•Reduced memory burden: locally-constrained routing and transformation matrix sharing.•Introduced novel deconvolutional capsules to create encoder-decoder architecture.•Extended the reconstruction regularization to the segmentation task.•Outperformed existing methods across five clinical and preclinical datasets for lung segmentation from CT scans. [Display omitted] Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of “deconvolutional” capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects’ thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules’ ability to generalize to unseen handling of rotations/reflections on natural images.
ArticleNumber 101889
Author Irmakci, Ismail
Jain, Sanjay
Xu, Ziyue
LaLonde, Rodney
Bagci, Ulas
AuthorAffiliation a Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, FL
b Nvidia, Bethesda, MD
c Ege University, Izmir, Turkey
d Johns Hopkins University, Baltimore, MD
AuthorAffiliation_xml – name: b Nvidia, Bethesda, MD
– name: c Ege University, Izmir, Turkey
– name: d Johns Hopkins University, Baltimore, MD
– name: a Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, FL
Author_xml – sequence: 1
  givenname: Rodney
  surname: LaLonde
  fullname: LaLonde, Rodney
  organization: Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, FL
– sequence: 2
  givenname: Ziyue
  orcidid: 0000-0002-5728-6869
  surname: Xu
  fullname: Xu, Ziyue
  organization: Nvidia, Bethesda, MD USA
– sequence: 3
  givenname: Ismail
  orcidid: 0000-0003-3277-2710
  surname: Irmakci
  fullname: Irmakci, Ismail
  organization: Ege University, Izmir, Turkey
– sequence: 4
  givenname: Sanjay
  surname: Jain
  fullname: Jain, Sanjay
  organization: Johns Hopkins University, Baltimore, MD US State
– sequence: 5
  givenname: Ulas
  surname: Bagci
  fullname: Bagci, Ulas
  email: bagci@crcv.ucf.edu
  organization: Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, FL
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33246227$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LKzEYhYMofv8CQQpu5EJrPieZhYKUe1UQ3Og6ZDJvasp0UpOZgv_e1NFydaGrhOQ5J-fNOUDbbWgBoROCJwST4mI-WUDtzYRi-n6iVLmF9gkryFhxyrY3eyL20EFKc4yx5Bzvoj3GKC8olfvoz9QsU99AGrkQR5UPa09rmpFfmBmMEswW0Ham86E9QjvONAmOP9ZD9PTv7-P0dnz_cHM3vb4fW65kN1ZQE-EwBQfcOYIrS1xhZVFyQ5jgFSPOCccqV5RWEkV5bSQ1ytQl5QJLxQ7R1eC77Kucxub3o2n0MuZI8VUH4_XXm9Y_61lYaVlyLhTOBucfBjG89JA6vfDJQtOYFkKfdJ5dcE6l4Bk9-4bOQx_bPJ6mgigpJS9Ipk7_T7SJ8vmNGWADYGNIKYLbIATrdVl6rt_L0uuy9FBWVpXfVNYPX53H8s0v2stBC7mJlYeok_XQ2gxGsJ2ug_9R_wasMK-H
CitedBy_id crossref_primary_10_1038_s41746_023_00941_5
crossref_primary_10_1049_cvi2_12256
crossref_primary_10_1016_j_bspc_2024_107341
crossref_primary_10_1016_j_engappai_2023_106125
crossref_primary_10_1007_s11831_023_09925_w
crossref_primary_10_1016_j_dsp_2025_105175
crossref_primary_10_1002_slct_202304082
crossref_primary_10_1007_s00138_023_01401_6
crossref_primary_10_3390_biomimetics10090596
crossref_primary_10_1049_ipr2_12406
crossref_primary_10_3390_electronics13061107
crossref_primary_10_1109_TPAMI_2024_3435571
crossref_primary_10_1007_s11517_021_02364_4
crossref_primary_10_1016_j_media_2025_103583
crossref_primary_10_1097_RLI_0000000000001207
crossref_primary_10_1007_s10489_022_03849_x
crossref_primary_10_1002_aisy_202500154
crossref_primary_10_3390_diagnostics13040615
crossref_primary_10_1007_s10489_021_02630_w
crossref_primary_10_1016_j_cmpb_2024_108054
crossref_primary_10_1111_1754_9485_13261
crossref_primary_10_1109_LGRS_2021_3124575
crossref_primary_10_1002_ima_22723
crossref_primary_10_1002_nbm_4606
crossref_primary_10_1117_1_JMI_11_1_014003
crossref_primary_10_1109_LSENS_2024_3384679
crossref_primary_10_1016_j_bspc_2025_108180
crossref_primary_10_1109_TPAMI_2022_3179526
crossref_primary_10_1007_s11042_024_19579_w
crossref_primary_10_1111_coin_12600
crossref_primary_10_1007_s10586_024_04475_7
crossref_primary_10_1016_j_biocel_2023_106452
crossref_primary_10_3390_s23063144
crossref_primary_10_3390_fi14020054
crossref_primary_10_1016_j_bspc_2022_103682
crossref_primary_10_1002_mp_16975
crossref_primary_10_1007_s00500_023_08018_x
crossref_primary_10_1109_JIOT_2022_3209895
crossref_primary_10_3390_s22083055
crossref_primary_10_1007_s00521_024_10144_y
crossref_primary_10_1016_j_compmedimag_2024_102417
crossref_primary_10_1016_j_jvcir_2024_104187
crossref_primary_10_1016_j_yacr_2022_04_010
crossref_primary_10_1016_j_compbiomed_2022_105917
crossref_primary_10_1186_s40001_022_00634_x
crossref_primary_10_1016_j_bspc_2022_104021
crossref_primary_10_3390_make6030068
crossref_primary_10_3390_app11041833
crossref_primary_10_1145_3674500
crossref_primary_10_3390_bioengineering10020181
crossref_primary_10_1002_ima_23080
crossref_primary_10_1016_j_ibmed_2025_100257
Cites_doi 10.1109/TMI.2014.2337057
10.1118/1.3528204
10.7150/thno.38065
10.1146/annurev.bioeng.2.1.315
10.1016/j.compmedimag.2011.07.003
10.1023/B:VISI.0000022288.19776.77
10.1109/TPAMI.2016.2644615
10.1093/gerona/63.12.1416
10.1109/TMI.2010.2046908
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2006.233
10.1109/TMI.2011.2180920
10.1006/gmip.1996.0021
10.1023/A:1020874308076
10.1109/TBME.2018.2866764
ContentType Journal Article
Copyright 2020
Published by Elsevier B.V.
Copyright Elsevier BV Feb 2021
Copyright_xml – notice: 2020
– notice: Published by Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2020.101889
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 101889
ExternalDocumentID PMC7944580
33246227
10_1016_j_media_2020_101889
S136184152030253X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI153349
– fundername: NIAID NIH HHS
  grantid: R01 AI145435
– fundername: NCI NIH HHS
  grantid: R01 CA246704
– fundername: NCI NIH HHS
  grantid: R01 CA240639
– fundername: NIBIB NIH HHS
  grantid: R01 EB020539
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c487t-8ed15f02efe4ff10bc1f6c7694a1354b31ff5f3bf69c71824da72a8ad92450783
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613293400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Tue Sep 30 16:45:41 EDT 2025
Sat Sep 27 17:18:19 EDT 2025
Tue Oct 07 07:18:06 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Sat Nov 29 07:01:33 EST 2025
Tue Nov 18 22:37:54 EST 2025
Fri Feb 23 02:48:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lung segmentation
Pre-clinical imaging
Capsule network
Thigh MRI segmentation
Language English
License Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-8ed15f02efe4ff10bc1f6c7694a1354b31ff5f3bf69c71824da72a8ad92450783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors’ Contributions
ORCID 0000-0002-5728-6869
0000-0003-3277-2710
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7944580
PMID 33246227
PQID 2518777461
PQPubID 2045428
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7944580
proquest_miscellaneous_2465442754
proquest_journals_2518777461
pubmed_primary_33246227
crossref_primary_10_1016_j_media_2020_101889
crossref_citationtrail_10_1016_j_media_2020_101889
elsevier_sciencedirect_doi_10_1016_j_media_2020_101889
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Afshar, Mohammadi, Plataniotis (bib0002) 2018
Duarte, Rawat, Shah (bib0024) 2018
Mortazi, Karim, Rhode, Burt, Bagci (bib0048) 2017
He, Gkioxari, Dollár, Girshick (bib0030) 2017
Mobiny, Van Nguyen (bib0046) 2018
Mortazi, Burt, Bagci (bib0047) 2017; 1050
LaLonde, Kandel, Spampinato, Wallace, Bagci (bib0016) 2020
Srivastava, Valkov, Russell, Gutmann, Sutton (bib0056) 2017
Chen, Zhu, Papandreou, Schroff, Adam (bib0008) 2018
LaLonde, R., Bagci, U., 2018. Capsules for object segmentation. arXiv preprint
LaLonde, Zhang, Shah (bib0041) 2018
Peng, Zhang, Yu, Luo, Sun (bib0049) 2017
Jégou, Drozdzal, Vazquez, Romero, Bengio (bib0037) 2017
Long, Shelhamer, Darrell (bib0043) 2015
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0007) 2018; 40
Lowe (bib0044) 1999; vol. 2
Alcorn (bib0003) 2019
Huang, Liu, Weinberger, van der Maaten (bib0036) 2017
Irmakci, Hussein, Savran, Kalyani, Reiter, Chia, Fishbein, Spencer, Ferrucci, Bagci (bib0014) 2018; 66
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0010) 2016
Ferrucci, L., 2008. The baltimore longitudinal study of aging (BLSA): a 50-year-long journey and plans for the future.
Zhao, Shi, Qi, Wang, Jia (bib0061) 2017
Horowitz, Pavlidis (bib0033) 1974
Mansoor (bib0045) 2014; 33
Kingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint
Hsiao, Grauman (bib0034) 2018
.
Qin, Y., Frosst, N., Sabour, S., Raffel, C., Cottrell, G., Hinton, G., 2019. Detecting and diagnosing adversarial images with class-conditional capsule reconstructions. arXiv preprint
Ren, He, Girshick, Sun (bib0052) 2015
He, Zhang, Ren, Sun (bib0031) 2016
Hu, Shen, Sun (bib0035) 2018
Xu, Xue, Zhang (bib0021) 2019; 9
Paik, I., Kwak, T., Kim, I., 2019. Capsule networks need an improved routing algorithm. arXiv preprint
Grady (bib0028) 2006; 28
Vese, Chan (bib0058) 2002; 50
Felzenszwalb, Huttenlocher (bib0026) 2004; 59
Badrinarayanan, Kendall, Cipolla (bib0005) 2017; 39
Frosst, N., Sabour, S., Hinton, G., 2018. DARCCC: Detecting adversaries by reconstruction from class conditional capsules. arXiv preprint
Xie, Tu (bib0059) 2015
Armato (bib0004) 2011; 38
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0020) 2010; 29
Kosiorek, A. R., Sabour, S., Teh, Y. W., Hinton, G. E., 2019. Stacked capsule autoencoders. arXiv preprint
Udupa, Samarasekera (bib0057) 1996; 58
Yang, Yu, Zhang, Li, Yang (bib0060) 2018
Abadi, M., et al., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from
Harrison, Xu, George, Lu, Summers, Mollura (bib0029) 2017
Dalal, Triggs (bib0022) 2005; Vol. 1
Lin, Milan, Shen, Reid (bib0042) 2017
Milletari, Navab, Ahmadi (bib0018) 2016
Farag, Ahmed, El-Baz, Hassan (bib0012) 2005
Rosenfeld, Kak (bib0054) 1982
Pham, Xu, Prince (bib0050) 2000; 2
Chollet, F., et al., 2015. Keras.
El-Baz, Farag, Gimel’farb, Falk, El-Ghar, Eldiasty (bib0025) 2006; vol. 3
Depeursinge, Vargas, Platon, Geissbuhler, Poletti, Müller (bib0023) 2012; 36
Karwoski, Bartholmai, Zavaletta, Holmes, Robb (bib0038) 2008; vol. 6916
Hinton, Sabour, Frosst (bib0032) 2018
Zhao, Birdal, Deng, Tombari (bib0062) 2019
Bagci, Chen, Udupa (bib0006) 2012; 31
LaLonde, Torigian, Bagci (bib0017) 2020
Sabour, Frosst, Hinton (bib0055) 2017
Elnakib, Gimel’farb, Suri, El-Baz (bib0011) 2011
Ronneberger, Fischer, Brox (bib0053) 2015
Elnakib (10.1016/j.media.2020.101889_bib0011) 2011
Lowe (10.1016/j.media.2020.101889_bib0044) 1999; vol. 2
He (10.1016/j.media.2020.101889_bib0030) 2017
Rosenfeld (10.1016/j.media.2020.101889_bib0054) 1982
10.1016/j.media.2020.101889_bib0039
Irmakci (10.1016/j.media.2020.101889_bib0014) 2018; 66
Karwoski (10.1016/j.media.2020.101889_bib0038) 2008; vol. 6916
Jégou (10.1016/j.media.2020.101889_bib0037) 2017
Peng (10.1016/j.media.2020.101889_bib0049) 2017
LaLonde (10.1016/j.media.2020.101889_bib0017) 2020
Hsiao (10.1016/j.media.2020.101889_bib0034) 2018
Farag (10.1016/j.media.2020.101889_bib0012) 2005
Udupa (10.1016/j.media.2020.101889_bib0057) 1996; 58
Depeursinge (10.1016/j.media.2020.101889_sbref0023) 2012; 36
Chen (10.1016/j.media.2020.101889_bib0008) 2018
Dalal (10.1016/j.media.2020.101889_bib0022) 2005; Vol. 1
Long (10.1016/j.media.2020.101889_bib0043) 2015
Xie (10.1016/j.media.2020.101889_bib0059) 2015
10.1016/j.media.2020.101889_bib0027
Çiçek (10.1016/j.media.2020.101889_bib0010) 2016
Zhao (10.1016/j.media.2020.101889_bib0061) 2017
Duarte (10.1016/j.media.2020.101889_bib0024) 2018
Mortazi (10.1016/j.media.2020.101889_bib0048) 2017
Grady (10.1016/j.media.2020.101889_bib0028) 2006; 28
Horowitz (10.1016/j.media.2020.101889_bib0033) 1974
Hu (10.1016/j.media.2020.101889_bib0035) 2018
Armato (10.1016/j.media.2020.101889_bib0004) 2011; 38
LaLonde (10.1016/j.media.2020.101889_bib0016) 2020
Vese (10.1016/j.media.2020.101889_bib0058) 2002; 50
Harrison (10.1016/j.media.2020.101889_bib0029) 2017
Afshar (10.1016/j.media.2020.101889_bib0002) 2018
Bagci (10.1016/j.media.2020.101889_bib0006) 2012; 31
Yang (10.1016/j.media.2020.101889_bib0060) 2018
Chen (10.1016/j.media.2020.101889_bib0007) 2018; 40
El-Baz (10.1016/j.media.2020.101889_bib0025) 2006; vol. 3
Ronneberger (10.1016/j.media.2020.101889_bib0053) 2015
10.1016/j.media.2020.101889_bib0019
Ren (10.1016/j.media.2020.101889_bib0052) 2015
Tustison (10.1016/j.media.2020.101889_bib0020) 2010; 29
10.1016/j.media.2020.101889_bib0051
LaLonde (10.1016/j.media.2020.101889_bib0041) 2018
Mortazi (10.1016/j.media.2020.101889_bib0047) 2017; 1050
Xu (10.1016/j.media.2020.101889_bib0021) 2019; 9
10.1016/j.media.2020.101889_bib0015
Sabour (10.1016/j.media.2020.101889_bib0055) 2017
Badrinarayanan (10.1016/j.media.2020.101889_bib0005) 2017; 39
10.1016/j.media.2020.101889_bib0013
He (10.1016/j.media.2020.101889_bib0031) 2016
Huang (10.1016/j.media.2020.101889_bib0036) 2017
10.1016/j.media.2020.101889_bib0009
Alcorn (10.1016/j.media.2020.101889_bib0003) 2019
Srivastava (10.1016/j.media.2020.101889_bib0056) 2017
Pham (10.1016/j.media.2020.101889_bib0050) 2000; 2
Mobiny (10.1016/j.media.2020.101889_bib0046) 2018
10.1016/j.media.2020.101889_bib0040
Mansoor (10.1016/j.media.2020.101889_bib0045) 2014; 33
Hinton (10.1016/j.media.2020.101889_bib0032) 2018
10.1016/j.media.2020.101889_bib0001
Lin (10.1016/j.media.2020.101889_bib0042) 2017
Milletari (10.1016/j.media.2020.101889_bib0018) 2016
Zhao (10.1016/j.media.2020.101889_bib0062) 2019
Felzenszwalb (10.1016/j.media.2020.101889_bib0026) 2004; 59
References_xml – start-page: 741
  year: 2018
  end-page: 749
  ident: bib0046
  article-title: Fast capsnet for lung cancer screening
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1175
  year: 2017
  end-page: 1183
  ident: bib0037
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on
– reference: Chollet, F., et al., 2015. Keras.
– start-page: 1086
  year: 2020
  end-page: 1090
  ident: bib0016
  article-title: Diagnosing colorectal polyps in the wild with capsule networks
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– reference: Qin, Y., Frosst, N., Sabour, S., Raffel, C., Cottrell, G., Hinton, G., 2019. Detecting and diagnosing adversarial images with class-conditional capsule reconstructions. arXiv preprint:
– start-page: 479
  year: 2005
  end-page: 533
  ident: bib0012
  article-title: Advanced Segmentation Techniques
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0020
  article-title: N4ITK: improved n3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2881
  year: 2017
  end-page: 2890
  ident: bib0061
  article-title: Pyramid scene parsing network
  publication-title: Computer Vision and Pattern Recognition, 2017. CVPR 2017. IEEE Computer Society Conference on
– volume: vol. 3
  start-page: 611
  year: 2006
  end-page: 614
  ident: bib0025
  article-title: A framework for automatic segmentation of lung nodules from low dose chest CT scans
  publication-title: 18th International Conference on Pattern Recognition (ICPR’06)
– reference: Kingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint:
– start-page: 424
  year: 2016
  end-page: 432
  ident: bib0010
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: International Conference on Medical Image computing and Computer-Assisted Intervention
– start-page: 3859
  year: 2017
  end-page: 3869
  ident: bib0055
  article-title: Dynamic routing between capsules
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1009
  year: 2019
  end-page: 1018
  ident: bib0062
  article-title: 3D point capsule networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 66
  start-page: 1069
  year: 2018
  end-page: 1081
  ident: bib0014
  article-title: A novel extension to fuzzy connectivity for body composition analysis: applications in thigh, brain, and whole body tissue segmentation
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 621
  year: 2017
  end-page: 629
  ident: bib0029
  article-title: Progressive and multi-path holistically nested neural networks for pathological lung segmentation from CT images
  publication-title: Medical Image Computing and Computer Assisted Intervention MICCAI 2017
– volume: 1050
  start-page: 3
  year: 2017
  ident: bib0047
  article-title: Multi-planar deep segmentation networks for cardiac substructures from MRI and CT
  publication-title: Stat
– start-page: 4353
  year: 2017
  end-page: 4361
  ident: bib0049
  article-title: Large kernel matters–improve semantic segmentation by global convolutional network
  publication-title: Computer Vision and Pattern Recognition, 2017. CVPR 2017. IEEE Computer Society Conference on
– year: 2018
  ident: bib0032
  article-title: Matrix capsules with EM routing
  publication-title: 6th International Conference on Learning Representations, ICLR
– volume: 58
  start-page: 246
  year: 1996
  end-page: 261
  ident: bib0057
  article-title: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation
  publication-title: Graph. Models Image Process.
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib0035
  article-title: Squeeze-and-excitation networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: vol. 6916
  start-page: 691614
  year: 2008
  ident: bib0038
  article-title: Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium
  publication-title: Medical Imaging 2008: Physiology, Function, and Structure from Medical Images
– year: 2015
  ident: bib0059
  article-title: Holistically-nested edge detection
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib0030
  article-title: Mask R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: Ferrucci, L., 2008. The baltimore longitudinal study of aging (BLSA): a 50-year-long journey and plans for the future.
– start-page: 377
  year: 2017
  end-page: 385
  ident: bib0048
  article-title: CardiacNET: Segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 3308
  year: 2017
  end-page: 3318
  ident: bib0056
  article-title: VEEGAN: Reducing mode collapse in GANs using implicit variational learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 50
  start-page: 271
  year: 2002
  end-page: 293
  ident: bib0058
  article-title: A multiphase level set framework for image segmentation using the Mumford and Shah model
  publication-title: Int. J. Comput. Vis.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0007
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2020
  ident: bib0017
  article-title: Encoding visual attributes in capsules for explainable medical diagnoses
  publication-title: Medical Image Computing and Computer Assisted Intervention MICCAI
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0018
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– year: 2018
  ident: bib0041
  article-title: ClusterNet: Detecting small objects in large scenes by exploiting spatio-temporal information
  publication-title: Computer Vision and Pattern Recognition, 2018. CVPR 2018. IEEE Computer Society Conference on
– volume: 33
  start-page: 2293
  year: 2014
  end-page: 2310
  ident: bib0045
  article-title: A generic approach to pathological lung segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 2
  start-page: 315
  year: 2000
  end-page: 337
  ident: bib0050
  article-title: Current methods in medical image segmentation
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 9
  start-page: 7556
  year: 2019
  ident: bib0021
  article-title: Current status and future trends of clinical diagnoses via image-based deep learning
  publication-title: Theranostics
– volume: vol. 2
  start-page: 1150
  year: 1999
  end-page: 1157
  ident: bib0044
  article-title: Object recognition from local scale-invariant features
  publication-title: Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on
– reference: Paik, I., Kwak, T., Kim, I., 2019. Capsule networks need an improved routing algorithm. arXiv preprint:
– reference: Frosst, N., Sabour, S., Hinton, G., 2018. DARCCC: Detecting adversaries by reconstruction from class conditional capsules. arXiv preprint:
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0031
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 36
  start-page: 227
  year: 2012
  end-page: 238
  ident: bib0023
  article-title: Building a reference multimedia database for interstitial lung diseases
  publication-title: Computerized Medical Imagingand Graphics
– reference: Kosiorek, A. R., Sabour, S., Teh, Y. W., Hinton, G. E., 2019. Stacked capsule autoencoders. arXiv preprint:
– volume: 59
  start-page: 167
  year: 2004
  end-page: 181
  ident: bib0026
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
– volume: 28
  start-page: 1768
  year: 2006
  end-page: 1783
  ident: bib0028
  article-title: Random walks for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 424
  year: 1974
  end-page: 433
  ident: bib0033
  article-title: Picture segmentation by a direct split-and-merge procedure
  publication-title: Proc. of the 2nd Int. Joint Conf. on Pattern Recognition
– reference: Abadi, M., et al., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from
– start-page: 4845
  year: 2019
  end-page: 4854
  ident: bib0003
  article-title: Strike (with) a pose: neural networks are easily fooled by strange poses of familiar objects
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 38
  start-page: 915
  year: 2011
  end-page: 931
  ident: bib0004
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
– year: 1982
  ident: bib0054
  article-title: Digital Picture Processing: Volume 1
– start-page: 7610
  year: 2018
  end-page: 7619
  ident: bib0024
  article-title: VideoCapsuleNet: a simplified network for action detection
  publication-title: Advances in Neural Information Processing Systems
– start-page: 801
  year: 2018
  end-page: 818
  ident: bib0008
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0043
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Computer Vision and Pattern Recognition, 2015. CVPR 2015. IEEE Computer Society Conference on
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0005
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: Vol. 1
  start-page: 886
  year: 2005
  end-page: 893
  ident: bib0022
  article-title: Histograms of oriented gradients for human detection
  publication-title: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
– year: 2017
  ident: bib0042
  article-title: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation
  publication-title: Computer Vision and Pattern Recognition, 2017. CVPR 2017. IEEE Computer Society Conference on
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0052
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– reference: .
– start-page: 3129
  year: 2018
  end-page: 3133
  ident: bib0002
  article-title: Brain tumor type classification via capsule networks
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– year: 2017
  ident: bib0036
  article-title: Densely connected convolutional networks
  publication-title: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0053
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 7161
  year: 2018
  end-page: 7170
  ident: bib0034
  article-title: Creating capsule wardrobes from fashion images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3684
  year: 2018
  end-page: 3692
  ident: bib0060
  article-title: DenseASPP for semantic segmentation in street scenes
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: LaLonde, R., Bagci, U., 2018. Capsules for object segmentation. arXiv preprint:
– volume: 31
  start-page: 777
  year: 2012
  end-page: 789
  ident: bib0006
  article-title: Hierarchical scale-based multiobject recognition of 3-d anatomical structures
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2011
  end-page: 39
  ident: bib0011
  article-title: Medical Image Segmentation: A Brief Survey
– volume: 33
  start-page: 2293
  issue: 12
  year: 2014
  ident: 10.1016/j.media.2020.101889_bib0045
  article-title: A generic approach to pathological lung segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2337057
– start-page: 2881
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0061
  article-title: Pyramid scene parsing network
– start-page: 3129
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0002
  article-title: Brain tumor type classification via capsule networks
– start-page: 7610
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0024
  article-title: VideoCapsuleNet: a simplified network for action detection
– ident: 10.1016/j.media.2020.101889_bib0039
– start-page: 741
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0046
  article-title: Fast capsnet for lung cancer screening
– start-page: 1009
  year: 2019
  ident: 10.1016/j.media.2020.101889_bib0062
  article-title: 3D point capsule networks
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2020.101889_bib0004
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– ident: 10.1016/j.media.2020.101889_bib0051
– start-page: 1086
  year: 2020
  ident: 10.1016/j.media.2020.101889_bib0016
  article-title: Diagnosing colorectal polyps in the wild with capsule networks
– volume: 9
  start-page: 7556
  issue: 25
  year: 2019
  ident: 10.1016/j.media.2020.101889_bib0021
  article-title: Current status and future trends of clinical diagnoses via image-based deep learning
  publication-title: Theranostics
  doi: 10.7150/thno.38065
– start-page: 3308
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0056
  article-title: VEEGAN: Reducing mode collapse in GANs using implicit variational learning
– start-page: 3859
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0055
  article-title: Dynamic routing between capsules
– start-page: 1
  year: 2011
  ident: 10.1016/j.media.2020.101889_bib0011
– start-page: 4845
  year: 2019
  ident: 10.1016/j.media.2020.101889_bib0003
  article-title: Strike (with) a pose: neural networks are easily fooled by strange poses of familiar objects
– volume: 1050
  start-page: 3
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0047
  article-title: Multi-planar deep segmentation networks for cardiac substructures from MRI and CT
  publication-title: Stat
– start-page: 565
  year: 2016
  ident: 10.1016/j.media.2020.101889_bib0018
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
– volume: 2
  start-page: 315
  issue: 1
  year: 2000
  ident: 10.1016/j.media.2020.101889_bib0050
  article-title: Current methods in medical image segmentation
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.2.1.315
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2020.101889_bib0053
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– ident: 10.1016/j.media.2020.101889_bib0015
– ident: 10.1016/j.media.2020.101889_bib0019
– start-page: 7161
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0034
  article-title: Creating capsule wardrobes from fashion images
– volume: vol. 2
  start-page: 1150
  year: 1999
  ident: 10.1016/j.media.2020.101889_bib0044
  article-title: Object recognition from local scale-invariant features
– start-page: 1175
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0037
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
– year: 1982
  ident: 10.1016/j.media.2020.101889_bib0054
– volume: 36
  start-page: 227
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2020.101889_sbref0023
  article-title: Building a reference multimedia database for interstitial lung diseases
  publication-title: Computerized Medical Imagingand Graphics
  doi: 10.1016/j.compmedimag.2011.07.003
– year: 2015
  ident: 10.1016/j.media.2020.101889_bib0059
  article-title: Holistically-nested edge detection
– year: 2017
  ident: 10.1016/j.media.2020.101889_bib0036
  article-title: Densely connected convolutional networks
– year: 2018
  ident: 10.1016/j.media.2020.101889_bib0032
  article-title: Matrix capsules with EM routing
– start-page: 801
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0008
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– start-page: 424
  year: 2016
  ident: 10.1016/j.media.2020.101889_bib0010
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2020.101889_bib0031
  article-title: Deep residual learning for image recognition
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  ident: 10.1016/j.media.2020.101889_bib0026
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– volume: vol. 6916
  start-page: 691614
  year: 2008
  ident: 10.1016/j.media.2020.101889_bib0038
  article-title: Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium
– start-page: 377
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0048
  article-title: CardiacNET: Segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0005
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.media.2020.101889_bib0013
  doi: 10.1093/gerona/63.12.1416
– start-page: 424
  year: 1974
  ident: 10.1016/j.media.2020.101889_bib0033
  article-title: Picture segmentation by a direct split-and-merge procedure
– start-page: 2961
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0030
  article-title: Mask R-CNN
– start-page: 7132
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0035
  article-title: Squeeze-and-excitation networks
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.media.2020.101889_bib0020
  article-title: N4ITK: improved n3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: vol. 3
  start-page: 611
  year: 2006
  ident: 10.1016/j.media.2020.101889_bib0025
  article-title: A framework for automatic segmentation of lung nodules from low dose chest CT scans
– volume: Vol. 1
  start-page: 886
  year: 2005
  ident: 10.1016/j.media.2020.101889_bib0022
  article-title: Histograms of oriented gradients for human detection
– year: 2020
  ident: 10.1016/j.media.2020.101889_bib0017
  article-title: Encoding visual attributes in capsules for explainable medical diagnoses
– year: 2018
  ident: 10.1016/j.media.2020.101889_bib0041
  article-title: ClusterNet: Detecting small objects in large scenes by exploiting spatio-temporal information
– start-page: 4353
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0049
  article-title: Large kernel matters–improve semantic segmentation by global convolutional network
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0007
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 3684
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0060
  article-title: DenseASPP for semantic segmentation in street scenes
– ident: 10.1016/j.media.2020.101889_bib0009
– volume: 28
  start-page: 1768
  issue: 11
  year: 2006
  ident: 10.1016/j.media.2020.101889_bib0028
  article-title: Random walks for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2006.233
– volume: 31
  start-page: 777
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2020.101889_bib0006
  article-title: Hierarchical scale-based multiobject recognition of 3-d anatomical structures
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2180920
– volume: 58
  start-page: 246
  issue: 3
  year: 1996
  ident: 10.1016/j.media.2020.101889_bib0057
  article-title: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation
  publication-title: Graph. Models Image Process.
  doi: 10.1006/gmip.1996.0021
– ident: 10.1016/j.media.2020.101889_bib0001
– start-page: 3431
  year: 2015
  ident: 10.1016/j.media.2020.101889_bib0043
  article-title: Fully convolutional networks for semantic segmentation
– ident: 10.1016/j.media.2020.101889_bib0040
– volume: 50
  start-page: 271
  issue: 3
  year: 2002
  ident: 10.1016/j.media.2020.101889_bib0058
  article-title: A multiphase level set framework for image segmentation using the Mumford and Shah model
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1020874308076
– start-page: 91
  year: 2015
  ident: 10.1016/j.media.2020.101889_bib0052
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
– ident: 10.1016/j.media.2020.101889_bib0027
– year: 2017
  ident: 10.1016/j.media.2020.101889_bib0042
  article-title: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation
– volume: 66
  start-page: 1069
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2020.101889_bib0014
  article-title: A novel extension to fuzzy connectivity for body composition analysis: applications in thigh, brain, and whole body tissue segmentation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2866764
– start-page: 621
  year: 2017
  ident: 10.1016/j.media.2020.101889_bib0029
  article-title: Progressive and multi-path holistically nested neural networks for pathological lung segmentation from CT images
– start-page: 479
  year: 2005
  ident: 10.1016/j.media.2020.101889_bib0012
SSID ssj0007440
Score 2.5648372
Snippet •First ever capsule network for image segmentation.•Reduced memory burden: locally-constrained routing and transformation matrix sharing.•Introduced novel...
Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101889
SubjectTerms Ablation
Capsule network
Capsules
Coders
Computed tomography
Datasets
Encoders-Decoders
Experiments
Humans
Image processing
Image Processing, Computer-Assisted
Image reconstruction
Image segmentation
Lung segmentation
Lungs
Magnetic Resonance Imaging
Medical imaging
Muscles
Neural Networks, Computer
Parameters
Pre-clinical imaging
Regularization
Routing
Thigh MRI segmentation
Thorax
Tomography
Tomography, X-Ray Computed
Title Capsules for biomedical image segmentation
URI https://dx.doi.org/10.1016/j.media.2020.101889
https://www.ncbi.nlm.nih.gov/pubmed/33246227
https://www.proquest.com/docview/2518777461
https://www.proquest.com/docview/2465442754
https://pubmed.ncbi.nlm.nih.gov/PMC7944580
Volume 68
WOSCitedRecordID wos000613293400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhtB4QDBgFMYUJMQDIlM-nMR5nKZOdOoKEh3Km-U4NrSsXllaNP57zh_JUgrTeOAlihznQ77z5c7-3e8Qep1jkpasSnyhwWE4DEufyIT7DFxrMIaY54ZK6fMwG41IUeQfXbXN2pQTyJQiV1f5_L-KGtpA2Dp19h_E3T4UGuAchA5HEDscbyX4IwaB77moLRDTZNcbQUxmGp5Tiy8zl26kuo7p6Uov5qhKWrgO02U_hIViV0q06_DF0uxuTH4uWwUZgKn_xg1IYFDPOhCOE2b5Cj4xNXXQHbfcEIUNQrm1kHEa-gTbJOED8Yc2Z1ZttRxnFzUvmC0VtGay7erB9MBkykDAHpk213uVIHv0gR6fDYd03C_Gb-bffV07TO-xu0IqG2grypIcbNvW4aBfnLR_ZE2CaPPv7Gc27FMG57f23r95KOsRyO9A2o5nMn6IHriQwju0qvAI3RFqB93vEE3uoHunDkLxGL1t9MMD_fCu9cMzkve6-vEEnR33x0fvfVcww-cQdy58IqowkUEkpMBShkHJQ5nyLM0xC-MEl3EoZSLjUqY5B58kwhXLIkZYBUF4ovdzn6JNdaHEM-TxnDOYx1UQSAg4gzLHkRCyyspKYiJz0kNRM0iUOzZ5XdTknDawwSk1I0v1yFI7sj30rr1pbslUbu6eNqNPnT9o_TwKunPzjXuNrKibmTUFR15zX-I07KFX7WUwpnqHjClxsYQ-ml0QgxLhHtq1om0_NIbQI42irIeyFaG3HTRR--oVNflqCNvhn4cTEjy_xXtfoO3rWbeHNheXS_ES3eU_FpP6ch9tZAXZd-r9C2vJsX4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capsules+for+biomedical+image+segmentation&rft.jtitle=Medical+image+analysis&rft.au=LaLonde%2C+Rodney&rft.au=Xu%2C+Ziyue&rft.au=Irmakci%2C+Ismail&rft.au=Jain%2C+Sanjay&rft.date=2021-02-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=68&rft.spage=101889&rft_id=info:doi/10.1016%2Fj.media.2020.101889&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon