Combining metaheuristics with mathematical programming, constraint programming and machine learning

During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research Jg. 240; H. 1; S. 171 - 215
1. Verfasser: Talbi, El-Ghazali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2016
Springer
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0254-5330, 1572-9338
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (1) Combining metaheuristics with complementary metaheuristics. (2) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (3) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (4) Combining metaheuristics with machine learning and data mining techniques.
AbstractList During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (1) Combining metaheuristics with complementary metaheuristics. (2) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (3) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (4) Combining metaheuristics with machine learning and data mining techniques.
Issue Title: SURVEYS IN OPERATIONS RESEARCH IV (INVITED SURVEYS FROM "40R," 2012-2014) During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (1) Combining metaheuristics with complementary metaheuristics. (2) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (3) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (4) Combining metaheuristics with machine learning and data mining techniques.
Audience Academic
Author Talbi, El-Ghazali
Author_xml – sequence: 1
  givenname: El-Ghazali
  surname: Talbi
  fullname: Talbi, El-Ghazali
  email: El-ghazali.Talbi@univ-lille1.fr
  organization: CNRS, INRIA, University of Lille 1
BackLink https://inria.hal.science/hal-01423492$$DView record in HAL
BookMark eNp9klGL1DAQx4Oc4N7pB_Ct4IvC9cwkTZM8Lot6woIv-hzSNG1ztOmZpMp--0up6N6hEpiE4fefJP-ZS3ThZ28Reg34BjDm7yPgissSAysJplV5eoZ2wDgpJaXiAu0wYVXJKMUv0GWMdxhjAMF2yBzmqXHe-b6YbNKDXYKLyZlY_HRpKCadBpuDM3os7sPcBz1NGb4uzOxjCtr5dJ4vtG-zyAzO22K0OqyVX6LnnR6jffVrv0LfPn74ergtj18-fT7sj6WpBE-lENpyqI2sWD4S6DgQaSkRhLNGSN1hwWjV8K4hIGRLpQQjJTGtaS2lHdAr9G6rO-hR3Qc36XBSs3bqdn9Uaw5DRWglyY-Vfbux-fHfFxuTmlw0dhy1t_MSFQioMam5oBl98wS9m5fg808UcCFqyQVhf6hej1Y5383ZHbMWVfuK1bQWgFfq5i9UXq2dXLbUdi7nHwmuzwTNErOxMYfo-iHFXi8xPsZhw02YYwy2--0DYLUOitoGJVvB1Doo6pQ1_InGuJRbPvu1v-N_lWRTxnyL7204c-afogcQotKl
CitedBy_id crossref_primary_10_1109_TWC_2019_2902557
crossref_primary_10_3390_biomimetics9020082
crossref_primary_10_1007_s10479_025_06506_x
crossref_primary_10_1016_j_asoc_2017_10_028
crossref_primary_10_3390_app13020806
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_1016_j_ejor_2025_08_034
crossref_primary_10_1016_j_cie_2020_106929
crossref_primary_10_1016_j_asoc_2023_110672
crossref_primary_10_1080_00207543_2022_2113928
crossref_primary_10_3390_a14110313
crossref_primary_10_1007_s13042_020_01085_8
crossref_primary_10_1007_s10479_024_06209_9
crossref_primary_10_1007_s12469_019_00211_2
crossref_primary_10_3390_math9222887
crossref_primary_10_7717_peerj_cs_828
crossref_primary_10_1016_j_asoc_2020_107077
crossref_primary_10_1109_ACCESS_2021_3126015
crossref_primary_10_1016_j_ejor_2018_05_046
crossref_primary_10_1155_2019_3238574
crossref_primary_10_1109_ACCESS_2024_3378054
crossref_primary_10_3390_a11120208
crossref_primary_10_1016_j_ejor_2022_03_054
crossref_primary_10_1007_s12469_022_00319_y
crossref_primary_10_1016_j_measurement_2024_116598
crossref_primary_10_3390_math10234529
crossref_primary_10_1007_s10479_024_06302_z
crossref_primary_10_1007_s10732_017_9357_6
crossref_primary_10_1080_00207543_2021_2013566
crossref_primary_10_3390_math8060862
crossref_primary_10_3390_e24070957
crossref_primary_10_1039_D1ME00027F
crossref_primary_10_3390_math8040555
crossref_primary_10_1016_j_eswa_2023_121369
crossref_primary_10_1007_s10479_020_03713_6
crossref_primary_10_1016_j_asoc_2024_111913
crossref_primary_10_3390_math10162920
crossref_primary_10_1007_s10479_020_03526_7
crossref_primary_10_1016_j_swevo_2023_101248
crossref_primary_10_3390_math9030225
crossref_primary_10_1016_j_asoc_2021_107640
crossref_primary_10_1109_ACCESS_2021_3060502
crossref_primary_10_1109_ACCESS_2025_3583584
crossref_primary_10_1007_s43069_020_00036_x
crossref_primary_10_3390_app12020896
crossref_primary_10_3390_a13080185
crossref_primary_10_1111_itor_12996
crossref_primary_10_1111_itor_12557
crossref_primary_10_1016_j_ejor_2021_04_032
crossref_primary_10_3389_fevo_2023_1116083
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1016_j_jnca_2020_102657
crossref_primary_10_1016_j_swevo_2024_101739
crossref_primary_10_1007_s00291_020_00591_z
crossref_primary_10_1007_s10479_020_03702_9
crossref_primary_10_1145_3459664
crossref_primary_10_3390_math8040507
crossref_primary_10_3390_s22114204
crossref_primary_10_1080_00207543_2024_2361436
crossref_primary_10_1016_j_swevo_2024_101617
crossref_primary_10_3390_math9202611
crossref_primary_10_1007_s10479_018_3122_6
crossref_primary_10_1016_j_asoc_2021_107774
crossref_primary_10_1007_s11831_022_09859_9
crossref_primary_10_1016_j_knosys_2023_110880
crossref_primary_10_3390_electronics9091541
crossref_primary_10_3390_app15179784
crossref_primary_10_1016_j_knosys_2024_111614
crossref_primary_10_1109_LWC_2022_3213883
crossref_primary_10_1016_j_engstruct_2022_114607
crossref_primary_10_1080_23302674_2025_2536110
crossref_primary_10_1109_TSM_2020_2999068
crossref_primary_10_1016_j_cie_2022_108505
crossref_primary_10_1111_itor_12984
crossref_primary_10_1016_j_cor_2024_106768
crossref_primary_10_1016_j_cor_2017_12_012
crossref_primary_10_3390_app14199142
crossref_primary_10_1007_s00500_023_08886_3
crossref_primary_10_3390_math9161976
crossref_primary_10_1016_j_cor_2025_107199
crossref_primary_10_1371_journal_pone_0273383
crossref_primary_10_1016_j_asoc_2021_107269
crossref_primary_10_1016_j_knosys_2024_112034
crossref_primary_10_1080_00207543_2022_2045377
Cites_doi 10.1016/0167-8191(94)00071-H
10.1007/s10107-003-0395-5
10.1109/43.55180
10.1109/CEC.2003.1299934
10.1023/A:1009642825198
10.1007/0-306-48056-5_17
10.1109/ICEC.1995.487447
10.1023/A:1009694016861
10.1016/0305-0548(91)90001-8
10.1613/jair.1
10.1023/A:1007677805582
10.1002/net.3230230804
10.1162/evco.1998.6.2.161
10.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S
10.1016/S0377-2217(97)00290-7
10.1007/s10288-013-0242-3
10.1287/ijoc.15.3.233.16078
10.1287/moor.2.3.209
10.1023/A:1009629727566
10.1007/BF01386316
10.1007/BF01096763
10.1090/dimacs/016/08
10.1007/BF02684444
10.1016/S0377-2217(97)00281-6
10.1016/S0305-0548(98)00064-1
10.1007/s10852-005-9029-7
10.1016/0167-6377(92)90028-2
10.1287/opre.45.2.226
10.1007/978-3-540-24854-5_71
10.1007/BF02125407
10.1007/3-540-46135-3_11
10.1016/j.ejor.2002.12.002
10.1023/A:1009646528813
10.1007/3-540-45356-3_86
10.1109/CEC.1999.782644
10.1016/S0167-8191(03)00014-0
10.1007/BF01719254
10.1016/j.ejor.2004.04.030
10.1007/3-540-45411-X_39
10.1090/S0002-9904-1958-10224-4
10.1016/S0377-2217(00)00268-X
10.1023/A:1021841728075
10.1287/opre.9.6.849
10.1007/BF02430365
10.1023/A:1009687210594
10.1007/s10852-005-9030-1
10.1016/0167-6377(94)90065-5
10.1023/A:1011336210885
10.1287/moor.4.3.233
10.1023/A:1016540724870
10.1109/ICEC.1995.487464
10.1287/ijoc.11.4.358
10.1287/ijoc.3.2.149
10.1109/ICEC.1994.349949
10.1002/9780470496916
10.1109/72.265961
10.1287/opre.46.3.316
10.1142/9789812812438_0003
10.1007/3-540-58484-6_286
10.1287/opre.42.5.860
10.1126/science.254.5035.1181
10.1287/inte.15.2.10
10.1016/j.ejor.2003.08.053
10.1023/A:1009661600931
10.1007/3-540-36605-9_20
10.1023/A:1009669824615
10.1007/BF02125405
10.1016/S0377-2217(96)00100-2
10.1007/11499305_5
10.1090/dimacs/020/02
10.2172/10161119
10.1016/0167-2789(90)90065-W
10.1007/3-540-46135-3_12
10.1038/323533a0
10.1080/01969720500306147
10.9746/sicetr1965.30.329
10.1109/2.144393
10.1057/jors.1990.166
10.1057/palgrave.jors.2600970
10.1016/0377-2217(95)00012-F
10.1109/ICEC.1996.542657
10.1007/978-1-4471-1589-2_10
10.1017/CBO9780511615320
10.1057/palgrave.jors.2601525
10.1007/3-540-49481-2_30
10.1007/s00500-003-0328-5
10.1016/j.ejor.2007.07.035
10.1023/A:1021140902684
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
COPYRIGHT 2016 Springer
Springer Science+Business Media New York 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: COPYRIGHT 2016 Springer
– notice: Springer Science+Business Media New York 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
N95
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
DOI 10.1007/s10479-015-2034-y
DatabaseName CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global (OCUL)
Computing Database
Science Database
Engineering Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Materials Research Database

Materials Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 215
ExternalDocumentID oai:HAL:hal-01423492v1
4055434811
A456368105
10_1007_s10479_015_2034_y
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
ID FETCH-LOGICAL-c487t-88ae716c94588a21f7129e328275b89af08534b7fb2189d3991c992cdcde33f13
IEDL.DBID 7WY
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376301200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Sat Nov 29 14:57:25 EST 2025
Sun Nov 09 09:41:35 EST 2025
Wed Nov 05 12:55:29 EST 2025
Sat Nov 29 13:34:35 EST 2025
Sun Nov 23 08:49:17 EST 2025
Sat Nov 29 09:15:29 EST 2025
Sat Nov 29 02:36:32 EST 2025
Tue Nov 18 22:53:26 EST 2025
Fri Feb 21 02:36:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hybrid metaheuristics
Data mining
Constraint programming
Machine learning
Matheuristics
Mathematical programming
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-88ae716c94588a21f7129e328275b89af08534b7fb2189d3991c992cdcde33f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4549-1010
PQID 1788697825
PQPubID 25585
PageCount 45
ParticipantIDs hal_primary_oai_HAL_hal_01423492v1
proquest_miscellaneous_1816026783
proquest_journals_1788697825
gale_infotracmisc_A456368105
gale_infotracacademiconefile_A456368105
gale_businessinsightsgauss_A456368105
crossref_primary_10_1007_s10479_015_2034_y
crossref_citationtrail_10_1007_s10479_015_2034_y
springer_journals_10_1007_s10479_015_2034_y
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2016
Publisher Springer US
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References Sellmann, M., & Ansótegui, C. (2006). Disco—novo—gogo: Integrating local search and complete search with restarts. In The twenty-first national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference, Boston, USA.
CestaACortellessaGOddiAPolicellaNSusiAA constraint-based architecture for flexible support to activity schedulingLecture Notes in Computer Science2001217536939010.1007/3-540-45411-X_39
HusbandsPMillFWarringtonSSchewefelH-PMannerRGenetic algorithms, production plan optimisation and schedulingParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer8084
BeldingTEshelmannDThe distributed genetic algorithm revistedSixth international conference on genetic algorithms1995San Mateo, CAMorgan Kaufmann
HongT-PWangH-SChenW-CSimultaneous applying multiple mutation operators in genetic algorithmJournal of Heuristics20006443945510.1023/A:1009642825198
TalbiE-GMetaheuristics: From design to implementation2009New YorkWiley10.1002/9780470496916
NwanaVDarby-DowmanKMitraGA cooperative parallel heuristic for mixed zero-one linear programmingEuropean Journal of Operational Research2005164122310.1016/j.ejor.2002.12.002
BertsekasDPNetwork optimization: Continuous and discrete models1998MAAthena Scientific
NissenVSolving the quadratic assignment problem with clues from natureIEEE Transactions on Neural Networks199451667210.1109/72.265961
TusonARossPAdapting operator settings in genetic algorithmsEvolutionary Computation19986216118410.1162/evco.1998.6.2.161
KarpRMProbabilistic analysis of partitioning algorithms for the traveling salesman problem in the planeMathematics of Operations Research1977220922410.1287/moor.2.3.209
FeoTAResendeMGCSmithSHA greedy randomized adaptive search procedure for maximum independent setOperations Research19944286087810.1287/opre.42.5.860
Talbi, E. G., Muntean, T., & Samarandache, I. (1994). Hybridation des algorithmes génétiques avec la recherche tabou. In Evolution Artificielle EA94. Toulouse, France.
FeoTAResendeMGCGreedy randomized adaptive search proceduresJournal of Global Optimization1995610913310.1007/BF01096763
JinYA comprehensive survey of fitness approximation in evolutionary computationSoft Computing20059131210.1007/s00500-003-0328-5
ClearwaterSHHubermanBAHoggTCooperative solution of constraint satisfaction problemsScience19912541181118310.1126/science.254.5035.1181
NagarAHeraguSSHaddockJA metaheuristic algorithm for a bi-criteria scheduling problemAnnals of Operations Research19956339741410.1007/BF02125405
NemhauserGWolseyLInteger and combinatorial optimization1999LondonWiley
GoldenBPepperJVossenTUsing genetic algorithms for setting parameter values in heuristic searchIntelligent Engineering Systems Through Artificial Neural Networks19981932
Sebag, M., Schoenauer, M., & Ravise, C. (1997). Toward civilized evolution: Developing inhibitions. In T. Bäck (Eds.), Seventh international conference on genetic algorithms (pp. 291–298).
HansenPMladenovicMPerez-BritosDVariable neighborhood decomposition searchJournal of Heuristics20017433035010.1023/A:1011336210885
TaillardEDGambardellaLMGendreauMPotvinJ-YAdaptive memory programming: A unified view of metaheuristicsEuropean Journal of Operational Research2001135111610.1016/S0377-2217(00)00268-X
TalukdarSBaerentzenLGoveADe SouzaPAsynchronous teams: Cooperation schemes for autonomous agentsJournal of Heuristics19984429532110.1023/A:1009669824615
Caseau, Y., & Laburthe, F. (1995). Disjunctive scheduling with task intervals. Technical Report LIENS-95-25, Ecole Normale Supérieure de Paris, France.
Tanese, R. (1987). Parallel genetic algorithms for a hypercube. In Proceedings of the second international conference on genetic algorithms (pp. 177–183). Cambridge, MA: MIT.
CookWSeymourPTour merging via branch-decompositionINFORMS Journal on Computing200315323324810.1287/ijoc.15.3.233.16078
TalbiE-GBacheletVCOSEARCH: A parallel cooperative metaheuristicJournal of Mathematical Modelling and Algorithms (JMMA)20065252210.1007/s10852-005-9029-7
Kim, H.-S., & Cho, S.-B. (2001). An efficient genetic algorithm with less fitness evaluation by clustering. In Congress on evolutionary computation CEC’01 (pp. 887–894). IEEE Press.
Jog, P., Suh, J. Y., & Van Gucht, D. (1989). The effects of population size, heuristic crossover and local improvement on a genetic algorithm for the traveling salesman problem. In 3rd international conference genetic algorithms, Morgan Kaufmann, USA.
TaillardEParallel iterative search methods for vehicle routing problemNetworks19932366167310.1002/net.3230230804
Sprave, J. (1999). A unified model of non-panmictic population structures in evolutionary algorithms. In Proceedings of the 1999 congress on evolutionary computation, volume 2 (pp. 1384–1391). Piscataway, NJ: IEEE Press.
De Falco, I., Del Balio, R., Tarantino, E., & Vaccaro, R. (1994). Improving search by incorporating evolution principles in parallel tabu search. In IEEE conference on evolutionary computation (pp. 823–828).
MinskyMNegative expertiseInternational Journal of Expert Systems1994711319
PattersonRRollandEPirkulHA memory adaptive reasoning technique for solving the capacitated minimum spanning tree problemJournal of Heuristics1999515918010.1023/A:1009629727566
DowslandKAHerbertEAKendallGUsing tree search bounds to enhance a genetic algorithm approach to two rectangle packing problemsEuropean Journal of Operational Research2006168239040210.1016/j.ejor.2004.04.030
FocacciFLaburtheFLodiAHandbook of metaheuristics, chapter Local search and constraint programming. International series in operations research and management science2002Norwell, MAKluwer
Jin, Y., & Sendhoff, B. (2004). Reducing fitness evaluations using clustering techniques and neural network ensembles. In Genetic and evolutionary computation GECCO’2004, LNCS no. 3102 (pp. 688–699). Springer.
CohoonJPMartinWNRichardsDSSchwefelH-PMannerRGenetic algorithms and punctuated equilibriaParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer134141
Abbattista, F., Abbattista, N., & Caponetti, L. (1995). An evolutionary and cooperative agent model for optimization. In IEEE international conference on evolutionary computation ICEC’95, pp. 668–671, Perth, Australia.
Eby, D., Averill, R., Punch, W., & Goodman, E. (1998). Evaluation of injection island model GA performance on flywheel design optimization. In International conference on adaptive computing in design and manufacturing (pp. 121–136). Devon: Springer.
HubermanBAThe performance of cooperative processesPhysica D199042384710.1016/0167-2789(90)90065-W
Harvey, W. D., & Ginsberg, M. L. (1997). Limited discrepancy search. In IJCAI internation joint conference on artificial intelligence (pp. 607–613). Morgan Kaufmann.
Koza, J., & Andre, D. (1995). Parallel genetic programming on a network of transputers. Technical Report CS-TR-95-1542, Stanford University.
FisherMLAn application oriented guide to lagrangian relaxationInterfaces19851539940410.1287/inte.15.2.10
Narayek, A., Smith, S., & Ohler, C. (2003). Integrating local search advice into a refinment search solver (or not). In CP’03 Workshop on cooperative constraint problem solvers (pp. 29–43).
CrainicTGToulouseMGendreauMSynchronous tabu search parallelization strategies for multi-commodity location–allocation with balancing requirementsOR Spektrum19951711312310.1007/BF01719254
TalbiE-GCombining metaheuristics with mathematical programming, constraint programming and machine learning4OR201311210115010.1007/s10288-013-0242-3
Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Effective local and guided variable neighborhood search methods for the asymmetric traveling salesman problem. In EvoWorkshop (pp. 203–312). LNCS 2037. Springer.
JourdanLBasseurMTalbiE-GHybridizing exact methods and metaheuristics: A taxonomyEuropean Journal of Operational Research2009199362062910.1016/j.ejor.2007.07.035
RumelhartDEHintonGEWilliamsRJLearning representations by backpropagating errorsNature198632353353610.1038/323533a0
PrestwichSCombining the scalability of local search with the pruning techniques of systematic searchAnnals of Operations Research2002115517210.1023/A:1021140902684
Suh, J. Y., & Van Gucht, D. (1987). Incorporating heuristic information into genetic search. In 2rd international conference genetic algorithms (pp. 100–107). USA: Lawrence Erlbaum Associates.
CaseauYLaburtheFHeuristics for large constrained routing problemsJournal of Heuristics1999528130310.1023/A:1009661600931
Wang, L.-H., Kao, C.-Y., Ouh-young, M., & Chen, W.-C. (1995). Molecular binding: A case study of the population-based annealing genetic algorithms. In IEEE international conference on evolutionary computation ICEC’95 (pp. 50–55). Perth, Australia.
CohoonJHedgeSMartinWRichardsDGrefenstetteJJPunctuated equilibria: A parallel genetic algorithmSecond international conference on genetic algorithms1987Cambridge, MAMIT148154
DowslandKANurse scheduling with tabu search and strategic oscillationEuropean Journal of Operational Research199810639340710.1016/S0377-2217(97)00281-6
GinsbergMLDynamic backtrackingJournal of Artificial Intelligence Research199312546
Cung, V.-D., Mautor, T., Michelon, P., & Tavares, A. (1997). A scatter search based approach for the quadratic assignment problem. In IEEE international conference on evolutionary computation ICEC’97, Indianapolis, USA, April 1997.
DowslandKAThomsonJMSolving a nurse scheduling problem with knapsacks, networks and tabu searchJournal of Operational Research Society20005182583310.1057/palgrave.jors.2600970
VerhoevenMGAAartsEHLParallel local searchJournal of Heuristics199511436510.1007/BF02430365
ClearwaterSHHoggTHubermanBAHubermanBACooperative problem solvingComputation: The micro and the macro view1992SingaporeWorld Scientific337010.1142/9789812812438_0003
HindiKSFleszarKCharalambousCAn effective heuristic for the CLSP with setup timesJournal of the Operations Research Society20035449049810.1057/palgrave.jors.2601525
Chabrier, A., Danna, E., & Le Pape, C. (2002). Coo
R Chelouah (2034_CR26) 2004; 161
Y Jin (2034_CR77) 2005; 9
F Focacci (2034_CR59) 2002
E-G Talbi (2034_CR135) 2009
DA Abramson (2034_CR3) 1992; 25
TG Crainic (2034_CR37) 1995; 17
V Maniezzo (2034_CR95) 1999; 11
2034_CR69
OC Martin (2034_CR97) 1992; 11
A Cesta (2034_CR24) 2001; 2175
2034_CR67
RS Michalski (2034_CR99) 2000; 38
W Cook (2034_CR35) 2003; 15
L Jourdan (2034_CR80) 2009; 199
2034_CR72
GM Gutin (2034_CR66) 1999; 26
2034_CR151
DP Bertsekas (2034_CR16) 1998
2034_CR70
2034_CR150
2034_CR76
J Thiel (2034_CR142) 1994; 32
M Ribeiro (2034_CR116) 2006; 5
M Fischetti (2034_CR55) 2003; 98
JF Benders (2034_CR15) 1962; 4
2034_CR78
2034_CR79
2034_CR146
C Fonlupt (2034_CR60) 1999
RG Reynolds (2034_CR115) 2005; 36
TA Feo (2034_CR51) 1995; 6
2034_CR83
2034_CR81
PC Gilmore (2034_CR61) 1961; 9
2034_CR88
G Nemhauser (2034_CR103) 1999
2034_CR85
2034_CR86
E Taillard (2034_CR130) 2002
NLJ Ulder (2034_CR145) 1990
RM Karp (2034_CR84) 1977; 2
H Tamura (2034_CR140) 1994; 130
RE Gomory (2034_CR64) 1958; 64
J Cohoon (2034_CR32) 1987
M Minsky (2034_CR100) 1994; 7
JP Cohoon (2034_CR33) 1990
T Belding (2034_CR12) 1995
DE Rumelhart (2034_CR118) 1986; 323
TG Crainic (2034_CR38) 2003
2034_CR89
E Taillard (2034_CR129) 2003; 9
TA Feo (2034_CR53) 1991; 18
2034_CR92
2034_CR10
2034_CR98
2034_CR96
A Nagar (2034_CR101) 1995; 63
ED Taillard (2034_CR132) 2001; 135
I Falco De (2034_CR42) 1997; 59
T-P Hong (2034_CR73) 2000; 6
JE Beasley (2034_CR11) 1990; 41
P Husbands (2034_CR75) 1990
2034_CR90
R Bellman (2034_CR14) 1957
2034_CR91
E Balas (2034_CR9) 1998; 4
K Apt (2034_CR7) 2003
RS Engelmore (2034_CR49) 1988
A Tuson (2034_CR144) 1998; 6
KA Dowsland (2034_CR45) 1998; 106
KD Boese (2034_CR18) 1994; 16
2034_CR17
P Hansen (2034_CR68) 2001; 7
ML Fisher (2034_CR56) 1985; 15
2034_CR22
M Juenger (2034_CR82) 1995; 20
2034_CR20
C Fleurent (2034_CR57) 1994; 16
E-G Talbi (2034_CR134) 2013; 11
K Shahookar (2034_CR123) 1990; 9
V Chvatal (2034_CR29) 1979; 4
B Golden (2034_CR63) 1998; 1
BA Huberman (2034_CR74) 1990; 42
2034_CR119
CC Aggarwal (2034_CR4) 1997; 45
2034_CR25
2034_CR114
2034_CR113
2034_CR112
2034_CR110
2034_CR28
H Braun (2034_CR19) 1990
H Chen (2034_CR27) 1994
KE Rosing (2034_CR117) 1997; 97
2034_CR1
2034_CR2
SW Mahfoud (2034_CR94) 1995; 21
2034_CR107
ML Ginsberg (2034_CR62) 1993; 1
2034_CR36
S Prestwich (2034_CR111) 2002; 115
M Toulouse (2034_CR143) 1996
K Kostikas (2034_CR87) 2004
2034_CR102
SH Clearwater (2034_CR30) 1992
KA Dowsland (2034_CR46) 2006; 168
TA Feo (2034_CR52) 1994; 42
JP Cohoon (2034_CR34) 1991
2034_CR39
2034_CR141
2034_CR40
V Nwana (2034_CR106) 2005; 164
R Patterson (2034_CR108) 1999; 5
2034_CR43
2034_CR44
E Taillard (2034_CR128) 1993; 23
2034_CR41
E-G Talbi (2034_CR136) 2006; 5
E-G Talbi (2034_CR133) 2002; 8
W Nuijten (2034_CR105) 1998; 3
KA Dowsland (2034_CR47) 2000; 51
A Federgruen (2034_CR50) 1999; 46
G Pesant (2034_CR109) 1999; 5
EK Burke (2034_CR21) 2003
S Voss (2034_CR149) 1993
Y Caseau (2034_CR23) 1999; 5
2034_CR138
2034_CR48
2034_CR137
C Fleurent (2034_CR58) 1996; 63
H-M Voigt (2034_CR148) 1990
V Nissen (2034_CR104) 1994; 5
JJ Grefenstette (2034_CR65) 1987
2034_CR131
P Augerat (2034_CR8) 1998; 106
SH Clearwater (2034_CR31) 1991; 254
HR Lourenco (2034_CR93) 1995; 83
2034_CR54
KS Hindi (2034_CR71) 2003; 54
MGA Verhoeven (2034_CR147) 1995; 1
RM Aiex (2034_CR5) 2003; 29
D Applegate (2034_CR6) 1991; 3
RK Belew (2034_CR13) 1991
2034_CR127
2034_CR126
2034_CR125
S Talukdar (2034_CR139) 1998; 4
2034_CR124
2034_CR122
2034_CR121
2034_CR120
References_xml – reference: Jahuira, C. A. R., & Cuadros-Vargas, E. (2003). Solving the TSP by mixing GAs with minimal spanning trees. In First international conference of the peruvian computer society (pp. 123–132), Lima, Peru.
– reference: Sefraoui, M., & Periaux, J. (2000). A hierarchical genetic algorithm using multiple models for optimization. In Parallel problem solving from nature PPSN’2000, LNCS no. 1917 (pp. 879–888). Springer.
– reference: BalasENiehausWOptimized crossover-based genetic algorithms for the maximum cardinality and maximum weight clique problemsJournal of Heuristics19984210712210.1023/A:1009646528813
– reference: Narayek, A., Smith, S., & Ohler, C. (2003). Integrating local search advice into a refinment search solver (or not). In CP’03 Workshop on cooperative constraint problem solvers (pp. 29–43).
– reference: TaillardEVossSEssays and surveys in metaheuristics, chapter POPMUSIC: Partial optimization metaheuristic under special intensification conditions2002DordrechtKluwer
– reference: TalbiE-GCombining metaheuristics with mathematical programming, constraint programming and machine learning4OR201311210115010.1007/s10288-013-0242-3
– reference: ChvatalVA greedy heuristic for the set covering problemMathematics of Operations Research19794323323510.1287/moor.4.3.233
– reference: Yagiura, M., & Ibaraki, T. (1996). Metaheuristics as robust and simple optimization tools. In IEEE International conference on evolutionary computation, ICEC’96 (pp. 541–546).
– reference: CohoonJHedgeSMartinWRichardsDGrefenstetteJJPunctuated equilibria: A parallel genetic algorithmSecond international conference on genetic algorithms1987Cambridge, MAMIT148154
– reference: KarpRMProbabilistic analysis of partitioning algorithms for the traveling salesman problem in the planeMathematics of Operations Research1977220922410.1287/moor.2.3.209
– reference: FocacciFLaburtheFLodiAHandbook of metaheuristics, chapter Local search and constraint programming. International series in operations research and management science2002Norwell, MAKluwer
– reference: CohoonJPMartinWNRichardsDSBelewRKBookerLBA multi-population genetic algorithm for solving the k-partition problem on hypercubesFourth international conference on genetic algorithms1991San Mateo, CAMorgan Kaufmann244248
– reference: ReynoldsRGMichalewiczZPengBCultural algorithms: Computational modeling of how cultures learn to solve problems—an engineering exampleCybernetics and Systems200536875377110.1080/01969720500306147
– reference: CookWSeymourPTour merging via branch-decompositionINFORMS Journal on Computing200315323324810.1287/ijoc.15.3.233.16078
– reference: Habet, D., Li, C. M., Devendeville, L., & Vasquez, M. (2002). A hybrid approach for SAT. In CP’2003 principles and practice of constraint programming, LNCS No. 2470 (pp. 172–184). Ithaca: Springer.
– reference: Levine, D. (1994). A parallel genetic algorithm for the set partitioning problem. Ph.D. thesis, Argonne National Laboratory, Illinois Institute of Technology, Argonne, USA.
– reference: Koza, J., & Andre, D. (1995). Parallel genetic programming on a network of transputers. Technical Report CS-TR-95-1542, Stanford University.
– reference: FonluptCRobillardDPreuxPTalbiE-GMeta-heuristics—advances and trends in local search paradigms for optimization, chapter Fitness landscape and performance of metaheuristics1999DordrechtKluwer
– reference: GinsbergMLDynamic backtrackingJournal of Artificial Intelligence Research199312546
– reference: BeldingTEshelmannDThe distributed genetic algorithm revistedSixth international conference on genetic algorithms1995San Mateo, CAMorgan Kaufmann
– reference: Chabrier, A., Danna, E., & Le Pape, C. (2002). Coopération entre génération de colonnes sans cycle et recherche locale appliquée au routage de véhicules. In Huitièmes Journées Nationales sur la résolution de Problèmes NP-Complets JNPC’2002, Nice, France.
– reference: Puchinger, J., & Raidl, G. R. (2005). Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification. In Artificial intelligence and knowledge engineering applications: A bioinspired approach, LNCS vol. 3562 (pp. 41–53). Berlin: Springer.
– reference: PesantGGendreauMA view of local search in constraint programmingJournal of Heuristics1999525527910.1023/A:1009694016861
– reference: Kim, H., Hayashi, Y., & Nara, K. (1995). The performance of hybridized algorithm of genetic algorithm simulated annealing and tabu search for thermal unit maintenance scheduling. In 2nd IEEE conference on evolutionary computation ICEC’95 (pp. 114–119), Perth, Australia.
– reference: Abbattista, F., Abbattista, N., & Caponetti, L. (1995). An evolutionary and cooperative agent model for optimization. In IEEE international conference on evolutionary computation ICEC’95, pp. 668–671, Perth, Australia.
– reference: MinskyMNegative expertiseInternational Journal of Expert Systems1994711319
– reference: TalbiE-GA taxonomy of hybrid metaheuristicsJournal of Heuristics2002854156410.1023/A:1016540724870
– reference: CrainicTGToulouseMGendreauMSynchronous tabu search parallelization strategies for multi-commodity location–allocation with balancing requirementsOR Spektrum19951711312310.1007/BF01719254
– reference: FleurentCFerlandJAGenetic hybrids for the quadratic assignment problemDIMACS Series in Discrete Mathematics and Theoretical Computer Science199416173188
– reference: NissenVSolving the quadratic assignment problem with clues from natureIEEE Transactions on Neural Networks199451667210.1109/72.265961
– reference: Dalboni, F. L., Ochi, L. S., & Drummond, L. M. D. (2003). On improving evolutionary algorithms by using data mining for the oil collector vehicle routing problem. In International network optimization conference INOC’2003, Paris, France, Oct 2003.
– reference: Jin, Y., & Sendhoff, B. (2004). Reducing fitness evaluations using clustering techniques and neural network ensembles. In Genetic and evolutionary computation GECCO’2004, LNCS no. 3102 (pp. 688–699). Springer.
– reference: Jog, P., Suh, J. Y., & Van Gucht, D. (1989). The effects of population size, heuristic crossover and local improvement on a genetic algorithm for the traveling salesman problem. In 3rd international conference genetic algorithms, Morgan Kaufmann, USA.
– reference: ShahookarKMazumderPA genetic approach to standard cell placement using meta-genetic parameter optimizationIEEE Transaction on Computer-Aided Design19909550051110.1109/43.55180
– reference: ChenHFlannNSDavidorYSchwefelH-PMannerRParallel simulated annealing and genetic algorithms: A space of hybrid methodsThird conference on parallel problem solving from nature1994JerusalemSpringer42843610.1007/3-540-58484-6_286
– reference: FleurentCFerlandJAGenetic and hybrid algorithms for graph coloringAnnals of Operations Research199663343746110.1007/BF02125407
– reference: ClearwaterSHHoggTHubermanBAHubermanBACooperative problem solvingComputation: The micro and the macro view1992SingaporeWorld Scientific337010.1142/9789812812438_0003
– reference: FeoTAResendeMGCGreedy randomized adaptive search proceduresJournal of Global Optimization1995610913310.1007/BF01096763
– reference: LourencoHRJob-shop scheduling: Computational study of local search and large-step optimization methodsEuropean Journal of Operational Research19958334736710.1016/0377-2217(95)00012-F
– reference: BraunHSchwefelH-PMannerROn solving traveling salesman problems by genetic algorithmsParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer129133
– reference: NagarAHeraguSSHaddockJA metaheuristic algorithm for a bi-criteria scheduling problemAnnals of Operations Research19956339741410.1007/BF02125405
– reference: GilmorePCGomoryREA linear programming approach to the cutting stock problemOperations Research1961984985910.1287/opre.9.6.849
– reference: GrefenstetteJJDavisLIncorporating problem specific knowledge into genetic algorithmsGenetic algorithms and simulated annealing, research notes in artificial intelligence1987San Mateo, CAMorgan Kaufmann4260
– reference: Davis, L. (1985). Job-shop scheduling with genetic algorithms. In J. J. Grefenstette (Ed.), International conference on genetic algorithms and their applications (pp. 136–140). Pittsburgh.
– reference: TaillardEParallel iterative search methods for vehicle routing problemNetworks19932366167310.1002/net.3230230804
– reference: Talbi, E.-G., Fonlupt, C., Preux, P., & Robillard, D. (1998). Paysages de problèmes d’optimisation et performances des méta-heuristiques. In Premier Congrés de la Société Francaise de Recherche Opérationnelle et Aide à la Décision ROAD, Paris, France.
– reference: BendersJFPartitioning procedures for solving mixed-variables programming problemsNumerische Mathematik1962423825210.1007/BF01386316
– reference: DowslandKAThomsonJMSolving a nurse scheduling problem with knapsacks, networks and tabu searchJournal of Operational Research Society20005182583310.1057/palgrave.jors.2600970
– reference: MahfoudSWGoldbergDEParallel recombinative simulated annealing: A genetic algorithmParallel Computing19952112810.1016/0167-8191(94)00071-H
– reference: RumelhartDEHintonGEWilliamsRJLearning representations by backpropagating errorsNature198632353353610.1038/323533a0
– reference: BoeseKDKahngABMudduSNew adaptive multi-start techniques for combinatorial global optimizationsOperations Research Letters199416210111310.1016/0167-6377(94)90065-5
– reference: DowslandKANurse scheduling with tabu search and strategic oscillationEuropean Journal of Operational Research199810639340710.1016/S0377-2217(97)00281-6
– reference: Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In M. Maher & J.-F. Puget (Eds.), CP’98 principle and practice of constraint programming, LNCS no. 1520 (pp. 417–431).
– reference: TamuraHHiraharaAHatonoIUmanoMAn approximate solution method for combinatorial optimization—hybrid approach of genetic algorithm and lagrangean relaxation methodTransactions of the Society of Instrument and Control Engineers199413032933610.9746/sicetr1965.30.329
– reference: AugeratPBelenguerJMBenaventECorberanANaddefDSeparating capacity constraints in the CVRP using tabu searchEuropean Journal of Operational Research1998106254655710.1016/S0377-2217(97)00290-7
– reference: AbramsonDAA very high speed architecture to support simulated annealingIEEE Computer199225273410.1109/2.144393
– reference: MichalskiRSLearnable evolution model: Evolutionary processes guided by machine learningMachine Learning200038194010.1023/A:1007677805582
– reference: Tanese, R. (1987). Parallel genetic algorithms for a hypercube. In Proceedings of the second international conference on genetic algorithms (pp. 177–183). Cambridge, MA: MIT.
– reference: Crainic, T. G., Nguyen, A. T., & Gendreau, M. (1997). Cooperative multi-thread parallel tabu search with evolutionary adaptive memory. In 2nd International conference on metaheuristics. Sophia Antipolis, France.
– reference: VoigtH-MBornJSantibanez-KorefISchwefelH-PMannerRModelling and simulation of distributed evolutionary search processes for function optimizationParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer373380
– reference: AggarwalCCOrlinJBTaiRPAn optimized crossover for the maximum independent setOperations Research19974522623410.1287/opre.45.2.226
– reference: TalukdarSBaerentzenLGoveADe SouzaPAsynchronous teams: Cooperation schemes for autonomous agentsJournal of Heuristics19984429532110.1023/A:1009669824615
– reference: VossSNetwork optimization problems, chapter Tabu search: Applications and prospects1993SingaporeWorld Scientific
– reference: Sebag, M., Schoenauer, M., & Ravise, C. (1997). Toward civilized evolution: Developing inhibitions. In T. Bäck (Eds.), Seventh international conference on genetic algorithms (pp. 291–298).
– reference: JourdanLBasseurMTalbiE-GHybridizing exact methods and metaheuristics: A taxonomyEuropean Journal of Operational Research2009199362062910.1016/j.ejor.2007.07.035
– reference: HansenPMladenovicMPerez-BritosDVariable neighborhood decomposition searchJournal of Heuristics20017433035010.1023/A:1011336210885
– reference: Wang, L.-H., Kao, C.-Y., Ouh-young, M., & Chen, W.-C. (1995). Molecular binding: A case study of the population-based annealing genetic algorithms. In IEEE international conference on evolutionary computation ICEC’95 (pp. 50–55). Perth, Australia.
– reference: Krueger, M. (1993). Méthodes d’analyse d’algorithmes d’optimisation stochastiques à l’aide d’algorithmes génétiques. Ph.D. thesis, Ecole Nationale Supèrieure des Télécommunications, Paris, France.
– reference: ToulouseMCrainicTGendreauMOsmanIHKellyJPCommunication issues in designing cooperative multi-thread parallel searchesMeta-heuristics: Theory and applications1996DordrechtKluwer501522
– reference: MartinOCOttoSWFeltenEWLarge-step markov chains for the TSP: Incorporating local search heuristicsOperation Research Letters19921121922410.1016/0167-6377(92)90028-2
– reference: CohoonJPMartinWNRichardsDSSchwefelH-PMannerRGenetic algorithms and punctuated equilibriaParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer134141
– reference: BeasleyJEOR-Library: Distributing test problems by electronic mailJournal of the Operational Research Society199041111069107210.1057/jors.1990.166
– reference: GomoryREOutline of an algorithm for integer solutions to linear programsBulletin AMS19586427527810.1090/S0002-9904-1958-10224-4
– reference: Sellmann, M., & Ansótegui, C. (2006). Disco—novo—gogo: Integrating local search and complete search with restarts. In The twenty-first national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference, Boston, USA.
– reference: VerhoevenMGAAartsEHLParallel local searchJournal of Heuristics199511436510.1007/BF02430365
– reference: Filho, G. R., & Lorena, L. A. N. (2000). Constructive genetic algorithm and column generation: An application to graph coloring. In APORS’2000 conference of the association of the Asian-Pacific operations research societies within IFORS.
– reference: Hogg, T., & Williams, C. (1993). Solving the really hard problems with cooperative search. In 11th conference on artificial intelligemce AAAI’93 (pp. 231–236). AAAI Press.
– reference: NwanaVDarby-DowmanKMitraGA cooperative parallel heuristic for mixed zero-one linear programmingEuropean Journal of Operational Research2005164122310.1016/j.ejor.2002.12.002
– reference: KostikasKFragakisCKeijzerMGenetic programming applied to mixed integer programmingEuroGP conference on genetic programming, LNCS vol. 30032004BerlinSpringer113124
– reference: De Falco, I., Del Balio, R., Tarantino, E., & Vaccaro, R. (1994). Improving search by incorporating evolution principles in parallel tabu search. In IEEE conference on evolutionary computation (pp. 823–828).
– reference: Rasheed, K., Vattam, S., & Ni, X. (2002). Comparison of methods for developing dynamic reduced models for design optimization. In CEC’2002 congress on evolutionary computation (pp. 390–395).
– reference: BertsekasDPNetwork optimization: Continuous and discrete models1998MAAthena Scientific
– reference: Mariano, C. E., & Morales, E. (1998). A multiple objective ant-q algorithm for the design of water distribution irrigation networks. In First international workshop on ant colony optimization ANTS’98. Belgium: Brussels.
– reference: Chu, P. C. (1997). A genetic algorithm approach for combinatorial optimization problems. Ph.D. thesis, University of London, London, UK.
– reference: Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: Column generation for huge integer programs. Operations Research, 46(3), 316–329.
– reference: BurkeEKKendallGNewallJHartERossPSchulemburgSHandbook of metaheuristics, chapter hyper-heuristics: An emerging direction in modern search technology2003DordrechtKluwer
– reference: CaseauYLaburtheFHeuristics for large constrained routing problemsJournal of Heuristics1999528130310.1023/A:1009661600931
– reference: NuijtenWLe PapeCConstraint based job scheduling with ILOG schedulerJournal of Heuristics1998327128610.1023/A:1009687210594
– reference: TusonARossPAdapting operator settings in genetic algorithmsEvolutionary Computation19986216118410.1162/evco.1998.6.2.161
– reference: Sprave, J. (1999). A unified model of non-panmictic population structures in evolutionary algorithms. In Proceedings of the 1999 congress on evolutionary computation, volume 2 (pp. 1384–1391). Piscataway, NJ: IEEE Press.
– reference: TalbiE-GBacheletVCOSEARCH: A parallel cooperative metaheuristicJournal of Mathematical Modelling and Algorithms (JMMA)20065252210.1007/s10852-005-9029-7
– reference: FeoTAVenkatramanKBardJFA GRASP for a difficult single machine scheduling problemComputers and Operations Research19911863564310.1016/0305-0548(91)90001-8
– reference: O’Reilly, U.-M., & Oppacher, F. (1995). Hybridized crossover-based techniques for program discovery. In IEEE international conference on evolutionary computation ICEC’95 (pp. 573–578). Perth, Australia.
– reference: Lin, F. T., Kao, C. Y., & Hsu, C. C. (1991). Incorporating genetic algorithms into simulated annealing. In Proceedings of the Fourth International Symposium on AI (pp. 290–297).
– reference: Boese, K. D. (1996). Models for iterative global optimization. Ph.D. thesis, University of California, Los Angeles.
– reference: ClearwaterSHHubermanBAHoggTCooperative solution of constraint satisfaction problemsScience19912541181118310.1126/science.254.5035.1181
– reference: ThielJVossSSome experiences on solving multiconstraint zero-one knapsack problems with genetic algorithmsINFOR1994324226242
– reference: Abramson, D., Logothetis, P., Postula, A., & Randall, M. (1997). Application specific computers for combinatorial optimisation. InAustralien Computer Architecture Workshop, Sydney, Australia.
– reference: PattersonRRollandEPirkulHA memory adaptive reasoning technique for solving the capacitated minimum spanning tree problemJournal of Heuristics1999515918010.1023/A:1009629727566
– reference: JuengerMReineltGThienelSPractical problem solving with cutting plane algorithms in combinatorial optimizationDIMACS series in discrete mathematics and theoretical computer science199520111152
– reference: Dimitrescu, I., & Stutzle, T. (2003). Combinations of local search and exact algorithms. In Evo workshops (pp. 211–223).
– reference: Salami, M., & Cain, G. (1996). Genetic algorithm processor on reprogrammable architectures. In Fifth annual conference on evolutionary programming EP’96. San Diego, CA: MIT Press.
– reference: HindiKSFleszarKCharalambousCAn effective heuristic for the CLSP with setup timesJournal of the Operations Research Society20035449049810.1057/palgrave.jors.2601525
– reference: DowslandKAHerbertEAKendallGUsing tree search bounds to enhance a genetic algorithm approach to two rectangle packing problemsEuropean Journal of Operational Research2006168239040210.1016/j.ejor.2004.04.030
– reference: Kamarainen, O., & Sakkout, H. E. (2002). Local probing applied to scheduling. In CP’2002 international conference on principles and practice of constraint programming (pp. 155–171).
– reference: Talbi, E. G., Muntean, T., & Samarandache, I. (1994). Hybridation des algorithmes génétiques avec la recherche tabou. In Evolution Artificielle EA94. Toulouse, France.
– reference: Hart, W. E. (1994). Adaptive global optimization with local search. Ph.D. thesis, University of California, San Diego.
– reference: FedergruenATzurMTime-partitioning heuristics: Application to one warehouse, multi-item, multi-retailer lot-sizing problemsNaval Research Logistics19994646348610.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S
– reference: FeoTAResendeMGCSmithSHA greedy randomized adaptive search procedure for maximum independent setOperations Research19944286087810.1287/opre.42.5.860
– reference: Stutzle, T., & Hoos, H. H. (1997). The MAX-MIN ant system and local search for combinatorial optimization problems: Towards adaptive tools for global optimization. In 2nd international conference on metaheuristics (pp. 191–193). Sophia Antipolis, France. INRIA.
– reference: BellmanRDynamic programming1957Princeton, NJPrinceton University Press
– reference: Potts, C. N., & Velde, S. L. (1995). Dynasearch- iterative local improvement by dynamic programming. Technical Report TR, University of Twente, Netherlands.
– reference: GutinGMExponential neighborhood local search for the traveling salesman problemComputers and Operations Research199926431332010.1016/S0305-0548(98)00064-1
– reference: UlderNLJAartsEHLBandeltH-JVan LaarhovenPJMPeschESchewefelH-PMannerRGenetic local search algorithms for the traveling salesman problemParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer109116
– reference: JinYA comprehensive survey of fitness approximation in evolutionary computationSoft Computing20059131210.1007/s00500-003-0328-5
– reference: FischettiMLodiALocal branchingMathematical Programming B200398234710.1007/s10107-003-0395-5
– reference: FisherMLAn application oriented guide to lagrangian relaxationInterfaces19851539940410.1287/inte.15.2.10
– reference: Louis, S. J. (2003). Genetic learning from experiences. In Congress on Evolutionary Computations CEC’2003 (pp. 2118–2125). Australia.
– reference: Vasquez, M., & Hao, J.-K. (2001). A hybrid approach for the 0-1 multidimensional knapsack problem. In Proceedings of the international joint conference on artificial intelligence IJCAI (pp. 328–333).
– reference: Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Effective local and guided variable neighborhood search methods for the asymmetric traveling salesman problem. In EvoWorkshop (pp. 203–312). LNCS 2037. Springer.
– reference: RibeiroMPlastinoAMartinsSHybridization of GRASP metaheuristic with data mining techniquesJournal of Mathematical Modelling and Algorithms200651234110.1007/s10852-005-9030-1
– reference: EngelmoreRSMorganABlackboard systems1988ReadingAddison-Wesley
– reference: Eby, D., Averill, R., Punch, W., & Goodman, E. (1998). Evaluation of injection island model GA performance on flywheel design optimization. In International conference on adaptive computing in design and manufacturing (pp. 121–136). Devon: Springer.
– reference: RosingKEReVelleCSHeuristic concentration: Two stage solution constructionEuropean Journal of Operational Research1997971758610.1016/S0377-2217(96)00100-2
– reference: Ramsey, C. L., & Grefenstette, J. J. (1993). Case-based initialization of genetic algorithms. In Fifth international conference on genetic algorithms (pp. 84–91).
– reference: Caseau, Y., & Laburthe, F. (1995). Disjunctive scheduling with task intervals. Technical Report LIENS-95-25, Ecole Normale Supérieure de Paris, France.
– reference: Harvey, W. D., & Ginsberg, M. L. (1997). Limited discrepancy search. In IJCAI internation joint conference on artificial intelligence (pp. 607–613). Morgan Kaufmann.
– reference: HubermanBAThe performance of cooperative processesPhysica D199042384710.1016/0167-2789(90)90065-W
– reference: AiexRMBinatoSRamakrishnaRSParallel GRASP with path relinking for job shop schedulingParallel Computing20032939343010.1016/S0167-8191(03)00014-0
– reference: BelewRKMcInernyJSchraudolphNNLangtonCGTaylorCDoyne FarmerJDRasmussenSEvolving networks: Using genetic algorithms with connectionist learningSecond conference on artificial life1991USAAddison-Wesley511548
– reference: Suh, J. Y., & Van Gucht, D. (1987). Incorporating heuristic information into genetic search. In 2rd international conference genetic algorithms (pp. 100–107). USA: Lawrence Erlbaum Associates.
– reference: PrestwichSCombining the scalability of local search with the pruning techniques of systematic searchAnnals of Operations Research2002115517210.1023/A:1021140902684
– reference: NemhauserGWolseyLInteger and combinatorial optimization1999LondonWiley
– reference: AptKPrinciples of constraint programming2003CambridgeCambridge University Press10.1017/CBO9780511615320
– reference: TalbiE-GMetaheuristics: From design to implementation2009New YorkWiley10.1002/9780470496916
– reference: ApplegateDCookWA computational study of the job-shop scheduling problemORSA Journal on Computing1991314915610.1287/ijoc.3.2.149
– reference: TaillardEHeuristic methods for large centroid clustering problemsJournal of Heuristics200391517410.1023/A:1021841728075
– reference: ChelouahRSiarryPA hybrid method combining continuous tabu search and Nelder–Mead simplex algorithms for the global optimization of multiminima functionsEuropean Journal of Operational Research2004161363665410.1016/j.ejor.2003.08.053
– reference: ManiezzoVExact and approximate nondeterministic tree-search procedures for the quadratic assignment problemINFORMS Journal on Computing199911435836910.1287/ijoc.11.4.358
– reference: CestaACortellessaGOddiAPolicellaNSusiAA constraint-based architecture for flexible support to activity schedulingLecture Notes in Computer Science2001217536939010.1007/3-540-45411-X_39
– reference: Taillard, E. D., & Gambardella, L. (1997). Adaptive memories for the quadratic assignment problem. Technical Report 87-97, IDSIA, Lugano, Switzerland.
– reference: Cung, V.-D., Mautor, T., Michelon, P., & Tavares, A. (1997). A scatter search based approach for the quadratic assignment problem. In IEEE international conference on evolutionary computation ICEC’97, Indianapolis, USA, April 1997.
– reference: HongT-PWangH-SChenW-CSimultaneous applying multiple mutation operators in genetic algorithmJournal of Heuristics20006443945510.1023/A:1009642825198
– reference: Kim, H.-S., & Cho, S.-B. (2001). An efficient genetic algorithm with less fitness evaluation by clustering. In Congress on evolutionary computation CEC’01 (pp. 887–894). IEEE Press.
– reference: Jourdan, L., Dhaenens, C., & Talbi, E.-G. (2006). Using data mining techniques to help metaheuristics: A short survey. In Hybrid metaheuristics (HM’2006), volume 4030 of LNCS (pp. 57–69), Gran Canaria, Spain.
– reference: CrainicTGToulouseMGloverFWKochenbergerGAParallel strategies for metaheuristicsHandbook of metaheuristics2003New YorkSpringer475513
– reference: HusbandsPMillFWarringtonSSchewefelH-PMannerRGenetic algorithms, production plan optimisation and schedulingParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer8084
– reference: GoldenBPepperJVossenTUsing genetic algorithms for setting parameter values in heuristic searchIntelligent Engineering Systems Through Artificial Neural Networks19981932
– reference: Mautor, T., & Michelon, P. (1997). Mimausa: A new hybrid method combining exact solution and local search. In Second international conference on metaheuristics. Sophia-Antipolis, France.
– reference: De FalcoIDel BalioRTarantinoEAn analysis of parallel heuristics for task allocation in multicomputersComputing199759325927510.1007/BF02684444
– reference: TaillardEDGambardellaLMGendreauMPotvinJ-YAdaptive memory programming: A unified view of metaheuristicsEuropean Journal of Operational Research2001135111610.1016/S0377-2217(00)00268-X
– volume: 21
  start-page: 1
  year: 1995
  ident: 2034_CR94
  publication-title: Parallel Computing
  doi: 10.1016/0167-8191(94)00071-H
– volume: 98
  start-page: 23
  year: 2003
  ident: 2034_CR55
  publication-title: Mathematical Programming B
  doi: 10.1007/s10107-003-0395-5
– ident: 2034_CR86
– volume: 9
  start-page: 500
  issue: 5
  year: 1990
  ident: 2034_CR123
  publication-title: IEEE Transaction on Computer-Aided Design
  doi: 10.1109/43.55180
– ident: 2034_CR146
– ident: 2034_CR92
  doi: 10.1109/CEC.2003.1299934
– ident: 2034_CR137
– ident: 2034_CR114
– volume: 6
  start-page: 439
  issue: 4
  year: 2000
  ident: 2034_CR73
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009642825198
– ident: 2034_CR40
– ident: 2034_CR25
– volume: 32
  start-page: 226
  issue: 4
  year: 1994
  ident: 2034_CR142
  publication-title: INFOR
– start-page: 475
  volume-title: Handbook of metaheuristics
  year: 2003
  ident: 2034_CR38
  doi: 10.1007/0-306-48056-5_17
– volume-title: Integer and combinatorial optimization
  year: 1999
  ident: 2034_CR103
– ident: 2034_CR107
  doi: 10.1109/ICEC.1995.487447
– ident: 2034_CR54
– ident: 2034_CR81
– volume: 5
  start-page: 255
  year: 1999
  ident: 2034_CR109
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009694016861
– volume: 18
  start-page: 635
  year: 1991
  ident: 2034_CR53
  publication-title: Computers and Operations Research
  doi: 10.1016/0305-0548(91)90001-8
– volume-title: Handbook of metaheuristics, chapter Local search and constraint programming. International series in operations research and management science
  year: 2002
  ident: 2034_CR59
– volume: 1
  start-page: 25
  year: 1993
  ident: 2034_CR62
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1
– ident: 2034_CR89
– volume: 38
  start-page: 9
  issue: 1
  year: 2000
  ident: 2034_CR99
  publication-title: Machine Learning
  doi: 10.1023/A:1007677805582
– volume: 7
  start-page: 13
  issue: 1
  year: 1994
  ident: 2034_CR100
  publication-title: International Journal of Expert Systems
– ident: 2034_CR126
– ident: 2034_CR22
– volume: 23
  start-page: 661
  year: 1993
  ident: 2034_CR128
  publication-title: Networks
  doi: 10.1002/net.3230230804
– volume-title: Network optimization problems, chapter Tabu search: Applications and prospects
  year: 1993
  ident: 2034_CR149
– volume: 6
  start-page: 161
  issue: 2
  year: 1998
  ident: 2034_CR144
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1998.6.2.161
– ident: 2034_CR2
– volume: 46
  start-page: 463
  year: 1999
  ident: 2034_CR50
  publication-title: Naval Research Logistics
  doi: 10.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S
– ident: 2034_CR119
– volume: 106
  start-page: 546
  issue: 2
  year: 1998
  ident: 2034_CR8
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00290-7
– volume: 11
  start-page: 101
  issue: 2
  year: 2013
  ident: 2034_CR134
  publication-title: 4OR
  doi: 10.1007/s10288-013-0242-3
– volume: 15
  start-page: 233
  issue: 3
  year: 2003
  ident: 2034_CR35
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.15.3.233.16078
– volume: 2
  start-page: 209
  year: 1977
  ident: 2034_CR84
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.2.3.209
– ident: 2034_CR150
– ident: 2034_CR102
– ident: 2034_CR36
– volume: 5
  start-page: 159
  year: 1999
  ident: 2034_CR108
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009629727566
– volume: 4
  start-page: 238
  year: 1962
  ident: 2034_CR15
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386316
– ident: 2034_CR17
– volume: 6
  start-page: 109
  year: 1995
  ident: 2034_CR51
  publication-title: Journal of Global Optimization
  doi: 10.1007/BF01096763
– volume: 16
  start-page: 173
  year: 1994
  ident: 2034_CR57
  publication-title: DIMACS Series in Discrete Mathematics and Theoretical Computer Science
  doi: 10.1090/dimacs/016/08
– volume: 59
  start-page: 259
  issue: 3
  year: 1997
  ident: 2034_CR42
  publication-title: Computing
  doi: 10.1007/BF02684444
– volume: 106
  start-page: 393
  year: 1998
  ident: 2034_CR45
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00281-6
– volume: 26
  start-page: 313
  issue: 4
  year: 1999
  ident: 2034_CR66
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(98)00064-1
– volume: 5
  start-page: 5
  issue: 2
  year: 2006
  ident: 2034_CR136
  publication-title: Journal of Mathematical Modelling and Algorithms (JMMA)
  doi: 10.1007/s10852-005-9029-7
– volume: 11
  start-page: 219
  year: 1992
  ident: 2034_CR97
  publication-title: Operation Research Letters
  doi: 10.1016/0167-6377(92)90028-2
– start-page: 134
  volume-title: Parallel problem solving from nature, volume 496 of LNCS
  year: 1990
  ident: 2034_CR33
– ident: 2034_CR98
– volume: 45
  start-page: 226
  year: 1997
  ident: 2034_CR4
  publication-title: Operations Research
  doi: 10.1287/opre.45.2.226
– ident: 2034_CR78
  doi: 10.1007/978-3-540-24854-5_71
– volume: 63
  start-page: 437
  issue: 3
  year: 1996
  ident: 2034_CR58
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02125407
– ident: 2034_CR83
  doi: 10.1007/3-540-46135-3_11
– volume: 164
  start-page: 12
  year: 2005
  ident: 2034_CR106
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2002.12.002
– volume: 4
  start-page: 107
  issue: 2
  year: 1998
  ident: 2034_CR9
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009646528813
– ident: 2034_CR121
  doi: 10.1007/3-540-45356-3_86
– ident: 2034_CR39
– ident: 2034_CR125
  doi: 10.1109/CEC.1999.782644
– ident: 2034_CR141
– volume: 29
  start-page: 393
  year: 2003
  ident: 2034_CR5
  publication-title: Parallel Computing
  doi: 10.1016/S0167-8191(03)00014-0
– volume: 17
  start-page: 113
  year: 1995
  ident: 2034_CR37
  publication-title: OR Spektrum
  doi: 10.1007/BF01719254
– volume: 168
  start-page: 390
  issue: 2
  year: 2006
  ident: 2034_CR46
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.04.030
– ident: 2034_CR113
– ident: 2034_CR138
– volume: 2175
  start-page: 369
  year: 2001
  ident: 2034_CR24
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/3-540-45411-X_39
– volume-title: Blackboard systems
  year: 1988
  ident: 2034_CR49
– volume: 64
  start-page: 275
  year: 1958
  ident: 2034_CR64
  publication-title: Bulletin AMS
  doi: 10.1090/S0002-9904-1958-10224-4
– ident: 2034_CR76
– ident: 2034_CR28
– volume: 135
  start-page: 1
  issue: 1
  year: 2001
  ident: 2034_CR132
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(00)00268-X
– ident: 2034_CR20
– volume: 9
  start-page: 51
  issue: 1
  year: 2003
  ident: 2034_CR129
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1021841728075
– volume: 9
  start-page: 849
  year: 1961
  ident: 2034_CR61
  publication-title: Operations Research
  doi: 10.1287/opre.9.6.849
– volume: 1
  start-page: 43
  issue: 1
  year: 1995
  ident: 2034_CR147
  publication-title: Journal of Heuristics
  doi: 10.1007/BF02430365
– volume: 3
  start-page: 271
  year: 1998
  ident: 2034_CR105
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009687210594
– volume-title: Dynamic programming
  year: 1957
  ident: 2034_CR14
– ident: 2034_CR127
– volume: 5
  start-page: 23
  issue: 1
  year: 2006
  ident: 2034_CR116
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-005-9030-1
– ident: 2034_CR96
– volume: 16
  start-page: 101
  issue: 2
  year: 1994
  ident: 2034_CR18
  publication-title: Operations Research Letters
  doi: 10.1016/0167-6377(94)90065-5
– start-page: 148
  volume-title: Second international conference on genetic algorithms
  year: 1987
  ident: 2034_CR32
– ident: 2034_CR110
– volume: 7
  start-page: 330
  issue: 4
  year: 2001
  ident: 2034_CR68
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1011336210885
– volume: 4
  start-page: 233
  issue: 3
  year: 1979
  ident: 2034_CR29
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.4.3.233
– volume: 8
  start-page: 541
  year: 2002
  ident: 2034_CR133
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1016540724870
– ident: 2034_CR1
  doi: 10.1109/ICEC.1995.487464
– start-page: 129
  volume-title: Parallel problem solving from nature, volume 496 of LNCS
  year: 1990
  ident: 2034_CR19
– ident: 2034_CR85
– ident: 2034_CR79
– volume-title: Network optimization: Continuous and discrete models
  year: 1998
  ident: 2034_CR16
– start-page: 511
  volume-title: Second conference on artificial life
  year: 1991
  ident: 2034_CR13
– volume-title: Sixth international conference on genetic algorithms
  year: 1995
  ident: 2034_CR12
– ident: 2034_CR122
– volume: 11
  start-page: 358
  issue: 4
  year: 1999
  ident: 2034_CR95
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.11.4.358
– ident: 2034_CR70
– volume: 3
  start-page: 149
  year: 1991
  ident: 2034_CR6
  publication-title: ORSA Journal on Computing
  doi: 10.1287/ijoc.3.2.149
– ident: 2034_CR43
  doi: 10.1109/ICEC.1994.349949
– volume-title: Metaheuristics: From design to implementation
  year: 2009
  ident: 2034_CR135
  doi: 10.1002/9780470496916
– start-page: 42
  volume-title: Genetic algorithms and simulated annealing, research notes in artificial intelligence
  year: 1987
  ident: 2034_CR65
– ident: 2034_CR91
– volume: 5
  start-page: 66
  issue: 1
  year: 1994
  ident: 2034_CR104
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.265961
– start-page: 109
  volume-title: Parallel problem solving from nature, volume 496 of LNCS
  year: 1990
  ident: 2034_CR145
– volume-title: Handbook of metaheuristics, chapter hyper-heuristics: An emerging direction in modern search technology
  year: 2003
  ident: 2034_CR21
– ident: 2034_CR10
  doi: 10.1287/opre.46.3.316
– start-page: 33
  volume-title: Computation: The micro and the macro view
  year: 1992
  ident: 2034_CR30
  doi: 10.1142/9789812812438_0003
– start-page: 373
  volume-title: Parallel problem solving from nature, volume 496 of LNCS
  year: 1990
  ident: 2034_CR148
– start-page: 428
  volume-title: Third conference on parallel problem solving from nature
  year: 1994
  ident: 2034_CR27
  doi: 10.1007/3-540-58484-6_286
– volume-title: Essays and surveys in metaheuristics, chapter POPMUSIC: Partial optimization metaheuristic under special intensification conditions
  year: 2002
  ident: 2034_CR130
– volume: 42
  start-page: 860
  year: 1994
  ident: 2034_CR52
  publication-title: Operations Research
  doi: 10.1287/opre.42.5.860
– volume: 254
  start-page: 1181
  year: 1991
  ident: 2034_CR31
  publication-title: Science
  doi: 10.1126/science.254.5035.1181
– volume: 15
  start-page: 399
  year: 1985
  ident: 2034_CR56
  publication-title: Interfaces
  doi: 10.1287/inte.15.2.10
– volume: 161
  start-page: 636
  issue: 3
  year: 2004
  ident: 2034_CR26
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2003.08.053
– ident: 2034_CR88
– volume: 5
  start-page: 281
  year: 1999
  ident: 2034_CR23
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009661600931
– ident: 2034_CR44
  doi: 10.1007/3-540-36605-9_20
– ident: 2034_CR69
– volume: 4
  start-page: 295
  issue: 4
  year: 1998
  ident: 2034_CR139
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009669824615
– volume: 63
  start-page: 397
  year: 1995
  ident: 2034_CR101
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02125405
– volume: 97
  start-page: 75
  issue: 1
  year: 1997
  ident: 2034_CR117
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(96)00100-2
– ident: 2034_CR131
– volume: 1
  start-page: 9
  year: 1998
  ident: 2034_CR63
  publication-title: Intelligent Engineering Systems Through Artificial Neural Networks
– start-page: 113
  volume-title: EuroGP conference on genetic programming, LNCS vol. 3003
  year: 2004
  ident: 2034_CR87
– ident: 2034_CR112
  doi: 10.1007/11499305_5
– volume: 20
  start-page: 111
  year: 1995
  ident: 2034_CR82
  publication-title: DIMACS series in discrete mathematics and theoretical computer science
  doi: 10.1090/dimacs/020/02
– ident: 2034_CR90
  doi: 10.2172/10161119
– volume: 42
  start-page: 38
  year: 1990
  ident: 2034_CR74
  publication-title: Physica D
  doi: 10.1016/0167-2789(90)90065-W
– ident: 2034_CR67
  doi: 10.1007/3-540-46135-3_12
– volume-title: Meta-heuristics—advances and trends in local search paradigms for optimization, chapter Fitness landscape and performance of metaheuristics
  year: 1999
  ident: 2034_CR60
– volume: 323
  start-page: 533
  year: 1986
  ident: 2034_CR118
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 36
  start-page: 753
  issue: 8
  year: 2005
  ident: 2034_CR115
  publication-title: Cybernetics and Systems
  doi: 10.1080/01969720500306147
– volume: 130
  start-page: 329
  year: 1994
  ident: 2034_CR140
  publication-title: Transactions of the Society of Instrument and Control Engineers
  doi: 10.9746/sicetr1965.30.329
– volume: 25
  start-page: 27
  year: 1992
  ident: 2034_CR3
  publication-title: IEEE Computer
  doi: 10.1109/2.144393
– volume: 41
  start-page: 1069
  issue: 11
  year: 1990
  ident: 2034_CR11
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1990.166
– volume: 51
  start-page: 825
  year: 2000
  ident: 2034_CR47
  publication-title: Journal of Operational Research Society
  doi: 10.1057/palgrave.jors.2600970
– volume: 83
  start-page: 347
  year: 1995
  ident: 2034_CR93
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(95)00012-F
– ident: 2034_CR120
– start-page: 80
  volume-title: Parallel problem solving from nature, volume 496 of LNCS
  year: 1990
  ident: 2034_CR75
– ident: 2034_CR151
  doi: 10.1109/ICEC.1996.542657
– start-page: 244
  volume-title: Fourth international conference on genetic algorithms
  year: 1991
  ident: 2034_CR34
– ident: 2034_CR48
  doi: 10.1007/978-1-4471-1589-2_10
– volume-title: Principles of constraint programming
  year: 2003
  ident: 2034_CR7
  doi: 10.1017/CBO9780511615320
– volume: 54
  start-page: 490
  year: 2003
  ident: 2034_CR71
  publication-title: Journal of the Operations Research Society
  doi: 10.1057/palgrave.jors.2601525
– ident: 2034_CR124
  doi: 10.1007/3-540-49481-2_30
– ident: 2034_CR72
– volume: 9
  start-page: 3
  issue: 1
  year: 2005
  ident: 2034_CR77
  publication-title: Soft Computing
  doi: 10.1007/s00500-003-0328-5
– volume: 199
  start-page: 620
  issue: 3
  year: 2009
  ident: 2034_CR80
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.07.035
– ident: 2034_CR41
– volume: 115
  start-page: 51
  year: 2002
  ident: 2034_CR111
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1021140902684
– start-page: 501
  volume-title: Meta-heuristics: Theory and applications
  year: 1996
  ident: 2034_CR143
SSID ssj0001185
Score 2.4678333
Snippet During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for...
Issue Title: SURVEYS IN OPERATIONS RESEARCH IV (INVITED SURVEYS FROM "40R," 2012-2014) During the last years, interest on hybrid metaheuristics has risen...
SourceID hal
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Algorithms
Artificial intelligence
Business and Management
Combinations (mathematics)
Combinatorics
Communities
Computer Science
Cooperation
Data mining
Heuristic
Heuristic methods
Hybridization
Machine learning
Management research
Mathematical optimization
Mathematical programming
Operations Research
Operations Research/Decision Theory
Optimization
Optimization algorithms
Programming
SI: 4OR Surveys
Studies
Taxonomy
Theory of Computation
Traveling salesman problem
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xgdD2wKCA6BjIIBASYCmOk8Z-rCamPUwTEjDtzXIce0Oi2bSkk_bvuUudkKKBBC99SM4X1z4738V33wG80T6pXGYl90EEjkaR87LMEy5CVlRVKYLtstJOjorjY3V6qj_HPO6mj3bvjyS7nXqU7JYVFNuT48zKjN9swN2cyGbIRf9yMmy_iJi7uEX0fDiFTvZHmbepWHsZxS1545wiIkdw87cT0u7Fc7DzX11-CA8izmTzlWE8gju-nsD9Psx9Ajt9OQcWV_cEtkfchI_BoUDZVY9gC9_ac7-MnM6MPt2yxUD3ik-JQV4LFP7IHCFOKjzRjq8zW1fYiCI3PYulKs6ewLeDT1_3D3msyMAdOjYtV8p6dLCcpvxWm4pQIFzwEt22Ii-VtgEBnMzKIpSIHHSF4Ec4rVNXucpLGYR8Cpv1Re2fAUuTCtvM0JvUPtMysSnOVelTlVcz5VSYQtJPjXGRrpw6_8P8Ilqm0TU4uoZG19xM4f3Q5HLF1fE34bc03ybW-sSfhr6GNGd22TRmjrhSElVbPoV3nRytd3y-szFtAf8FMWetSe6tSeI6dWu3X6NlDR0jWu_D-ZGha-impsQSeS1QR294Jm4mjRGFUjP09lPU8Wq4TeopQK72F0uUUaIrJqbkFD70xjhS8adh2P0n6eewhYBxtgr43IPN9mrpX8A9d91-b65eduvwJ4uzLFE
  priority: 102
  providerName: Springer Nature
Title Combining metaheuristics with mathematical programming, constraint programming and machine learning
URI https://link.springer.com/article/10.1007/s10479-015-2034-y
https://www.proquest.com/docview/1788697825
https://www.proquest.com/docview/1816026783
https://inria.hal.science/hal-01423492
Volume 240
WOSCitedRecordID wos000376301200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: 7WY
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: M0C
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (ProQuest)
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: M7S
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: M2P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9QwzGIbQuOBwbGJwpgKAiHBorVNc22f0DFtmsQ4nTYYYy9RmqQbEtcba2_S_j12L-3ukNgLL5baOB-tHcdOHBvgTWYDo2PFmS3CgiFTCJbnImBhESfG5GGhmltpJ4fJcJienmYjt-FWObfKViY2gtpMNO2R74Roq_XR5InEx8vfjLJG0emqS6GxBCu4UAvKYJB8_9FJYlSeGxdGNIIYeVG2p5qzq3NxQp5CAvmEx-xmYV1y0nnpgpwj5zTPvw5LmzVof-1_R_8YHjnt0x_M2OUJ3LNlDx60zu89WGuTPPhuzvfg4VzEwqegESFvckr4Y1urCzt1kZ592tD1x10QWOzFuX6NEXnb16SHUjqKev69r0qDlcif0_ougcX5Onzb3_u6e8Bcngam0dypWZoqi2aXzujWq4rCIkElwnI05hKRp5kqUK3jcZ4UOeoTmUGVKNRZFmmjjeW8CPkGLJeT0j4DPwoM1umjjZnZOOOBipBsuY1SYfqpTgsPgpZKUrsg5jT4X_I2_DIRViJhJRFW3njwvqtyOYvgcRfyWyK9dBlAEVS0R1Kdq2lVyQFqm5wCuAkP3jV4JAWwf63cZQb8CoqntYC5uYCJs1cvFL9GJusGRsG-DwaHkt6h8RpR7MjrENtouUo6EVPJW5by4FVXTM2T21xpJ1PEScMmxVjKPfjQ8u5cE__6Dc_v7vAFrKLe2J_5fW7Ccn01tS_hvr6uf1ZXW80c3IKVT3vD0RE-fU4Ywi_BLsFoRDA5RjgSZwiPjk_-ADP_PdY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BfE4UFhALBQwiAqJ1iKJ8zwgtAKqrXZZcShVbyaxnRaJzZYmW7R_it_ITOKku0j01gOXHJKxnTif52HPA-BVYhyt_FRwk7s5R1AEPMsCh7u5H2mduXlaR6UdjqPJJD46Sr6swe82FobcKlueWDNqPVO0R_7WRVstRJPHC96f_uRUNYpOV9sSGg0sRmbxC0228t3-R_y_25639-ngw5DbqgJcoXJe8ThODRoJKqEYzdRz8whFnhFoekRBFidpjkqI8LMoz1D6JRoFuKuSxFNaaSNE7grsdx2u-SIOaUWNIt5xflTWa5dJNLo4eW22p6hNqJ4fkWdSgLgUPl-syEErDdZPyBlzSdP963C2lnl7m__bbN2FO1a7ZoNmOdyDNVP04Ebr3N-DzbaIBbM8rQe3lzIy3geFBFldM4NNTZWemLnNZM1ow5pNuyS3OIp1bZsi8S5TpGdTuY1q-T5LC42NyF_VMFug4_gBfL2SOXgIG8WsMI-AeY7GNiHa0InxE-GkHsIkM14c6DBWcd4Hp0WFVDZJO738D3mRXpqAJBFIkoAkF3140zU5bTKUXEa8TVCTtsIpXkraAyqP03lZygFq04IS1AV9eF3TEZfD8VVqgzXwKyhf2Arl1golcie18vglgrp7MUpmPhyMJd1D49yj3JjnLvbRolhaFlrKCwj34UX3mLont8DCzOZIE7t1CbVY9GGnXStLXfxrGh5fPuBzuDk8-DyW4_3J6AncQh05bHxct2CjOpubp3BdnVffy7Nn9fpn8O2ql9AfKG2RAA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aOjTBgUEBERgQEBMSYC2JkyY5IFTYqk2rqgoB2s04jr0h0XQs6VD_Nf463kucrkVitx249JA8O4n7-f2wP78H8DLVXq5CyZk2vmEIiohlWeQx34Rxnme-kfWptK_DeDRKjo_T8Rr8bs_CEK2y1Ym1os6nitbId32M1XoY8gTRrrG0iPHe4P3ZT0YVpGintS2n0UDkSM9_YfhWvjvcw_96JwgG-58_HjBbYYApdNQrliRSY8CgUjqvKQPfxGj-NMcwJI6yJJUGHRIeZrHJ0BKmORpzX6VpoHKVa86Nz7HfddiIOQY9Hdj4sD8af1rYAXTdawIlhmCMOJztnmpzcC-MiacUIUp5yOYrVtHahvVTomYu-b1_bdXWFnCw9T-P3R24bf1ut99MlLuwposubLa0_y5steUtXKvtunBrKVfjPVAokNXVNNyJruSpntkc1y4tZbuTRfpbfIolvU1Q-K2ryAOnQhzV8nVXFjk2Iiardm3pjpP78OVaxuABdIppoR-CG3g5tulhdJ3qMOWeDBAymQ6SKO8lKjEOeC1ChLLp2-nlf4jLxNMEKoGgEgQqMXfg9aLJWZO75CrhHYKdsLVP8aek1aHyRM7KUvTRz-aUui5y4FUtR_oPn6-kPcaBX0GZxFYkt1ckUW-pldsvEOCLF6M05wf9oaBrGLYHlDXzwsc-WkQLq1xLcQlnB54vblP3RBgs9HSGMolfF1dLuANv2nmz1MW_huHR1Q98Bps4c8TwcHT0GG6i89xryK_b0KnOZ_oJ3FAX1ffy_KlVBi58u-459AeBTJtS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+metaheuristics+with+mathematical+programming%2C+constraint+programming+and+machine+learning&rft.jtitle=Annals+of+operations+research&rft.au=Talbi%2C+El-ghazali&rft.date=2016-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=240&rft.issue=1&rft.spage=171&rft_id=info:doi/10.1007%2Fs10479-015-2034-y&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4055434811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon