Combining metaheuristics with mathematical programming, constraint programming and machine learning
During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as...
Gespeichert in:
| Veröffentlicht in: | Annals of operations research Jg. 240; H. 1; S. 171 - 215 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2016
Springer Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 0254-5330, 1572-9338 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (1) Combining metaheuristics with complementary metaheuristics. (2) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (3) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (4) Combining metaheuristics with machine learning and data mining techniques. |
|---|---|
| AbstractList | During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (1) Combining metaheuristics with complementary metaheuristics. (2) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (3) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (4) Combining metaheuristics with machine learning and data mining techniques. Issue Title: SURVEYS IN OPERATIONS RESEARCH IV (INVITED SURVEYS FROM "40R," 2012-2014) During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (1) Combining metaheuristics with complementary metaheuristics. (2) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (3) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (4) Combining metaheuristics with machine learning and data mining techniques. |
| Audience | Academic |
| Author | Talbi, El-Ghazali |
| Author_xml | – sequence: 1 givenname: El-Ghazali surname: Talbi fullname: Talbi, El-Ghazali email: El-ghazali.Talbi@univ-lille1.fr organization: CNRS, INRIA, University of Lille 1 |
| BackLink | https://inria.hal.science/hal-01423492$$DView record in HAL |
| BookMark | eNp9klGL1DAQx4Oc4N7pB_Ct4IvC9cwkTZM8Lot6woIv-hzSNG1ztOmZpMp--0up6N6hEpiE4fefJP-ZS3ThZ28Reg34BjDm7yPgissSAysJplV5eoZ2wDgpJaXiAu0wYVXJKMUv0GWMdxhjAMF2yBzmqXHe-b6YbNKDXYKLyZlY_HRpKCadBpuDM3os7sPcBz1NGb4uzOxjCtr5dJ4vtG-zyAzO22K0OqyVX6LnnR6jffVrv0LfPn74ergtj18-fT7sj6WpBE-lENpyqI2sWD4S6DgQaSkRhLNGSN1hwWjV8K4hIGRLpQQjJTGtaS2lHdAr9G6rO-hR3Qc36XBSs3bqdn9Uaw5DRWglyY-Vfbux-fHfFxuTmlw0dhy1t_MSFQioMam5oBl98wS9m5fg808UcCFqyQVhf6hej1Y5383ZHbMWVfuK1bQWgFfq5i9UXq2dXLbUdi7nHwmuzwTNErOxMYfo-iHFXi8xPsZhw02YYwy2--0DYLUOitoGJVvB1Doo6pQ1_InGuJRbPvu1v-N_lWRTxnyL7204c-afogcQotKl |
| CitedBy_id | crossref_primary_10_1109_TWC_2019_2902557 crossref_primary_10_3390_biomimetics9020082 crossref_primary_10_1007_s10479_025_06506_x crossref_primary_10_1016_j_asoc_2017_10_028 crossref_primary_10_3390_app13020806 crossref_primary_10_3390_biomimetics8030278 crossref_primary_10_1016_j_ejor_2025_08_034 crossref_primary_10_1016_j_cie_2020_106929 crossref_primary_10_1016_j_asoc_2023_110672 crossref_primary_10_1080_00207543_2022_2113928 crossref_primary_10_3390_a14110313 crossref_primary_10_1007_s13042_020_01085_8 crossref_primary_10_1007_s10479_024_06209_9 crossref_primary_10_1007_s12469_019_00211_2 crossref_primary_10_3390_math9222887 crossref_primary_10_7717_peerj_cs_828 crossref_primary_10_1016_j_asoc_2020_107077 crossref_primary_10_1109_ACCESS_2021_3126015 crossref_primary_10_1016_j_ejor_2018_05_046 crossref_primary_10_1155_2019_3238574 crossref_primary_10_1109_ACCESS_2024_3378054 crossref_primary_10_3390_a11120208 crossref_primary_10_1016_j_ejor_2022_03_054 crossref_primary_10_1007_s12469_022_00319_y crossref_primary_10_1016_j_measurement_2024_116598 crossref_primary_10_3390_math10234529 crossref_primary_10_1007_s10479_024_06302_z crossref_primary_10_1007_s10732_017_9357_6 crossref_primary_10_1080_00207543_2021_2013566 crossref_primary_10_3390_math8060862 crossref_primary_10_3390_e24070957 crossref_primary_10_1039_D1ME00027F crossref_primary_10_3390_math8040555 crossref_primary_10_1016_j_eswa_2023_121369 crossref_primary_10_1007_s10479_020_03713_6 crossref_primary_10_1016_j_asoc_2024_111913 crossref_primary_10_3390_math10162920 crossref_primary_10_1007_s10479_020_03526_7 crossref_primary_10_1016_j_swevo_2023_101248 crossref_primary_10_3390_math9030225 crossref_primary_10_1016_j_asoc_2021_107640 crossref_primary_10_1109_ACCESS_2021_3060502 crossref_primary_10_1109_ACCESS_2025_3583584 crossref_primary_10_1007_s43069_020_00036_x crossref_primary_10_3390_app12020896 crossref_primary_10_3390_a13080185 crossref_primary_10_1111_itor_12996 crossref_primary_10_1111_itor_12557 crossref_primary_10_1016_j_ejor_2021_04_032 crossref_primary_10_3389_fevo_2023_1116083 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1016_j_jnca_2020_102657 crossref_primary_10_1016_j_swevo_2024_101739 crossref_primary_10_1007_s00291_020_00591_z crossref_primary_10_1007_s10479_020_03702_9 crossref_primary_10_1145_3459664 crossref_primary_10_3390_math8040507 crossref_primary_10_3390_s22114204 crossref_primary_10_1080_00207543_2024_2361436 crossref_primary_10_1016_j_swevo_2024_101617 crossref_primary_10_3390_math9202611 crossref_primary_10_1007_s10479_018_3122_6 crossref_primary_10_1016_j_asoc_2021_107774 crossref_primary_10_1007_s11831_022_09859_9 crossref_primary_10_1016_j_knosys_2023_110880 crossref_primary_10_3390_electronics9091541 crossref_primary_10_3390_app15179784 crossref_primary_10_1016_j_knosys_2024_111614 crossref_primary_10_1109_LWC_2022_3213883 crossref_primary_10_1016_j_engstruct_2022_114607 crossref_primary_10_1080_23302674_2025_2536110 crossref_primary_10_1109_TSM_2020_2999068 crossref_primary_10_1016_j_cie_2022_108505 crossref_primary_10_1111_itor_12984 crossref_primary_10_1016_j_cor_2024_106768 crossref_primary_10_1016_j_cor_2017_12_012 crossref_primary_10_3390_app14199142 crossref_primary_10_1007_s00500_023_08886_3 crossref_primary_10_3390_math9161976 crossref_primary_10_1016_j_cor_2025_107199 crossref_primary_10_1371_journal_pone_0273383 crossref_primary_10_1016_j_asoc_2021_107269 crossref_primary_10_1016_j_knosys_2024_112034 crossref_primary_10_1080_00207543_2022_2045377 |
| Cites_doi | 10.1016/0167-8191(94)00071-H 10.1007/s10107-003-0395-5 10.1109/43.55180 10.1109/CEC.2003.1299934 10.1023/A:1009642825198 10.1007/0-306-48056-5_17 10.1109/ICEC.1995.487447 10.1023/A:1009694016861 10.1016/0305-0548(91)90001-8 10.1613/jair.1 10.1023/A:1007677805582 10.1002/net.3230230804 10.1162/evco.1998.6.2.161 10.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S 10.1016/S0377-2217(97)00290-7 10.1007/s10288-013-0242-3 10.1287/ijoc.15.3.233.16078 10.1287/moor.2.3.209 10.1023/A:1009629727566 10.1007/BF01386316 10.1007/BF01096763 10.1090/dimacs/016/08 10.1007/BF02684444 10.1016/S0377-2217(97)00281-6 10.1016/S0305-0548(98)00064-1 10.1007/s10852-005-9029-7 10.1016/0167-6377(92)90028-2 10.1287/opre.45.2.226 10.1007/978-3-540-24854-5_71 10.1007/BF02125407 10.1007/3-540-46135-3_11 10.1016/j.ejor.2002.12.002 10.1023/A:1009646528813 10.1007/3-540-45356-3_86 10.1109/CEC.1999.782644 10.1016/S0167-8191(03)00014-0 10.1007/BF01719254 10.1016/j.ejor.2004.04.030 10.1007/3-540-45411-X_39 10.1090/S0002-9904-1958-10224-4 10.1016/S0377-2217(00)00268-X 10.1023/A:1021841728075 10.1287/opre.9.6.849 10.1007/BF02430365 10.1023/A:1009687210594 10.1007/s10852-005-9030-1 10.1016/0167-6377(94)90065-5 10.1023/A:1011336210885 10.1287/moor.4.3.233 10.1023/A:1016540724870 10.1109/ICEC.1995.487464 10.1287/ijoc.11.4.358 10.1287/ijoc.3.2.149 10.1109/ICEC.1994.349949 10.1002/9780470496916 10.1109/72.265961 10.1287/opre.46.3.316 10.1142/9789812812438_0003 10.1007/3-540-58484-6_286 10.1287/opre.42.5.860 10.1126/science.254.5035.1181 10.1287/inte.15.2.10 10.1016/j.ejor.2003.08.053 10.1023/A:1009661600931 10.1007/3-540-36605-9_20 10.1023/A:1009669824615 10.1007/BF02125405 10.1016/S0377-2217(96)00100-2 10.1007/11499305_5 10.1090/dimacs/020/02 10.2172/10161119 10.1016/0167-2789(90)90065-W 10.1007/3-540-46135-3_12 10.1038/323533a0 10.1080/01969720500306147 10.9746/sicetr1965.30.329 10.1109/2.144393 10.1057/jors.1990.166 10.1057/palgrave.jors.2600970 10.1016/0377-2217(95)00012-F 10.1109/ICEC.1996.542657 10.1007/978-1-4471-1589-2_10 10.1017/CBO9780511615320 10.1057/palgrave.jors.2601525 10.1007/3-540-49481-2_30 10.1007/s00500-003-0328-5 10.1016/j.ejor.2007.07.035 10.1023/A:1021140902684 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 COPYRIGHT 2016 Springer Springer Science+Business Media New York 2016 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: COPYRIGHT 2016 Springer – notice: Springer Science+Business Media New York 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION N95 3V. 7TA 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JG9 JQ2 K60 K6~ K7- KR7 L.- L6V M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC |
| DOI | 10.1007/s10479-015-2034-y |
| DatabaseName | CrossRef Gale Business: Insights ProQuest Central (Corporate) Materials Business File Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global (OCUL) Computing Database Science Database Engineering Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Materials Research Database ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Materials Business File ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Materials Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1572-9338 |
| EndPage | 215 |
| ExternalDocumentID | oai:HAL:hal-01423492v1 4055434811 A456368105 10_1007_s10479_015_2034_y |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8TC 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBO EBS EBU EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEA IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N95 N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 Z8N Z8U Z92 ZL0 ZMTXR ZYFGU ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7TA 7TB 7XB 8AL 8FD 8FK FR3 JG9 JQ2 KR7 L.- PKEHL PQEST PQUKI PRINS Q9U 1XC |
| ID | FETCH-LOGICAL-c487t-88ae716c94588a21f7129e328275b89af08534b7fb2189d3991c992cdcde33f13 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376301200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0254-5330 |
| IngestDate | Sat Nov 29 14:57:25 EST 2025 Sun Nov 09 09:41:35 EST 2025 Wed Nov 05 12:55:29 EST 2025 Sat Nov 29 13:34:35 EST 2025 Sun Nov 23 08:49:17 EST 2025 Sat Nov 29 09:15:29 EST 2025 Sat Nov 29 02:36:32 EST 2025 Tue Nov 18 22:53:26 EST 2025 Fri Feb 21 02:36:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Hybrid metaheuristics Data mining Constraint programming Machine learning Matheuristics Mathematical programming |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-88ae716c94588a21f7129e328275b89af08534b7fb2189d3991c992cdcde33f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4549-1010 |
| PQID | 1788697825 |
| PQPubID | 25585 |
| PageCount | 45 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01423492v1 proquest_miscellaneous_1816026783 proquest_journals_1788697825 gale_infotracmisc_A456368105 gale_infotracacademiconefile_A456368105 gale_businessinsightsgauss_A456368105 crossref_primary_10_1007_s10479_015_2034_y crossref_citationtrail_10_1007_s10479_015_2034_y springer_journals_10_1007_s10479_015_2034_y |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-01 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Annals of operations research |
| PublicationTitleAbbrev | Ann Oper Res |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: Springer Verlag |
| References | Sellmann, M., & Ansótegui, C. (2006). Disco—novo—gogo: Integrating local search and complete search with restarts. In The twenty-first national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference, Boston, USA. CestaACortellessaGOddiAPolicellaNSusiAA constraint-based architecture for flexible support to activity schedulingLecture Notes in Computer Science2001217536939010.1007/3-540-45411-X_39 HusbandsPMillFWarringtonSSchewefelH-PMannerRGenetic algorithms, production plan optimisation and schedulingParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer8084 BeldingTEshelmannDThe distributed genetic algorithm revistedSixth international conference on genetic algorithms1995San Mateo, CAMorgan Kaufmann HongT-PWangH-SChenW-CSimultaneous applying multiple mutation operators in genetic algorithmJournal of Heuristics20006443945510.1023/A:1009642825198 TalbiE-GMetaheuristics: From design to implementation2009New YorkWiley10.1002/9780470496916 NwanaVDarby-DowmanKMitraGA cooperative parallel heuristic for mixed zero-one linear programmingEuropean Journal of Operational Research2005164122310.1016/j.ejor.2002.12.002 BertsekasDPNetwork optimization: Continuous and discrete models1998MAAthena Scientific NissenVSolving the quadratic assignment problem with clues from natureIEEE Transactions on Neural Networks199451667210.1109/72.265961 TusonARossPAdapting operator settings in genetic algorithmsEvolutionary Computation19986216118410.1162/evco.1998.6.2.161 KarpRMProbabilistic analysis of partitioning algorithms for the traveling salesman problem in the planeMathematics of Operations Research1977220922410.1287/moor.2.3.209 FeoTAResendeMGCSmithSHA greedy randomized adaptive search procedure for maximum independent setOperations Research19944286087810.1287/opre.42.5.860 Talbi, E. G., Muntean, T., & Samarandache, I. (1994). Hybridation des algorithmes génétiques avec la recherche tabou. In Evolution Artificielle EA94. Toulouse, France. FeoTAResendeMGCGreedy randomized adaptive search proceduresJournal of Global Optimization1995610913310.1007/BF01096763 JinYA comprehensive survey of fitness approximation in evolutionary computationSoft Computing20059131210.1007/s00500-003-0328-5 ClearwaterSHHubermanBAHoggTCooperative solution of constraint satisfaction problemsScience19912541181118310.1126/science.254.5035.1181 NagarAHeraguSSHaddockJA metaheuristic algorithm for a bi-criteria scheduling problemAnnals of Operations Research19956339741410.1007/BF02125405 NemhauserGWolseyLInteger and combinatorial optimization1999LondonWiley GoldenBPepperJVossenTUsing genetic algorithms for setting parameter values in heuristic searchIntelligent Engineering Systems Through Artificial Neural Networks19981932 Sebag, M., Schoenauer, M., & Ravise, C. (1997). Toward civilized evolution: Developing inhibitions. In T. Bäck (Eds.), Seventh international conference on genetic algorithms (pp. 291–298). HansenPMladenovicMPerez-BritosDVariable neighborhood decomposition searchJournal of Heuristics20017433035010.1023/A:1011336210885 TaillardEDGambardellaLMGendreauMPotvinJ-YAdaptive memory programming: A unified view of metaheuristicsEuropean Journal of Operational Research2001135111610.1016/S0377-2217(00)00268-X TalukdarSBaerentzenLGoveADe SouzaPAsynchronous teams: Cooperation schemes for autonomous agentsJournal of Heuristics19984429532110.1023/A:1009669824615 Caseau, Y., & Laburthe, F. (1995). Disjunctive scheduling with task intervals. Technical Report LIENS-95-25, Ecole Normale Supérieure de Paris, France. Tanese, R. (1987). Parallel genetic algorithms for a hypercube. In Proceedings of the second international conference on genetic algorithms (pp. 177–183). Cambridge, MA: MIT. CookWSeymourPTour merging via branch-decompositionINFORMS Journal on Computing200315323324810.1287/ijoc.15.3.233.16078 TalbiE-GBacheletVCOSEARCH: A parallel cooperative metaheuristicJournal of Mathematical Modelling and Algorithms (JMMA)20065252210.1007/s10852-005-9029-7 Kim, H.-S., & Cho, S.-B. (2001). An efficient genetic algorithm with less fitness evaluation by clustering. In Congress on evolutionary computation CEC’01 (pp. 887–894). IEEE Press. Jog, P., Suh, J. Y., & Van Gucht, D. (1989). The effects of population size, heuristic crossover and local improvement on a genetic algorithm for the traveling salesman problem. In 3rd international conference genetic algorithms, Morgan Kaufmann, USA. TaillardEParallel iterative search methods for vehicle routing problemNetworks19932366167310.1002/net.3230230804 Sprave, J. (1999). A unified model of non-panmictic population structures in evolutionary algorithms. In Proceedings of the 1999 congress on evolutionary computation, volume 2 (pp. 1384–1391). Piscataway, NJ: IEEE Press. De Falco, I., Del Balio, R., Tarantino, E., & Vaccaro, R. (1994). Improving search by incorporating evolution principles in parallel tabu search. In IEEE conference on evolutionary computation (pp. 823–828). MinskyMNegative expertiseInternational Journal of Expert Systems1994711319 PattersonRRollandEPirkulHA memory adaptive reasoning technique for solving the capacitated minimum spanning tree problemJournal of Heuristics1999515918010.1023/A:1009629727566 DowslandKAHerbertEAKendallGUsing tree search bounds to enhance a genetic algorithm approach to two rectangle packing problemsEuropean Journal of Operational Research2006168239040210.1016/j.ejor.2004.04.030 FocacciFLaburtheFLodiAHandbook of metaheuristics, chapter Local search and constraint programming. International series in operations research and management science2002Norwell, MAKluwer Jin, Y., & Sendhoff, B. (2004). Reducing fitness evaluations using clustering techniques and neural network ensembles. In Genetic and evolutionary computation GECCO’2004, LNCS no. 3102 (pp. 688–699). Springer. CohoonJPMartinWNRichardsDSSchwefelH-PMannerRGenetic algorithms and punctuated equilibriaParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer134141 Abbattista, F., Abbattista, N., & Caponetti, L. (1995). An evolutionary and cooperative agent model for optimization. In IEEE international conference on evolutionary computation ICEC’95, pp. 668–671, Perth, Australia. Eby, D., Averill, R., Punch, W., & Goodman, E. (1998). Evaluation of injection island model GA performance on flywheel design optimization. In International conference on adaptive computing in design and manufacturing (pp. 121–136). Devon: Springer. HubermanBAThe performance of cooperative processesPhysica D199042384710.1016/0167-2789(90)90065-W Harvey, W. D., & Ginsberg, M. L. (1997). Limited discrepancy search. In IJCAI internation joint conference on artificial intelligence (pp. 607–613). Morgan Kaufmann. Koza, J., & Andre, D. (1995). Parallel genetic programming on a network of transputers. Technical Report CS-TR-95-1542, Stanford University. FisherMLAn application oriented guide to lagrangian relaxationInterfaces19851539940410.1287/inte.15.2.10 Narayek, A., Smith, S., & Ohler, C. (2003). Integrating local search advice into a refinment search solver (or not). In CP’03 Workshop on cooperative constraint problem solvers (pp. 29–43). CrainicTGToulouseMGendreauMSynchronous tabu search parallelization strategies for multi-commodity location–allocation with balancing requirementsOR Spektrum19951711312310.1007/BF01719254 TalbiE-GCombining metaheuristics with mathematical programming, constraint programming and machine learning4OR201311210115010.1007/s10288-013-0242-3 Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Effective local and guided variable neighborhood search methods for the asymmetric traveling salesman problem. In EvoWorkshop (pp. 203–312). LNCS 2037. Springer. JourdanLBasseurMTalbiE-GHybridizing exact methods and metaheuristics: A taxonomyEuropean Journal of Operational Research2009199362062910.1016/j.ejor.2007.07.035 RumelhartDEHintonGEWilliamsRJLearning representations by backpropagating errorsNature198632353353610.1038/323533a0 PrestwichSCombining the scalability of local search with the pruning techniques of systematic searchAnnals of Operations Research2002115517210.1023/A:1021140902684 Suh, J. Y., & Van Gucht, D. (1987). Incorporating heuristic information into genetic search. In 2rd international conference genetic algorithms (pp. 100–107). USA: Lawrence Erlbaum Associates. CaseauYLaburtheFHeuristics for large constrained routing problemsJournal of Heuristics1999528130310.1023/A:1009661600931 Wang, L.-H., Kao, C.-Y., Ouh-young, M., & Chen, W.-C. (1995). Molecular binding: A case study of the population-based annealing genetic algorithms. In IEEE international conference on evolutionary computation ICEC’95 (pp. 50–55). Perth, Australia. CohoonJHedgeSMartinWRichardsDGrefenstetteJJPunctuated equilibria: A parallel genetic algorithmSecond international conference on genetic algorithms1987Cambridge, MAMIT148154 DowslandKANurse scheduling with tabu search and strategic oscillationEuropean Journal of Operational Research199810639340710.1016/S0377-2217(97)00281-6 GinsbergMLDynamic backtrackingJournal of Artificial Intelligence Research199312546 Cung, V.-D., Mautor, T., Michelon, P., & Tavares, A. (1997). A scatter search based approach for the quadratic assignment problem. In IEEE international conference on evolutionary computation ICEC’97, Indianapolis, USA, April 1997. DowslandKAThomsonJMSolving a nurse scheduling problem with knapsacks, networks and tabu searchJournal of Operational Research Society20005182583310.1057/palgrave.jors.2600970 VerhoevenMGAAartsEHLParallel local searchJournal of Heuristics199511436510.1007/BF02430365 ClearwaterSHHoggTHubermanBAHubermanBACooperative problem solvingComputation: The micro and the macro view1992SingaporeWorld Scientific337010.1142/9789812812438_0003 HindiKSFleszarKCharalambousCAn effective heuristic for the CLSP with setup timesJournal of the Operations Research Society20035449049810.1057/palgrave.jors.2601525 Chabrier, A., Danna, E., & Le Pape, C. (2002). Coo R Chelouah (2034_CR26) 2004; 161 Y Jin (2034_CR77) 2005; 9 F Focacci (2034_CR59) 2002 E-G Talbi (2034_CR135) 2009 DA Abramson (2034_CR3) 1992; 25 TG Crainic (2034_CR37) 1995; 17 V Maniezzo (2034_CR95) 1999; 11 2034_CR69 OC Martin (2034_CR97) 1992; 11 A Cesta (2034_CR24) 2001; 2175 2034_CR67 RS Michalski (2034_CR99) 2000; 38 W Cook (2034_CR35) 2003; 15 L Jourdan (2034_CR80) 2009; 199 2034_CR72 GM Gutin (2034_CR66) 1999; 26 2034_CR151 DP Bertsekas (2034_CR16) 1998 2034_CR70 2034_CR150 2034_CR76 J Thiel (2034_CR142) 1994; 32 M Ribeiro (2034_CR116) 2006; 5 M Fischetti (2034_CR55) 2003; 98 JF Benders (2034_CR15) 1962; 4 2034_CR78 2034_CR79 2034_CR146 C Fonlupt (2034_CR60) 1999 RG Reynolds (2034_CR115) 2005; 36 TA Feo (2034_CR51) 1995; 6 2034_CR83 2034_CR81 PC Gilmore (2034_CR61) 1961; 9 2034_CR88 G Nemhauser (2034_CR103) 1999 2034_CR85 2034_CR86 E Taillard (2034_CR130) 2002 NLJ Ulder (2034_CR145) 1990 RM Karp (2034_CR84) 1977; 2 H Tamura (2034_CR140) 1994; 130 RE Gomory (2034_CR64) 1958; 64 J Cohoon (2034_CR32) 1987 M Minsky (2034_CR100) 1994; 7 JP Cohoon (2034_CR33) 1990 T Belding (2034_CR12) 1995 DE Rumelhart (2034_CR118) 1986; 323 TG Crainic (2034_CR38) 2003 2034_CR89 E Taillard (2034_CR129) 2003; 9 TA Feo (2034_CR53) 1991; 18 2034_CR92 2034_CR10 2034_CR98 2034_CR96 A Nagar (2034_CR101) 1995; 63 ED Taillard (2034_CR132) 2001; 135 I Falco De (2034_CR42) 1997; 59 T-P Hong (2034_CR73) 2000; 6 JE Beasley (2034_CR11) 1990; 41 P Husbands (2034_CR75) 1990 2034_CR90 R Bellman (2034_CR14) 1957 2034_CR91 E Balas (2034_CR9) 1998; 4 K Apt (2034_CR7) 2003 RS Engelmore (2034_CR49) 1988 A Tuson (2034_CR144) 1998; 6 KA Dowsland (2034_CR45) 1998; 106 KD Boese (2034_CR18) 1994; 16 2034_CR17 P Hansen (2034_CR68) 2001; 7 ML Fisher (2034_CR56) 1985; 15 2034_CR22 M Juenger (2034_CR82) 1995; 20 2034_CR20 C Fleurent (2034_CR57) 1994; 16 E-G Talbi (2034_CR134) 2013; 11 K Shahookar (2034_CR123) 1990; 9 V Chvatal (2034_CR29) 1979; 4 B Golden (2034_CR63) 1998; 1 BA Huberman (2034_CR74) 1990; 42 2034_CR119 CC Aggarwal (2034_CR4) 1997; 45 2034_CR25 2034_CR114 2034_CR113 2034_CR112 2034_CR110 2034_CR28 H Braun (2034_CR19) 1990 H Chen (2034_CR27) 1994 KE Rosing (2034_CR117) 1997; 97 2034_CR1 2034_CR2 SW Mahfoud (2034_CR94) 1995; 21 2034_CR107 ML Ginsberg (2034_CR62) 1993; 1 2034_CR36 S Prestwich (2034_CR111) 2002; 115 M Toulouse (2034_CR143) 1996 K Kostikas (2034_CR87) 2004 2034_CR102 SH Clearwater (2034_CR30) 1992 KA Dowsland (2034_CR46) 2006; 168 TA Feo (2034_CR52) 1994; 42 JP Cohoon (2034_CR34) 1991 2034_CR39 2034_CR141 2034_CR40 V Nwana (2034_CR106) 2005; 164 R Patterson (2034_CR108) 1999; 5 2034_CR43 2034_CR44 E Taillard (2034_CR128) 1993; 23 2034_CR41 E-G Talbi (2034_CR136) 2006; 5 E-G Talbi (2034_CR133) 2002; 8 W Nuijten (2034_CR105) 1998; 3 KA Dowsland (2034_CR47) 2000; 51 A Federgruen (2034_CR50) 1999; 46 G Pesant (2034_CR109) 1999; 5 EK Burke (2034_CR21) 2003 S Voss (2034_CR149) 1993 Y Caseau (2034_CR23) 1999; 5 2034_CR138 2034_CR48 2034_CR137 C Fleurent (2034_CR58) 1996; 63 H-M Voigt (2034_CR148) 1990 V Nissen (2034_CR104) 1994; 5 JJ Grefenstette (2034_CR65) 1987 2034_CR131 P Augerat (2034_CR8) 1998; 106 SH Clearwater (2034_CR31) 1991; 254 HR Lourenco (2034_CR93) 1995; 83 2034_CR54 KS Hindi (2034_CR71) 2003; 54 MGA Verhoeven (2034_CR147) 1995; 1 RM Aiex (2034_CR5) 2003; 29 D Applegate (2034_CR6) 1991; 3 RK Belew (2034_CR13) 1991 2034_CR127 2034_CR126 2034_CR125 S Talukdar (2034_CR139) 1998; 4 2034_CR124 2034_CR122 2034_CR121 2034_CR120 |
| References_xml | – reference: Jahuira, C. A. R., & Cuadros-Vargas, E. (2003). Solving the TSP by mixing GAs with minimal spanning trees. In First international conference of the peruvian computer society (pp. 123–132), Lima, Peru. – reference: Sefraoui, M., & Periaux, J. (2000). A hierarchical genetic algorithm using multiple models for optimization. In Parallel problem solving from nature PPSN’2000, LNCS no. 1917 (pp. 879–888). Springer. – reference: BalasENiehausWOptimized crossover-based genetic algorithms for the maximum cardinality and maximum weight clique problemsJournal of Heuristics19984210712210.1023/A:1009646528813 – reference: Narayek, A., Smith, S., & Ohler, C. (2003). Integrating local search advice into a refinment search solver (or not). In CP’03 Workshop on cooperative constraint problem solvers (pp. 29–43). – reference: TaillardEVossSEssays and surveys in metaheuristics, chapter POPMUSIC: Partial optimization metaheuristic under special intensification conditions2002DordrechtKluwer – reference: TalbiE-GCombining metaheuristics with mathematical programming, constraint programming and machine learning4OR201311210115010.1007/s10288-013-0242-3 – reference: ChvatalVA greedy heuristic for the set covering problemMathematics of Operations Research19794323323510.1287/moor.4.3.233 – reference: Yagiura, M., & Ibaraki, T. (1996). Metaheuristics as robust and simple optimization tools. In IEEE International conference on evolutionary computation, ICEC’96 (pp. 541–546). – reference: CohoonJHedgeSMartinWRichardsDGrefenstetteJJPunctuated equilibria: A parallel genetic algorithmSecond international conference on genetic algorithms1987Cambridge, MAMIT148154 – reference: KarpRMProbabilistic analysis of partitioning algorithms for the traveling salesman problem in the planeMathematics of Operations Research1977220922410.1287/moor.2.3.209 – reference: FocacciFLaburtheFLodiAHandbook of metaheuristics, chapter Local search and constraint programming. International series in operations research and management science2002Norwell, MAKluwer – reference: CohoonJPMartinWNRichardsDSBelewRKBookerLBA multi-population genetic algorithm for solving the k-partition problem on hypercubesFourth international conference on genetic algorithms1991San Mateo, CAMorgan Kaufmann244248 – reference: ReynoldsRGMichalewiczZPengBCultural algorithms: Computational modeling of how cultures learn to solve problems—an engineering exampleCybernetics and Systems200536875377110.1080/01969720500306147 – reference: CookWSeymourPTour merging via branch-decompositionINFORMS Journal on Computing200315323324810.1287/ijoc.15.3.233.16078 – reference: Habet, D., Li, C. M., Devendeville, L., & Vasquez, M. (2002). A hybrid approach for SAT. In CP’2003 principles and practice of constraint programming, LNCS No. 2470 (pp. 172–184). Ithaca: Springer. – reference: Levine, D. (1994). A parallel genetic algorithm for the set partitioning problem. Ph.D. thesis, Argonne National Laboratory, Illinois Institute of Technology, Argonne, USA. – reference: Koza, J., & Andre, D. (1995). Parallel genetic programming on a network of transputers. Technical Report CS-TR-95-1542, Stanford University. – reference: FonluptCRobillardDPreuxPTalbiE-GMeta-heuristics—advances and trends in local search paradigms for optimization, chapter Fitness landscape and performance of metaheuristics1999DordrechtKluwer – reference: GinsbergMLDynamic backtrackingJournal of Artificial Intelligence Research199312546 – reference: BeldingTEshelmannDThe distributed genetic algorithm revistedSixth international conference on genetic algorithms1995San Mateo, CAMorgan Kaufmann – reference: Chabrier, A., Danna, E., & Le Pape, C. (2002). Coopération entre génération de colonnes sans cycle et recherche locale appliquée au routage de véhicules. In Huitièmes Journées Nationales sur la résolution de Problèmes NP-Complets JNPC’2002, Nice, France. – reference: Puchinger, J., & Raidl, G. R. (2005). Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification. In Artificial intelligence and knowledge engineering applications: A bioinspired approach, LNCS vol. 3562 (pp. 41–53). Berlin: Springer. – reference: PesantGGendreauMA view of local search in constraint programmingJournal of Heuristics1999525527910.1023/A:1009694016861 – reference: Kim, H., Hayashi, Y., & Nara, K. (1995). The performance of hybridized algorithm of genetic algorithm simulated annealing and tabu search for thermal unit maintenance scheduling. In 2nd IEEE conference on evolutionary computation ICEC’95 (pp. 114–119), Perth, Australia. – reference: Abbattista, F., Abbattista, N., & Caponetti, L. (1995). An evolutionary and cooperative agent model for optimization. In IEEE international conference on evolutionary computation ICEC’95, pp. 668–671, Perth, Australia. – reference: MinskyMNegative expertiseInternational Journal of Expert Systems1994711319 – reference: TalbiE-GA taxonomy of hybrid metaheuristicsJournal of Heuristics2002854156410.1023/A:1016540724870 – reference: CrainicTGToulouseMGendreauMSynchronous tabu search parallelization strategies for multi-commodity location–allocation with balancing requirementsOR Spektrum19951711312310.1007/BF01719254 – reference: FleurentCFerlandJAGenetic hybrids for the quadratic assignment problemDIMACS Series in Discrete Mathematics and Theoretical Computer Science199416173188 – reference: NissenVSolving the quadratic assignment problem with clues from natureIEEE Transactions on Neural Networks199451667210.1109/72.265961 – reference: Dalboni, F. L., Ochi, L. S., & Drummond, L. M. D. (2003). On improving evolutionary algorithms by using data mining for the oil collector vehicle routing problem. In International network optimization conference INOC’2003, Paris, France, Oct 2003. – reference: Jin, Y., & Sendhoff, B. (2004). Reducing fitness evaluations using clustering techniques and neural network ensembles. In Genetic and evolutionary computation GECCO’2004, LNCS no. 3102 (pp. 688–699). Springer. – reference: Jog, P., Suh, J. Y., & Van Gucht, D. (1989). The effects of population size, heuristic crossover and local improvement on a genetic algorithm for the traveling salesman problem. In 3rd international conference genetic algorithms, Morgan Kaufmann, USA. – reference: ShahookarKMazumderPA genetic approach to standard cell placement using meta-genetic parameter optimizationIEEE Transaction on Computer-Aided Design19909550051110.1109/43.55180 – reference: ChenHFlannNSDavidorYSchwefelH-PMannerRParallel simulated annealing and genetic algorithms: A space of hybrid methodsThird conference on parallel problem solving from nature1994JerusalemSpringer42843610.1007/3-540-58484-6_286 – reference: FleurentCFerlandJAGenetic and hybrid algorithms for graph coloringAnnals of Operations Research199663343746110.1007/BF02125407 – reference: ClearwaterSHHoggTHubermanBAHubermanBACooperative problem solvingComputation: The micro and the macro view1992SingaporeWorld Scientific337010.1142/9789812812438_0003 – reference: FeoTAResendeMGCGreedy randomized adaptive search proceduresJournal of Global Optimization1995610913310.1007/BF01096763 – reference: LourencoHRJob-shop scheduling: Computational study of local search and large-step optimization methodsEuropean Journal of Operational Research19958334736710.1016/0377-2217(95)00012-F – reference: BraunHSchwefelH-PMannerROn solving traveling salesman problems by genetic algorithmsParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer129133 – reference: NagarAHeraguSSHaddockJA metaheuristic algorithm for a bi-criteria scheduling problemAnnals of Operations Research19956339741410.1007/BF02125405 – reference: GilmorePCGomoryREA linear programming approach to the cutting stock problemOperations Research1961984985910.1287/opre.9.6.849 – reference: GrefenstetteJJDavisLIncorporating problem specific knowledge into genetic algorithmsGenetic algorithms and simulated annealing, research notes in artificial intelligence1987San Mateo, CAMorgan Kaufmann4260 – reference: Davis, L. (1985). Job-shop scheduling with genetic algorithms. In J. J. Grefenstette (Ed.), International conference on genetic algorithms and their applications (pp. 136–140). Pittsburgh. – reference: TaillardEParallel iterative search methods for vehicle routing problemNetworks19932366167310.1002/net.3230230804 – reference: Talbi, E.-G., Fonlupt, C., Preux, P., & Robillard, D. (1998). Paysages de problèmes d’optimisation et performances des méta-heuristiques. In Premier Congrés de la Société Francaise de Recherche Opérationnelle et Aide à la Décision ROAD, Paris, France. – reference: BendersJFPartitioning procedures for solving mixed-variables programming problemsNumerische Mathematik1962423825210.1007/BF01386316 – reference: DowslandKAThomsonJMSolving a nurse scheduling problem with knapsacks, networks and tabu searchJournal of Operational Research Society20005182583310.1057/palgrave.jors.2600970 – reference: MahfoudSWGoldbergDEParallel recombinative simulated annealing: A genetic algorithmParallel Computing19952112810.1016/0167-8191(94)00071-H – reference: RumelhartDEHintonGEWilliamsRJLearning representations by backpropagating errorsNature198632353353610.1038/323533a0 – reference: BoeseKDKahngABMudduSNew adaptive multi-start techniques for combinatorial global optimizationsOperations Research Letters199416210111310.1016/0167-6377(94)90065-5 – reference: DowslandKANurse scheduling with tabu search and strategic oscillationEuropean Journal of Operational Research199810639340710.1016/S0377-2217(97)00281-6 – reference: Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In M. Maher & J.-F. Puget (Eds.), CP’98 principle and practice of constraint programming, LNCS no. 1520 (pp. 417–431). – reference: TamuraHHiraharaAHatonoIUmanoMAn approximate solution method for combinatorial optimization—hybrid approach of genetic algorithm and lagrangean relaxation methodTransactions of the Society of Instrument and Control Engineers199413032933610.9746/sicetr1965.30.329 – reference: AugeratPBelenguerJMBenaventECorberanANaddefDSeparating capacity constraints in the CVRP using tabu searchEuropean Journal of Operational Research1998106254655710.1016/S0377-2217(97)00290-7 – reference: AbramsonDAA very high speed architecture to support simulated annealingIEEE Computer199225273410.1109/2.144393 – reference: MichalskiRSLearnable evolution model: Evolutionary processes guided by machine learningMachine Learning200038194010.1023/A:1007677805582 – reference: Tanese, R. (1987). Parallel genetic algorithms for a hypercube. In Proceedings of the second international conference on genetic algorithms (pp. 177–183). Cambridge, MA: MIT. – reference: Crainic, T. G., Nguyen, A. T., & Gendreau, M. (1997). Cooperative multi-thread parallel tabu search with evolutionary adaptive memory. In 2nd International conference on metaheuristics. Sophia Antipolis, France. – reference: VoigtH-MBornJSantibanez-KorefISchwefelH-PMannerRModelling and simulation of distributed evolutionary search processes for function optimizationParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer373380 – reference: AggarwalCCOrlinJBTaiRPAn optimized crossover for the maximum independent setOperations Research19974522623410.1287/opre.45.2.226 – reference: TalukdarSBaerentzenLGoveADe SouzaPAsynchronous teams: Cooperation schemes for autonomous agentsJournal of Heuristics19984429532110.1023/A:1009669824615 – reference: VossSNetwork optimization problems, chapter Tabu search: Applications and prospects1993SingaporeWorld Scientific – reference: Sebag, M., Schoenauer, M., & Ravise, C. (1997). Toward civilized evolution: Developing inhibitions. In T. Bäck (Eds.), Seventh international conference on genetic algorithms (pp. 291–298). – reference: JourdanLBasseurMTalbiE-GHybridizing exact methods and metaheuristics: A taxonomyEuropean Journal of Operational Research2009199362062910.1016/j.ejor.2007.07.035 – reference: HansenPMladenovicMPerez-BritosDVariable neighborhood decomposition searchJournal of Heuristics20017433035010.1023/A:1011336210885 – reference: Wang, L.-H., Kao, C.-Y., Ouh-young, M., & Chen, W.-C. (1995). Molecular binding: A case study of the population-based annealing genetic algorithms. In IEEE international conference on evolutionary computation ICEC’95 (pp. 50–55). Perth, Australia. – reference: Krueger, M. (1993). Méthodes d’analyse d’algorithmes d’optimisation stochastiques à l’aide d’algorithmes génétiques. Ph.D. thesis, Ecole Nationale Supèrieure des Télécommunications, Paris, France. – reference: ToulouseMCrainicTGendreauMOsmanIHKellyJPCommunication issues in designing cooperative multi-thread parallel searchesMeta-heuristics: Theory and applications1996DordrechtKluwer501522 – reference: MartinOCOttoSWFeltenEWLarge-step markov chains for the TSP: Incorporating local search heuristicsOperation Research Letters19921121922410.1016/0167-6377(92)90028-2 – reference: CohoonJPMartinWNRichardsDSSchwefelH-PMannerRGenetic algorithms and punctuated equilibriaParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer134141 – reference: BeasleyJEOR-Library: Distributing test problems by electronic mailJournal of the Operational Research Society199041111069107210.1057/jors.1990.166 – reference: GomoryREOutline of an algorithm for integer solutions to linear programsBulletin AMS19586427527810.1090/S0002-9904-1958-10224-4 – reference: Sellmann, M., & Ansótegui, C. (2006). Disco—novo—gogo: Integrating local search and complete search with restarts. In The twenty-first national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference, Boston, USA. – reference: VerhoevenMGAAartsEHLParallel local searchJournal of Heuristics199511436510.1007/BF02430365 – reference: Filho, G. R., & Lorena, L. A. N. (2000). Constructive genetic algorithm and column generation: An application to graph coloring. In APORS’2000 conference of the association of the Asian-Pacific operations research societies within IFORS. – reference: Hogg, T., & Williams, C. (1993). Solving the really hard problems with cooperative search. In 11th conference on artificial intelligemce AAAI’93 (pp. 231–236). AAAI Press. – reference: NwanaVDarby-DowmanKMitraGA cooperative parallel heuristic for mixed zero-one linear programmingEuropean Journal of Operational Research2005164122310.1016/j.ejor.2002.12.002 – reference: KostikasKFragakisCKeijzerMGenetic programming applied to mixed integer programmingEuroGP conference on genetic programming, LNCS vol. 30032004BerlinSpringer113124 – reference: De Falco, I., Del Balio, R., Tarantino, E., & Vaccaro, R. (1994). Improving search by incorporating evolution principles in parallel tabu search. In IEEE conference on evolutionary computation (pp. 823–828). – reference: Rasheed, K., Vattam, S., & Ni, X. (2002). Comparison of methods for developing dynamic reduced models for design optimization. In CEC’2002 congress on evolutionary computation (pp. 390–395). – reference: BertsekasDPNetwork optimization: Continuous and discrete models1998MAAthena Scientific – reference: Mariano, C. E., & Morales, E. (1998). A multiple objective ant-q algorithm for the design of water distribution irrigation networks. In First international workshop on ant colony optimization ANTS’98. Belgium: Brussels. – reference: Chu, P. C. (1997). A genetic algorithm approach for combinatorial optimization problems. Ph.D. thesis, University of London, London, UK. – reference: Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: Column generation for huge integer programs. Operations Research, 46(3), 316–329. – reference: BurkeEKKendallGNewallJHartERossPSchulemburgSHandbook of metaheuristics, chapter hyper-heuristics: An emerging direction in modern search technology2003DordrechtKluwer – reference: CaseauYLaburtheFHeuristics for large constrained routing problemsJournal of Heuristics1999528130310.1023/A:1009661600931 – reference: NuijtenWLe PapeCConstraint based job scheduling with ILOG schedulerJournal of Heuristics1998327128610.1023/A:1009687210594 – reference: TusonARossPAdapting operator settings in genetic algorithmsEvolutionary Computation19986216118410.1162/evco.1998.6.2.161 – reference: Sprave, J. (1999). A unified model of non-panmictic population structures in evolutionary algorithms. In Proceedings of the 1999 congress on evolutionary computation, volume 2 (pp. 1384–1391). Piscataway, NJ: IEEE Press. – reference: TalbiE-GBacheletVCOSEARCH: A parallel cooperative metaheuristicJournal of Mathematical Modelling and Algorithms (JMMA)20065252210.1007/s10852-005-9029-7 – reference: FeoTAVenkatramanKBardJFA GRASP for a difficult single machine scheduling problemComputers and Operations Research19911863564310.1016/0305-0548(91)90001-8 – reference: O’Reilly, U.-M., & Oppacher, F. (1995). Hybridized crossover-based techniques for program discovery. In IEEE international conference on evolutionary computation ICEC’95 (pp. 573–578). Perth, Australia. – reference: Lin, F. T., Kao, C. Y., & Hsu, C. C. (1991). Incorporating genetic algorithms into simulated annealing. In Proceedings of the Fourth International Symposium on AI (pp. 290–297). – reference: Boese, K. D. (1996). Models for iterative global optimization. Ph.D. thesis, University of California, Los Angeles. – reference: ClearwaterSHHubermanBAHoggTCooperative solution of constraint satisfaction problemsScience19912541181118310.1126/science.254.5035.1181 – reference: ThielJVossSSome experiences on solving multiconstraint zero-one knapsack problems with genetic algorithmsINFOR1994324226242 – reference: Abramson, D., Logothetis, P., Postula, A., & Randall, M. (1997). Application specific computers for combinatorial optimisation. InAustralien Computer Architecture Workshop, Sydney, Australia. – reference: PattersonRRollandEPirkulHA memory adaptive reasoning technique for solving the capacitated minimum spanning tree problemJournal of Heuristics1999515918010.1023/A:1009629727566 – reference: JuengerMReineltGThienelSPractical problem solving with cutting plane algorithms in combinatorial optimizationDIMACS series in discrete mathematics and theoretical computer science199520111152 – reference: Dimitrescu, I., & Stutzle, T. (2003). Combinations of local search and exact algorithms. In Evo workshops (pp. 211–223). – reference: Salami, M., & Cain, G. (1996). Genetic algorithm processor on reprogrammable architectures. In Fifth annual conference on evolutionary programming EP’96. San Diego, CA: MIT Press. – reference: HindiKSFleszarKCharalambousCAn effective heuristic for the CLSP with setup timesJournal of the Operations Research Society20035449049810.1057/palgrave.jors.2601525 – reference: DowslandKAHerbertEAKendallGUsing tree search bounds to enhance a genetic algorithm approach to two rectangle packing problemsEuropean Journal of Operational Research2006168239040210.1016/j.ejor.2004.04.030 – reference: Kamarainen, O., & Sakkout, H. E. (2002). Local probing applied to scheduling. In CP’2002 international conference on principles and practice of constraint programming (pp. 155–171). – reference: Talbi, E. G., Muntean, T., & Samarandache, I. (1994). Hybridation des algorithmes génétiques avec la recherche tabou. In Evolution Artificielle EA94. Toulouse, France. – reference: Hart, W. E. (1994). Adaptive global optimization with local search. Ph.D. thesis, University of California, San Diego. – reference: FedergruenATzurMTime-partitioning heuristics: Application to one warehouse, multi-item, multi-retailer lot-sizing problemsNaval Research Logistics19994646348610.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S – reference: FeoTAResendeMGCSmithSHA greedy randomized adaptive search procedure for maximum independent setOperations Research19944286087810.1287/opre.42.5.860 – reference: Stutzle, T., & Hoos, H. H. (1997). The MAX-MIN ant system and local search for combinatorial optimization problems: Towards adaptive tools for global optimization. In 2nd international conference on metaheuristics (pp. 191–193). Sophia Antipolis, France. INRIA. – reference: BellmanRDynamic programming1957Princeton, NJPrinceton University Press – reference: Potts, C. N., & Velde, S. L. (1995). Dynasearch- iterative local improvement by dynamic programming. Technical Report TR, University of Twente, Netherlands. – reference: GutinGMExponential neighborhood local search for the traveling salesman problemComputers and Operations Research199926431332010.1016/S0305-0548(98)00064-1 – reference: UlderNLJAartsEHLBandeltH-JVan LaarhovenPJMPeschESchewefelH-PMannerRGenetic local search algorithms for the traveling salesman problemParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer109116 – reference: JinYA comprehensive survey of fitness approximation in evolutionary computationSoft Computing20059131210.1007/s00500-003-0328-5 – reference: FischettiMLodiALocal branchingMathematical Programming B200398234710.1007/s10107-003-0395-5 – reference: FisherMLAn application oriented guide to lagrangian relaxationInterfaces19851539940410.1287/inte.15.2.10 – reference: Louis, S. J. (2003). Genetic learning from experiences. In Congress on Evolutionary Computations CEC’2003 (pp. 2118–2125). Australia. – reference: Vasquez, M., & Hao, J.-K. (2001). A hybrid approach for the 0-1 multidimensional knapsack problem. In Proceedings of the international joint conference on artificial intelligence IJCAI (pp. 328–333). – reference: Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Effective local and guided variable neighborhood search methods for the asymmetric traveling salesman problem. In EvoWorkshop (pp. 203–312). LNCS 2037. Springer. – reference: RibeiroMPlastinoAMartinsSHybridization of GRASP metaheuristic with data mining techniquesJournal of Mathematical Modelling and Algorithms200651234110.1007/s10852-005-9030-1 – reference: EngelmoreRSMorganABlackboard systems1988ReadingAddison-Wesley – reference: Eby, D., Averill, R., Punch, W., & Goodman, E. (1998). Evaluation of injection island model GA performance on flywheel design optimization. In International conference on adaptive computing in design and manufacturing (pp. 121–136). Devon: Springer. – reference: RosingKEReVelleCSHeuristic concentration: Two stage solution constructionEuropean Journal of Operational Research1997971758610.1016/S0377-2217(96)00100-2 – reference: Ramsey, C. L., & Grefenstette, J. J. (1993). Case-based initialization of genetic algorithms. In Fifth international conference on genetic algorithms (pp. 84–91). – reference: Caseau, Y., & Laburthe, F. (1995). Disjunctive scheduling with task intervals. Technical Report LIENS-95-25, Ecole Normale Supérieure de Paris, France. – reference: Harvey, W. D., & Ginsberg, M. L. (1997). Limited discrepancy search. In IJCAI internation joint conference on artificial intelligence (pp. 607–613). Morgan Kaufmann. – reference: HubermanBAThe performance of cooperative processesPhysica D199042384710.1016/0167-2789(90)90065-W – reference: AiexRMBinatoSRamakrishnaRSParallel GRASP with path relinking for job shop schedulingParallel Computing20032939343010.1016/S0167-8191(03)00014-0 – reference: BelewRKMcInernyJSchraudolphNNLangtonCGTaylorCDoyne FarmerJDRasmussenSEvolving networks: Using genetic algorithms with connectionist learningSecond conference on artificial life1991USAAddison-Wesley511548 – reference: Suh, J. Y., & Van Gucht, D. (1987). Incorporating heuristic information into genetic search. In 2rd international conference genetic algorithms (pp. 100–107). USA: Lawrence Erlbaum Associates. – reference: PrestwichSCombining the scalability of local search with the pruning techniques of systematic searchAnnals of Operations Research2002115517210.1023/A:1021140902684 – reference: NemhauserGWolseyLInteger and combinatorial optimization1999LondonWiley – reference: AptKPrinciples of constraint programming2003CambridgeCambridge University Press10.1017/CBO9780511615320 – reference: TalbiE-GMetaheuristics: From design to implementation2009New YorkWiley10.1002/9780470496916 – reference: ApplegateDCookWA computational study of the job-shop scheduling problemORSA Journal on Computing1991314915610.1287/ijoc.3.2.149 – reference: TaillardEHeuristic methods for large centroid clustering problemsJournal of Heuristics200391517410.1023/A:1021841728075 – reference: ChelouahRSiarryPA hybrid method combining continuous tabu search and Nelder–Mead simplex algorithms for the global optimization of multiminima functionsEuropean Journal of Operational Research2004161363665410.1016/j.ejor.2003.08.053 – reference: ManiezzoVExact and approximate nondeterministic tree-search procedures for the quadratic assignment problemINFORMS Journal on Computing199911435836910.1287/ijoc.11.4.358 – reference: CestaACortellessaGOddiAPolicellaNSusiAA constraint-based architecture for flexible support to activity schedulingLecture Notes in Computer Science2001217536939010.1007/3-540-45411-X_39 – reference: Taillard, E. D., & Gambardella, L. (1997). Adaptive memories for the quadratic assignment problem. Technical Report 87-97, IDSIA, Lugano, Switzerland. – reference: Cung, V.-D., Mautor, T., Michelon, P., & Tavares, A. (1997). A scatter search based approach for the quadratic assignment problem. In IEEE international conference on evolutionary computation ICEC’97, Indianapolis, USA, April 1997. – reference: HongT-PWangH-SChenW-CSimultaneous applying multiple mutation operators in genetic algorithmJournal of Heuristics20006443945510.1023/A:1009642825198 – reference: Kim, H.-S., & Cho, S.-B. (2001). An efficient genetic algorithm with less fitness evaluation by clustering. In Congress on evolutionary computation CEC’01 (pp. 887–894). IEEE Press. – reference: Jourdan, L., Dhaenens, C., & Talbi, E.-G. (2006). Using data mining techniques to help metaheuristics: A short survey. In Hybrid metaheuristics (HM’2006), volume 4030 of LNCS (pp. 57–69), Gran Canaria, Spain. – reference: CrainicTGToulouseMGloverFWKochenbergerGAParallel strategies for metaheuristicsHandbook of metaheuristics2003New YorkSpringer475513 – reference: HusbandsPMillFWarringtonSSchewefelH-PMannerRGenetic algorithms, production plan optimisation and schedulingParallel problem solving from nature, volume 496 of LNCS1990DortmundSpringer8084 – reference: GoldenBPepperJVossenTUsing genetic algorithms for setting parameter values in heuristic searchIntelligent Engineering Systems Through Artificial Neural Networks19981932 – reference: Mautor, T., & Michelon, P. (1997). Mimausa: A new hybrid method combining exact solution and local search. In Second international conference on metaheuristics. Sophia-Antipolis, France. – reference: De FalcoIDel BalioRTarantinoEAn analysis of parallel heuristics for task allocation in multicomputersComputing199759325927510.1007/BF02684444 – reference: TaillardEDGambardellaLMGendreauMPotvinJ-YAdaptive memory programming: A unified view of metaheuristicsEuropean Journal of Operational Research2001135111610.1016/S0377-2217(00)00268-X – volume: 21 start-page: 1 year: 1995 ident: 2034_CR94 publication-title: Parallel Computing doi: 10.1016/0167-8191(94)00071-H – volume: 98 start-page: 23 year: 2003 ident: 2034_CR55 publication-title: Mathematical Programming B doi: 10.1007/s10107-003-0395-5 – ident: 2034_CR86 – volume: 9 start-page: 500 issue: 5 year: 1990 ident: 2034_CR123 publication-title: IEEE Transaction on Computer-Aided Design doi: 10.1109/43.55180 – ident: 2034_CR146 – ident: 2034_CR92 doi: 10.1109/CEC.2003.1299934 – ident: 2034_CR137 – ident: 2034_CR114 – volume: 6 start-page: 439 issue: 4 year: 2000 ident: 2034_CR73 publication-title: Journal of Heuristics doi: 10.1023/A:1009642825198 – ident: 2034_CR40 – ident: 2034_CR25 – volume: 32 start-page: 226 issue: 4 year: 1994 ident: 2034_CR142 publication-title: INFOR – start-page: 475 volume-title: Handbook of metaheuristics year: 2003 ident: 2034_CR38 doi: 10.1007/0-306-48056-5_17 – volume-title: Integer and combinatorial optimization year: 1999 ident: 2034_CR103 – ident: 2034_CR107 doi: 10.1109/ICEC.1995.487447 – ident: 2034_CR54 – ident: 2034_CR81 – volume: 5 start-page: 255 year: 1999 ident: 2034_CR109 publication-title: Journal of Heuristics doi: 10.1023/A:1009694016861 – volume: 18 start-page: 635 year: 1991 ident: 2034_CR53 publication-title: Computers and Operations Research doi: 10.1016/0305-0548(91)90001-8 – volume-title: Handbook of metaheuristics, chapter Local search and constraint programming. International series in operations research and management science year: 2002 ident: 2034_CR59 – volume: 1 start-page: 25 year: 1993 ident: 2034_CR62 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1 – ident: 2034_CR89 – volume: 38 start-page: 9 issue: 1 year: 2000 ident: 2034_CR99 publication-title: Machine Learning doi: 10.1023/A:1007677805582 – volume: 7 start-page: 13 issue: 1 year: 1994 ident: 2034_CR100 publication-title: International Journal of Expert Systems – ident: 2034_CR126 – ident: 2034_CR22 – volume: 23 start-page: 661 year: 1993 ident: 2034_CR128 publication-title: Networks doi: 10.1002/net.3230230804 – volume-title: Network optimization problems, chapter Tabu search: Applications and prospects year: 1993 ident: 2034_CR149 – volume: 6 start-page: 161 issue: 2 year: 1998 ident: 2034_CR144 publication-title: Evolutionary Computation doi: 10.1162/evco.1998.6.2.161 – ident: 2034_CR2 – volume: 46 start-page: 463 year: 1999 ident: 2034_CR50 publication-title: Naval Research Logistics doi: 10.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S – ident: 2034_CR119 – volume: 106 start-page: 546 issue: 2 year: 1998 ident: 2034_CR8 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00290-7 – volume: 11 start-page: 101 issue: 2 year: 2013 ident: 2034_CR134 publication-title: 4OR doi: 10.1007/s10288-013-0242-3 – volume: 15 start-page: 233 issue: 3 year: 2003 ident: 2034_CR35 publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.15.3.233.16078 – volume: 2 start-page: 209 year: 1977 ident: 2034_CR84 publication-title: Mathematics of Operations Research doi: 10.1287/moor.2.3.209 – ident: 2034_CR150 – ident: 2034_CR102 – ident: 2034_CR36 – volume: 5 start-page: 159 year: 1999 ident: 2034_CR108 publication-title: Journal of Heuristics doi: 10.1023/A:1009629727566 – volume: 4 start-page: 238 year: 1962 ident: 2034_CR15 publication-title: Numerische Mathematik doi: 10.1007/BF01386316 – ident: 2034_CR17 – volume: 6 start-page: 109 year: 1995 ident: 2034_CR51 publication-title: Journal of Global Optimization doi: 10.1007/BF01096763 – volume: 16 start-page: 173 year: 1994 ident: 2034_CR57 publication-title: DIMACS Series in Discrete Mathematics and Theoretical Computer Science doi: 10.1090/dimacs/016/08 – volume: 59 start-page: 259 issue: 3 year: 1997 ident: 2034_CR42 publication-title: Computing doi: 10.1007/BF02684444 – volume: 106 start-page: 393 year: 1998 ident: 2034_CR45 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00281-6 – volume: 26 start-page: 313 issue: 4 year: 1999 ident: 2034_CR66 publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(98)00064-1 – volume: 5 start-page: 5 issue: 2 year: 2006 ident: 2034_CR136 publication-title: Journal of Mathematical Modelling and Algorithms (JMMA) doi: 10.1007/s10852-005-9029-7 – volume: 11 start-page: 219 year: 1992 ident: 2034_CR97 publication-title: Operation Research Letters doi: 10.1016/0167-6377(92)90028-2 – start-page: 134 volume-title: Parallel problem solving from nature, volume 496 of LNCS year: 1990 ident: 2034_CR33 – ident: 2034_CR98 – volume: 45 start-page: 226 year: 1997 ident: 2034_CR4 publication-title: Operations Research doi: 10.1287/opre.45.2.226 – ident: 2034_CR78 doi: 10.1007/978-3-540-24854-5_71 – volume: 63 start-page: 437 issue: 3 year: 1996 ident: 2034_CR58 publication-title: Annals of Operations Research doi: 10.1007/BF02125407 – ident: 2034_CR83 doi: 10.1007/3-540-46135-3_11 – volume: 164 start-page: 12 year: 2005 ident: 2034_CR106 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2002.12.002 – volume: 4 start-page: 107 issue: 2 year: 1998 ident: 2034_CR9 publication-title: Journal of Heuristics doi: 10.1023/A:1009646528813 – ident: 2034_CR121 doi: 10.1007/3-540-45356-3_86 – ident: 2034_CR39 – ident: 2034_CR125 doi: 10.1109/CEC.1999.782644 – ident: 2034_CR141 – volume: 29 start-page: 393 year: 2003 ident: 2034_CR5 publication-title: Parallel Computing doi: 10.1016/S0167-8191(03)00014-0 – volume: 17 start-page: 113 year: 1995 ident: 2034_CR37 publication-title: OR Spektrum doi: 10.1007/BF01719254 – volume: 168 start-page: 390 issue: 2 year: 2006 ident: 2034_CR46 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.04.030 – ident: 2034_CR113 – ident: 2034_CR138 – volume: 2175 start-page: 369 year: 2001 ident: 2034_CR24 publication-title: Lecture Notes in Computer Science doi: 10.1007/3-540-45411-X_39 – volume-title: Blackboard systems year: 1988 ident: 2034_CR49 – volume: 64 start-page: 275 year: 1958 ident: 2034_CR64 publication-title: Bulletin AMS doi: 10.1090/S0002-9904-1958-10224-4 – ident: 2034_CR76 – ident: 2034_CR28 – volume: 135 start-page: 1 issue: 1 year: 2001 ident: 2034_CR132 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(00)00268-X – ident: 2034_CR20 – volume: 9 start-page: 51 issue: 1 year: 2003 ident: 2034_CR129 publication-title: Journal of Heuristics doi: 10.1023/A:1021841728075 – volume: 9 start-page: 849 year: 1961 ident: 2034_CR61 publication-title: Operations Research doi: 10.1287/opre.9.6.849 – volume: 1 start-page: 43 issue: 1 year: 1995 ident: 2034_CR147 publication-title: Journal of Heuristics doi: 10.1007/BF02430365 – volume: 3 start-page: 271 year: 1998 ident: 2034_CR105 publication-title: Journal of Heuristics doi: 10.1023/A:1009687210594 – volume-title: Dynamic programming year: 1957 ident: 2034_CR14 – ident: 2034_CR127 – volume: 5 start-page: 23 issue: 1 year: 2006 ident: 2034_CR116 publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1007/s10852-005-9030-1 – ident: 2034_CR96 – volume: 16 start-page: 101 issue: 2 year: 1994 ident: 2034_CR18 publication-title: Operations Research Letters doi: 10.1016/0167-6377(94)90065-5 – start-page: 148 volume-title: Second international conference on genetic algorithms year: 1987 ident: 2034_CR32 – ident: 2034_CR110 – volume: 7 start-page: 330 issue: 4 year: 2001 ident: 2034_CR68 publication-title: Journal of Heuristics doi: 10.1023/A:1011336210885 – volume: 4 start-page: 233 issue: 3 year: 1979 ident: 2034_CR29 publication-title: Mathematics of Operations Research doi: 10.1287/moor.4.3.233 – volume: 8 start-page: 541 year: 2002 ident: 2034_CR133 publication-title: Journal of Heuristics doi: 10.1023/A:1016540724870 – ident: 2034_CR1 doi: 10.1109/ICEC.1995.487464 – start-page: 129 volume-title: Parallel problem solving from nature, volume 496 of LNCS year: 1990 ident: 2034_CR19 – ident: 2034_CR85 – ident: 2034_CR79 – volume-title: Network optimization: Continuous and discrete models year: 1998 ident: 2034_CR16 – start-page: 511 volume-title: Second conference on artificial life year: 1991 ident: 2034_CR13 – volume-title: Sixth international conference on genetic algorithms year: 1995 ident: 2034_CR12 – ident: 2034_CR122 – volume: 11 start-page: 358 issue: 4 year: 1999 ident: 2034_CR95 publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.11.4.358 – ident: 2034_CR70 – volume: 3 start-page: 149 year: 1991 ident: 2034_CR6 publication-title: ORSA Journal on Computing doi: 10.1287/ijoc.3.2.149 – ident: 2034_CR43 doi: 10.1109/ICEC.1994.349949 – volume-title: Metaheuristics: From design to implementation year: 2009 ident: 2034_CR135 doi: 10.1002/9780470496916 – start-page: 42 volume-title: Genetic algorithms and simulated annealing, research notes in artificial intelligence year: 1987 ident: 2034_CR65 – ident: 2034_CR91 – volume: 5 start-page: 66 issue: 1 year: 1994 ident: 2034_CR104 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.265961 – start-page: 109 volume-title: Parallel problem solving from nature, volume 496 of LNCS year: 1990 ident: 2034_CR145 – volume-title: Handbook of metaheuristics, chapter hyper-heuristics: An emerging direction in modern search technology year: 2003 ident: 2034_CR21 – ident: 2034_CR10 doi: 10.1287/opre.46.3.316 – start-page: 33 volume-title: Computation: The micro and the macro view year: 1992 ident: 2034_CR30 doi: 10.1142/9789812812438_0003 – start-page: 373 volume-title: Parallel problem solving from nature, volume 496 of LNCS year: 1990 ident: 2034_CR148 – start-page: 428 volume-title: Third conference on parallel problem solving from nature year: 1994 ident: 2034_CR27 doi: 10.1007/3-540-58484-6_286 – volume-title: Essays and surveys in metaheuristics, chapter POPMUSIC: Partial optimization metaheuristic under special intensification conditions year: 2002 ident: 2034_CR130 – volume: 42 start-page: 860 year: 1994 ident: 2034_CR52 publication-title: Operations Research doi: 10.1287/opre.42.5.860 – volume: 254 start-page: 1181 year: 1991 ident: 2034_CR31 publication-title: Science doi: 10.1126/science.254.5035.1181 – volume: 15 start-page: 399 year: 1985 ident: 2034_CR56 publication-title: Interfaces doi: 10.1287/inte.15.2.10 – volume: 161 start-page: 636 issue: 3 year: 2004 ident: 2034_CR26 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2003.08.053 – ident: 2034_CR88 – volume: 5 start-page: 281 year: 1999 ident: 2034_CR23 publication-title: Journal of Heuristics doi: 10.1023/A:1009661600931 – ident: 2034_CR44 doi: 10.1007/3-540-36605-9_20 – ident: 2034_CR69 – volume: 4 start-page: 295 issue: 4 year: 1998 ident: 2034_CR139 publication-title: Journal of Heuristics doi: 10.1023/A:1009669824615 – volume: 63 start-page: 397 year: 1995 ident: 2034_CR101 publication-title: Annals of Operations Research doi: 10.1007/BF02125405 – volume: 97 start-page: 75 issue: 1 year: 1997 ident: 2034_CR117 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(96)00100-2 – ident: 2034_CR131 – volume: 1 start-page: 9 year: 1998 ident: 2034_CR63 publication-title: Intelligent Engineering Systems Through Artificial Neural Networks – start-page: 113 volume-title: EuroGP conference on genetic programming, LNCS vol. 3003 year: 2004 ident: 2034_CR87 – ident: 2034_CR112 doi: 10.1007/11499305_5 – volume: 20 start-page: 111 year: 1995 ident: 2034_CR82 publication-title: DIMACS series in discrete mathematics and theoretical computer science doi: 10.1090/dimacs/020/02 – ident: 2034_CR90 doi: 10.2172/10161119 – volume: 42 start-page: 38 year: 1990 ident: 2034_CR74 publication-title: Physica D doi: 10.1016/0167-2789(90)90065-W – ident: 2034_CR67 doi: 10.1007/3-540-46135-3_12 – volume-title: Meta-heuristics—advances and trends in local search paradigms for optimization, chapter Fitness landscape and performance of metaheuristics year: 1999 ident: 2034_CR60 – volume: 323 start-page: 533 year: 1986 ident: 2034_CR118 publication-title: Nature doi: 10.1038/323533a0 – volume: 36 start-page: 753 issue: 8 year: 2005 ident: 2034_CR115 publication-title: Cybernetics and Systems doi: 10.1080/01969720500306147 – volume: 130 start-page: 329 year: 1994 ident: 2034_CR140 publication-title: Transactions of the Society of Instrument and Control Engineers doi: 10.9746/sicetr1965.30.329 – volume: 25 start-page: 27 year: 1992 ident: 2034_CR3 publication-title: IEEE Computer doi: 10.1109/2.144393 – volume: 41 start-page: 1069 issue: 11 year: 1990 ident: 2034_CR11 publication-title: Journal of the Operational Research Society doi: 10.1057/jors.1990.166 – volume: 51 start-page: 825 year: 2000 ident: 2034_CR47 publication-title: Journal of Operational Research Society doi: 10.1057/palgrave.jors.2600970 – volume: 83 start-page: 347 year: 1995 ident: 2034_CR93 publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(95)00012-F – ident: 2034_CR120 – start-page: 80 volume-title: Parallel problem solving from nature, volume 496 of LNCS year: 1990 ident: 2034_CR75 – ident: 2034_CR151 doi: 10.1109/ICEC.1996.542657 – start-page: 244 volume-title: Fourth international conference on genetic algorithms year: 1991 ident: 2034_CR34 – ident: 2034_CR48 doi: 10.1007/978-1-4471-1589-2_10 – volume-title: Principles of constraint programming year: 2003 ident: 2034_CR7 doi: 10.1017/CBO9780511615320 – volume: 54 start-page: 490 year: 2003 ident: 2034_CR71 publication-title: Journal of the Operations Research Society doi: 10.1057/palgrave.jors.2601525 – ident: 2034_CR124 doi: 10.1007/3-540-49481-2_30 – ident: 2034_CR72 – volume: 9 start-page: 3 issue: 1 year: 2005 ident: 2034_CR77 publication-title: Soft Computing doi: 10.1007/s00500-003-0328-5 – volume: 199 start-page: 620 issue: 3 year: 2009 ident: 2034_CR80 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2007.07.035 – ident: 2034_CR41 – volume: 115 start-page: 51 year: 2002 ident: 2034_CR111 publication-title: Annals of Operations Research doi: 10.1023/A:1021140902684 – start-page: 501 volume-title: Meta-heuristics: Theory and applications year: 1996 ident: 2034_CR143 |
| SSID | ssj0001185 |
| Score | 2.4678333 |
| Snippet | During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for... Issue Title: SURVEYS IN OPERATIONS RESEARCH IV (INVITED SURVEYS FROM "40R," 2012-2014) During the last years, interest on hybrid metaheuristics has risen... |
| SourceID | hal proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 171 |
| SubjectTerms | Algorithms Artificial intelligence Business and Management Combinations (mathematics) Combinatorics Communities Computer Science Cooperation Data mining Heuristic Heuristic methods Hybridization Machine learning Management research Mathematical optimization Mathematical programming Operations Research Operations Research/Decision Theory Optimization Optimization algorithms Programming SI: 4OR Surveys Studies Taxonomy Theory of Computation Traveling salesman problem |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xgdD2wKCA6BjIIBASYCmOk8Z-rCamPUwTEjDtzXIce0Oi2bSkk_bvuUudkKKBBC99SM4X1z4738V33wG80T6pXGYl90EEjkaR87LMEy5CVlRVKYLtstJOjorjY3V6qj_HPO6mj3bvjyS7nXqU7JYVFNuT48zKjN9swN2cyGbIRf9yMmy_iJi7uEX0fDiFTvZHmbepWHsZxS1545wiIkdw87cT0u7Fc7DzX11-CA8izmTzlWE8gju-nsD9Psx9Ajt9OQcWV_cEtkfchI_BoUDZVY9gC9_ac7-MnM6MPt2yxUD3ik-JQV4LFP7IHCFOKjzRjq8zW1fYiCI3PYulKs6ewLeDT1_3D3msyMAdOjYtV8p6dLCcpvxWm4pQIFzwEt22Ii-VtgEBnMzKIpSIHHSF4Ec4rVNXucpLGYR8Cpv1Re2fAUuTCtvM0JvUPtMysSnOVelTlVcz5VSYQtJPjXGRrpw6_8P8Ilqm0TU4uoZG19xM4f3Q5HLF1fE34bc03ybW-sSfhr6GNGd22TRmjrhSElVbPoV3nRytd3y-szFtAf8FMWetSe6tSeI6dWu3X6NlDR0jWu_D-ZGha-impsQSeS1QR294Jm4mjRGFUjP09lPU8Wq4TeopQK72F0uUUaIrJqbkFD70xjhS8adh2P0n6eewhYBxtgr43IPN9mrpX8A9d91-b65eduvwJ4uzLFE priority: 102 providerName: Springer Nature |
| Title | Combining metaheuristics with mathematical programming, constraint programming and machine learning |
| URI | https://link.springer.com/article/10.1007/s10479-015-2034-y https://www.proquest.com/docview/1788697825 https://www.proquest.com/docview/1816026783 https://inria.hal.science/hal-01423492 |
| Volume | 240 |
| WOSCitedRecordID | wos000376301200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: 7WY dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: M0C dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: P5Z dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: K7- dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (ProQuest) customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: M7S dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: BENPR dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: M2P dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1572-9338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9QwzGIbQuOBwbGJwpgKAiHBorVNc22f0DFtmsQ4nTYYYy9RmqQbEtcba2_S_j12L-3ukNgLL5baOB-tHcdOHBvgTWYDo2PFmS3CgiFTCJbnImBhESfG5GGhmltpJ4fJcJienmYjt-FWObfKViY2gtpMNO2R74Roq_XR5InEx8vfjLJG0emqS6GxBCu4UAvKYJB8_9FJYlSeGxdGNIIYeVG2p5qzq3NxQp5CAvmEx-xmYV1y0nnpgpwj5zTPvw5LmzVof-1_R_8YHjnt0x_M2OUJ3LNlDx60zu89WGuTPPhuzvfg4VzEwqegESFvckr4Y1urCzt1kZ592tD1x10QWOzFuX6NEXnb16SHUjqKev69r0qDlcif0_ougcX5Onzb3_u6e8Bcngam0dypWZoqi2aXzujWq4rCIkElwnI05hKRp5kqUK3jcZ4UOeoTmUGVKNRZFmmjjeW8CPkGLJeT0j4DPwoM1umjjZnZOOOBipBsuY1SYfqpTgsPgpZKUrsg5jT4X_I2_DIRViJhJRFW3njwvqtyOYvgcRfyWyK9dBlAEVS0R1Kdq2lVyQFqm5wCuAkP3jV4JAWwf63cZQb8CoqntYC5uYCJs1cvFL9GJusGRsG-DwaHkt6h8RpR7MjrENtouUo6EVPJW5by4FVXTM2T21xpJ1PEScMmxVjKPfjQ8u5cE__6Dc_v7vAFrKLe2J_5fW7Ccn01tS_hvr6uf1ZXW80c3IKVT3vD0RE-fU4Ywi_BLsFoRDA5RjgSZwiPjk_-ADP_PdY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BfE4UFhALBQwiAqJ1iKJ8zwgtAKqrXZZcShVbyaxnRaJzZYmW7R_it_ITOKku0j01gOXHJKxnTif52HPA-BVYhyt_FRwk7s5R1AEPMsCh7u5H2mduXlaR6UdjqPJJD46Sr6swe82FobcKlueWDNqPVO0R_7WRVstRJPHC96f_uRUNYpOV9sSGg0sRmbxC0228t3-R_y_25639-ngw5DbqgJcoXJe8ThODRoJKqEYzdRz8whFnhFoekRBFidpjkqI8LMoz1D6JRoFuKuSxFNaaSNE7grsdx2u-SIOaUWNIt5xflTWa5dJNLo4eW22p6hNqJ4fkWdSgLgUPl-syEErDdZPyBlzSdP963C2lnl7m__bbN2FO1a7ZoNmOdyDNVP04Ebr3N-DzbaIBbM8rQe3lzIy3geFBFldM4NNTZWemLnNZM1ow5pNuyS3OIp1bZsi8S5TpGdTuY1q-T5LC42NyF_VMFug4_gBfL2SOXgIG8WsMI-AeY7GNiHa0InxE-GkHsIkM14c6DBWcd4Hp0WFVDZJO738D3mRXpqAJBFIkoAkF3140zU5bTKUXEa8TVCTtsIpXkraAyqP03lZygFq04IS1AV9eF3TEZfD8VVqgzXwKyhf2Arl1golcie18vglgrp7MUpmPhyMJd1D49yj3JjnLvbRolhaFlrKCwj34UX3mLont8DCzOZIE7t1CbVY9GGnXStLXfxrGh5fPuBzuDk8-DyW4_3J6AncQh05bHxct2CjOpubp3BdnVffy7Nn9fpn8O2ql9AfKG2RAA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aOjTBgUEBERgQEBMSYC2JkyY5IFTYqk2rqgoB2s04jr0h0XQs6VD_Nf463kucrkVitx249JA8O4n7-f2wP78H8DLVXq5CyZk2vmEIiohlWeQx34Rxnme-kfWptK_DeDRKjo_T8Rr8bs_CEK2y1Ym1os6nitbId32M1XoY8gTRrrG0iPHe4P3ZT0YVpGintS2n0UDkSM9_YfhWvjvcw_96JwgG-58_HjBbYYApdNQrliRSY8CgUjqvKQPfxGj-NMcwJI6yJJUGHRIeZrHJ0BKmORpzX6VpoHKVa86Nz7HfddiIOQY9Hdj4sD8af1rYAXTdawIlhmCMOJztnmpzcC-MiacUIUp5yOYrVtHahvVTomYu-b1_bdXWFnCw9T-P3R24bf1ut99MlLuwposubLa0_y5steUtXKvtunBrKVfjPVAokNXVNNyJruSpntkc1y4tZbuTRfpbfIolvU1Q-K2ryAOnQhzV8nVXFjk2Iiardm3pjpP78OVaxuABdIppoR-CG3g5tulhdJ3qMOWeDBAymQ6SKO8lKjEOeC1ChLLp2-nlf4jLxNMEKoGgEgQqMXfg9aLJWZO75CrhHYKdsLVP8aek1aHyRM7KUvTRz-aUui5y4FUtR_oPn6-kPcaBX0GZxFYkt1ckUW-pldsvEOCLF6M05wf9oaBrGLYHlDXzwsc-WkQLq1xLcQlnB54vblP3RBgs9HSGMolfF1dLuANv2nmz1MW_huHR1Q98Bps4c8TwcHT0GG6i89xryK_b0KnOZ_oJ3FAX1ffy_KlVBi58u-459AeBTJtS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+metaheuristics+with+mathematical+programming%2C+constraint+programming+and+machine+learning&rft.jtitle=Annals+of+operations+research&rft.au=Talbi%2C+El-ghazali&rft.date=2016-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=240&rft.issue=1&rft.spage=171&rft_id=info:doi/10.1007%2Fs10479-015-2034-y&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4055434811 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon |