Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation

An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking appr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 87; číslo 1-2; s. 156 - 169
Hlavní autoři: Corazza, Stefano, Mündermann, Lars, Gambaretto, Emiliano, Ferrigno, Giancarlo, Andriacchi, Thomas P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.03.2010
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking approach employed a Levenberg-Marquardt minimization scheme over an iterative closest point algorithm with six degrees of freedom for each body segment. Anatomical consistency was maintained by enforcing rotational and translational joint range of motion constraints for each specific joint. A subject specific model of the subjects was obtained through an automatic model generation algorithm (Corazza et al. in IEEE Trans. Biomed. Eng., 2009 ) which combines a space of human shapes (Anguelov et al. in Proceedings SIGGRAPH, 2005 ) with biomechanically consistent kinematic models and a pose-shape matching algorithm. There were 15 anatomical body segments and 14 joints, each with six degrees of freedom (13 and 12, respectively for the HumanEva II dataset). The overall method is an improvement over (Mündermann et al. in Proceedings of CVPR, 2007 ) in terms of both accuracy and robustness. Since the method was originally developed for ≥8 cameras, the method performance was tested both (i) on the HumanEva II dataset (Sigal and Black, Technical Report CS-06-08, 2006 ) in a 4 camera configuration, (ii) on a series of motions including walking trials, a very challenging gymnastic motion and a dataset with motions similar to HumanEva II but with variable number of cameras.
AbstractList An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking approach employed a Levenberg-Marquardt minimization scheme over an iterative closest point algorithm with six degrees of freedom for each body segment. Anatomical consistency was maintained by enforcing rotational and translational joint range of motion constraints for each specific joint. A subject specific model of the subjects was obtained through an automatic model generation algorithm (Corazza et al. in IEEE Trans. Biomed. Eng., 2009 ) which combines a space of human shapes (Anguelov et al. in Proceedings SIGGRAPH, 2005 ) with biomechanically consistent kinematic models and a pose-shape matching algorithm. There were 15 anatomical body segments and 14 joints, each with six degrees of freedom (13 and 12, respectively for the HumanEva II dataset). The overall method is an improvement over (Mündermann et al. in Proceedings of CVPR, 2007 ) in terms of both accuracy and robustness. Since the method was originally developed for ≥8 cameras, the method performance was tested both (i) on the HumanEva II dataset (Sigal and Black, Technical Report CS-06-08, 2006 ) in a 4 camera configuration, (ii) on a series of motions including walking trials, a very challenging gymnastic motion and a dataset with motions similar to HumanEva II but with variable number of cameras.
An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking approach employed a Levenberg-Marquardt minimization scheme over an iterative closest point algorithm with six degrees of freedom for each body segment. Anatomical consistency was maintained by enforcing rotational and translational joint range of motion constraints for each specific joint. A subject specific model of the subjects was obtained through an automatic model generation algorithm (Corazza et al. in IEEE Trans. Biomed. Eng., 2009) which combines a space of human shapes (Anguelov et al. in Proceedings SIGGRAPH, 2005) with biomechanically consistent kinematic models and a pose-shape matching algorithm. There were 15 anatomical body segments and 14 joints, each with six degrees of freedom (13 and 12, respectively for the HumanEva II dataset). The overall method is an improvement over (Mundermann et al. in Proceedings of CVPR, 2007) in terms of both accuracy and robustness. Since the method was originally developed for [greater than or equal to]8 cameras, the method performance was tested both (i) on the HumanEva II dataset (Sigal and Black, Technical Report CS-06-08, 2006) in a 4 camera configuration, (ii) on a series of motions including walking trials, a very challenging gymnastic motion and a dataset with motions similar to HumanEva II but with variable number of cameras. Keywords Markerless motion capture * Tracking * 3D reconstruction * Human body model * Shape from silhouette
An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking approach employed a Levenberg-Marquardt minimization scheme over an iterative closest point algorithm with six degrees of freedom for each body segment. Anatomical consistency was maintained by enforcing rotational and translational joint range of motion constraints for each specific joint. A subject specific model of the subjects was obtained through an automatic model generation algorithm (Corazza et al. in IEEE Trans. Biomed. Eng., 2009) which combines a space of human shapes (Anguelov et al. in Proceedings SIGGRAPH, 2005) with biomechanically consistent kinematic models and a pose-shape matching algorithm. There were 15 anatomical body segments and 14 joints, each with six degrees of freedom (13 and 12, respectively for the HumanEva II dataset). The overall method is an improvement over (Mundermann et al. in Proceedings of CVPR, 2007) in terms of both accuracy and robustness. Since the method was originally developed for >=8 cameras, the method performance was tested both (i) on the HumanEva II dataset (Sigal and Black, Technical Report CS-06-08, 2006) in a 4 camera configuration, (ii) on a series of motions including walking trials, a very challenging gymnastic motion and a dataset with motions similar to HumanEva II but with variable number of cameras.
Issue Title: Special Issue: Evaluation of Articulated Human Motion and Pose Estimation An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking approach employed a Levenberg-Marquardt minimization scheme over an iterative closest point algorithm with six degrees of freedom for each body segment. Anatomical consistency was maintained by enforcing rotational and translational joint range of motion constraints for each specific joint. A subject specific model of the subjects was obtained through an automatic model generation algorithm (Corazza et al. in IEEE Trans. Biomed. Eng., 2009) which combines a space of human shapes (Anguelov et al. in Proceedings SIGGRAPH, 2005) with biomechanically consistent kinematic models and a pose-shape matching algorithm. There were 15 anatomical body segments and 14 joints, each with six degrees of freedom (13 and 12, respectively for the HumanEva II dataset). The overall method is an improvement over (Mündermann et al. in Proceedings of CVPR, 2007) in terms of both accuracy and robustness. Since the method was originally developed for ≥8 cameras, the method performance was tested both (i) on the HumanEva II dataset (Sigal and Black, Technical Report CS-06-08, 2006) in a 4 camera configuration, (ii) on a series of motions including walking trials, a very challenging gymnastic motion and a dataset with motions similar to HumanEva II but with variable number of cameras.[PUBLICATION ABSTRACT]
An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking approach employed a Levenberg-Marquardt minimization scheme over an iterative closest point algorithm with six degrees of freedom for each body segment. Anatomical consistency was maintained by enforcing rotational and translational joint range of motion constraints for each specific joint. A subject specific model of the subjects was obtained through an automatic model generation algorithm (Corazza et al. in IEEE Trans. Biomed. Eng., 2009) which combines a space of human shapes (Anguelov et al. in Proceedings SIGGRAPH, 2005) with biomechanically consistent kinematic models and a pose-shape matching algorithm. There were 15 anatomical body segments and 14 joints, each with six degrees of freedom (13 and 12, respectively for the HumanEva II dataset). The overall method is an improvement over (Mundermann et al. in Proceedings of CVPR, 2007) in terms of both accuracy and robustness. Since the method was originally developed for [greater than or equal to]8 cameras, the method performance was tested both (i) on the HumanEva II dataset (Sigal and Black, Technical Report CS-06-08, 2006) in a 4 camera configuration, (ii) on a series of motions including walking trials, a very challenging gymnastic motion and a dataset with motions similar to HumanEva II but with variable number of cameras.
Audience Academic
Author Andriacchi, Thomas P.
Mündermann, Lars
Corazza, Stefano
Ferrigno, Giancarlo
Gambaretto, Emiliano
Author_xml – sequence: 1
  givenname: Stefano
  surname: Corazza
  fullname: Corazza, Stefano
  email: stefanoc@ccrma.stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Lars
  surname: Mündermann
  fullname: Mündermann, Lars
  organization: Stanford University
– sequence: 3
  givenname: Emiliano
  surname: Gambaretto
  fullname: Gambaretto, Emiliano
  organization: Politecnico di Milano
– sequence: 4
  givenname: Giancarlo
  surname: Ferrigno
  fullname: Ferrigno, Giancarlo
  organization: Politecnico di Milano
– sequence: 5
  givenname: Thomas P.
  surname: Andriacchi
  fullname: Andriacchi, Thomas P.
  organization: Stanford University, Bone and Joint RR&D, VA Palo Alto Hospital
BookMark eNp9kV1rFDEUhoNUcFv9Ad4FvBDBafM1k5nLZantQktLV70NmcyZbdbsZM0H6L8363hhC0ouAuF53pzkPUUnk58AobeUnFNC5EWklDW8IqSrCGtFxV-gBa0lr6gg9QlakI6Rqm46-gqdxrgjpFCML9Bwq8M3CA5ixLc-WT_hlT6kHACnx-Dz9hF_tTFrh6-zcx_xMiRrstMJBrxe3WM9DXiT-x2YhDcHMHa0pgQN4PAVTBD0MfI1ejlqF-HNn_0Mffl0-Xl1Xd3cXa1Xy5vKiFamqqUDkRLGxhjS045qTlknRTOOvamBi4Y1_VDXpu4k77sBGjn0UgATUpuWtoKfofdz7iH47xliUnsbDTinJ_A5qo7IjnPR1oV894zc-RymMpyilPJGSEZYoc5naqsdKDuNPgVtyhpgb00pYLTlfFnwthaEySJ8eCIUJsGPtNU5RrXePDxl5cya4GMMMCpj0-_vKpdYpyhRx2bV3Kwqzapjs4oXkz4zD8Hudfj5X4fNTizstIXw14P_Kf0Ckaq1Sw
CitedBy_id crossref_primary_10_3389_fbioe_2019_00322
crossref_primary_10_1016_j_cag_2013_10_023
crossref_primary_10_1002_adsr_202200021
crossref_primary_10_1016_j_jbiomech_2014_06_010
crossref_primary_10_1109_JSTSP_2012_2196975
crossref_primary_10_1080_23335432_2021_2003719
crossref_primary_10_1007_s00530_015_0497_y
crossref_primary_10_1016_j_patcog_2018_02_013
crossref_primary_10_1109_ACCESS_2024_3485204
crossref_primary_10_1002_hfm_20410
crossref_primary_10_7717_peerj_12995
crossref_primary_10_1007_s11263_011_0451_1
crossref_primary_10_1109_TCSVT_2016_2527218
crossref_primary_10_1097_HP_0000000000000019
crossref_primary_10_1186_s12984_023_01186_9
crossref_primary_10_1007_s11263_015_0832_y
crossref_primary_10_1007_s10846_018_0773_0
crossref_primary_10_3390_s24092947
crossref_primary_10_1007_s00138_014_0651_0
crossref_primary_10_1016_j_engappai_2024_109353
crossref_primary_10_1016_j_jbiomech_2011_06_003
crossref_primary_10_3389_fbioe_2020_00181
crossref_primary_10_1109_TIP_2013_2271850
crossref_primary_10_1109_TMM_2012_2189853
crossref_primary_10_1007_s12541_015_0089_y
crossref_primary_10_1109_JBHI_2024_3424869
crossref_primary_10_1177_21925682211035083
crossref_primary_10_1080_01691864_2021_1957013
crossref_primary_10_1002_hfm_20840
crossref_primary_10_1016_j_medengphy_2014_07_007
crossref_primary_10_3390_app14114683
crossref_primary_10_3390_s21082836
crossref_primary_10_1007_s11042_017_4847_y
crossref_primary_10_1016_j_mio_2016_08_002
crossref_primary_10_1016_j_physio_2023_06_003
crossref_primary_10_1080_14763141_2025_2514234
crossref_primary_10_1109_TCYB_2013_2272321
crossref_primary_10_3390_app15126800
crossref_primary_10_1016_j_ijleo_2015_07_027
crossref_primary_10_3390_s25144400
crossref_primary_10_3390_heritage4040228
crossref_primary_10_3390_s24072338
crossref_primary_10_1007_s10439_011_0418_y
crossref_primary_10_1016_j_cviu_2013_07_006
crossref_primary_10_1016_j_imavis_2017_02_002
crossref_primary_10_1016_j_cviu_2011_06_001
crossref_primary_10_1007_s11263_012_0532_9
crossref_primary_10_1109_TPAMI_2013_47
crossref_primary_10_1109_ACCESS_2020_3027260
crossref_primary_10_1109_TPAMI_2017_2740308
crossref_primary_10_5432_jjpehss_015_24089
crossref_primary_10_1109_TIP_2014_2364113
crossref_primary_10_1109_TPAMI_2017_2782743
crossref_primary_10_1115_1_4032878
crossref_primary_10_1016_j_cviu_2011_08_002
crossref_primary_10_3390_s22052010
crossref_primary_10_1109_JSEN_2021_3081188
crossref_primary_10_1109_TBME_2014_2318354
crossref_primary_10_1016_j_humov_2015_08_001
crossref_primary_10_5312_wjo_v12_i7_467
crossref_primary_10_2478_ijcss_2025_0009
crossref_primary_10_1155_2015_186780
crossref_primary_10_1109_TII_2011_2172450
crossref_primary_10_3390_machines11020234
crossref_primary_10_1007_s11263_009_0293_2
crossref_primary_10_3389_fspor_2021_809898
crossref_primary_10_1007_s12283_017_0243_0
crossref_primary_10_3389_fnins_2023_1141567
crossref_primary_10_1111_cgf_12575
crossref_primary_10_1145_3450626_3459792
crossref_primary_10_3390_robotics7040069
crossref_primary_10_1002_adhm_202202987
crossref_primary_10_1080_21681163_2020_1790040
crossref_primary_10_3390_s17071522
crossref_primary_10_2196_19608
crossref_primary_10_3390_machines12010033
crossref_primary_10_1016_j_gaitpost_2024_04_029
crossref_primary_10_1080_21681163_2013_834800
crossref_primary_10_1136_bjsports_2012_091371
crossref_primary_10_3390_s20216258
crossref_primary_10_1007_s11554_018_0825_5
crossref_primary_10_1016_j_measurement_2025_116826
crossref_primary_10_1007_s00138_010_0317_5
crossref_primary_10_1007_s00371_024_03547_4
crossref_primary_10_3389_fnhum_2022_867474
crossref_primary_10_3389_fbioe_2025_1658222
crossref_primary_10_1016_j_imavis_2012_12_001
crossref_primary_10_1016_j_ifacol_2024_09_216
crossref_primary_10_1016_j_imavis_2012_12_003
crossref_primary_10_3390_s22155768
crossref_primary_10_3390_s24092929
crossref_primary_10_1016_j_measurement_2025_117523
crossref_primary_10_3390_s22010051
crossref_primary_10_1186_s40798_018_0139_y
crossref_primary_10_1016_j_cviu_2023_103780
crossref_primary_10_1177_1094342014566289
crossref_primary_10_1007_s12283_019_0309_2
crossref_primary_10_14232_analecta_2023_2_24_31
crossref_primary_10_3390_diagnostics15070840
crossref_primary_10_3389_fphys_2024_1407753
crossref_primary_10_1109_TSMC_2017_2664891
Cites_doi 10.1002/cav.43
10.1115/1.2834888
10.1006/cviu.1998.0716
10.1016/j.gaitpost.2004.05.002
10.1117/12.587970
10.1109/34.273735
10.1007/s11263-007-0120-6
10.1109/34.121791
10.1007/s11263-005-4881-5
10.1023/A:1023012723347
10.1016/0734-189X(85)90094-5
10.1023/A:1008071332753
10.1016/j.cviu.2006.08.002
10.1109/TPAMI.2003.1227995
10.1109/34.598236
10.1109/4233.908371
10.1007/s11263-007-0116-2
10.1006/cviu.2001.0918
10.1007/s10439-006-9122-8
10.1016/0262-8856(83)90003-3
10.1016/0262-8856(95)93154-K
10.1006/cviu.1998.0744
10.1111/1467-8659.00392
10.1109/MNRAO.1994.346252
10.1186/1743-0003-3-6
10.1109/CVPR.2007.383340
10.1007/978-3-540-24672-5_15
10.1145/1276377.1276467
10.1109/ICCV.2001.937641
10.1109/TPAMI.1980.6447699
10.1007/11556121_6
10.1109/CVPR.2000.854758
10.1109/CVPR.2007.383302
10.5244/C.19.45
10.1145/1186822.1073207
10.1109/CVPR.1991.139772
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2009
COPYRIGHT 2010 Springer
Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2009
– notice: COPYRIGHT 2010 Springer
– notice: Springer Science+Business Media, LLC 2010
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-009-0284-3
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 169
ExternalDocumentID 2793863221
A364854027
10_1007_s11263_009_0284_3
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c487t-81d077ef6cc0b191a3129746ffbc5e34626bd55c5973b9de67db74e247ac81843
IEDL.DBID M0C
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273242300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Oct 01 14:16:30 EDT 2025
Tue Nov 04 19:45:18 EST 2025
Sat Nov 29 09:51:27 EST 2025
Wed Nov 26 10:06:59 EST 2025
Tue Nov 18 22:36:00 EST 2025
Sat Nov 29 06:42:24 EST 2025
Fri Feb 21 02:26:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Tracking
3D reconstruction
Human body model
Shape from silhouette
Markerless motion capture
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-81d077ef6cc0b191a3129746ffbc5e34626bd55c5973b9de67db74e247ac81843
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1113647202
PQPubID 1456341
PageCount 14
ParticipantIDs proquest_miscellaneous_907933485
proquest_journals_1113647202
gale_infotracacademiconefile_A364854027
gale_incontextgauss_ISR_A364854027
crossref_citationtrail_10_1007_s11263_009_0284_3
crossref_primary_10_1007_s11263_009_0284_3
springer_journals_10_1007_s11263_009_0284_3
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2010
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Plankers, Fua (CR43) 2003; 25
Besl, McKay (CR7) 1992; 14
Aggarwal, Cai (CR1) 1999; 73
Rosenhahn, Brox, Kersting, Smith, Gurney, Klette (CR45) 2006; 1
CR39
CR38
CR37
CR35
CR31
Corazza, Mündermann, Chaudhari, Demattio, Cobelli, Andriacchi (CR13) 2006; 34
O’Rourke, Badler (CR42) 1980; 2
Moeslund, Hilton, Krüger (CR34) 2006; 104
Hogg (CR20) 1983; 1
Wren, Azarbayejani, Darrell, Pentland (CR48) 1997; 19
Mündermann, Corazza, Chaudhari, Alexander, Andriacchi (CR36) 2005; 5665
CR4
CR3
Marzani, Calais, Legrand (CR32) 2001; 5
CR6
CR5
CR8
CR49
CR46
Knossow, Ronfard, Horaud (CR24) 2008; 79
Kohli, Rihan, Bray, Torr (CR25) 2008; 79
CR44
CR41
CR40
Wagg, Nixon (CR47) 2004; 15
Kakadiaris, Metaxas (CR22) 1998; 30
Andriacchi, Alexander, Toney, Dyrby, Sum (CR2) 1998; 120
Laurentini (CR26) 1994; 16
Mikic, Trivedi, Hunter, Cosman (CR33) 2003; 53
CR19
CR17
CR16
CR15
Gavrila (CR18) 1999; 73
CR14
CR10
Leardini, Chiari, Della Croce, Cappozzo (CR27) 2005; 21
Legrand, Marzani, Dusserre (CR30) 1998; 9
Cheung, Baker, Kanade (CR12) 2005; 62
Bottino, Laurentini (CR9) 2001; 83
CR29
Lee, Chen (CR28) 1985; 30
CR23
CR21
Cedras, Shah (CR11) 1995; 13
K. Cheung (284_CR12) 2005; 62
284_CR29
T. P. Andriacchi (284_CR2) 1998; 120
L. Legrand (284_CR30) 1998; 9
A. Laurentini (284_CR26) 1994; 16
284_CR23
P. Besl (284_CR7) 1992; 14
284_CR31
284_CR8
284_CR6
284_CR5
T. B. Moeslund (284_CR34) 2006; 104
284_CR4
284_CR3
J. Aggarwal (284_CR1) 1999; 73
284_CR19
284_CR17
284_CR15
284_CR16
284_CR14
284_CR21
I. Mikic (284_CR33) 2003; 53
S. Corazza (284_CR13) 2006; 34
R. Plankers (284_CR43) 2003; 25
L. Mündermann (284_CR36) 2005; 5665
J. O’Rourke (284_CR42) 1980; 2
B. Rosenhahn (284_CR45) 2006; 1
D. K. Wagg (284_CR47) 2004; 15
F. Marzani (284_CR32) 2001; 5
H. J. Lee (284_CR28) 1985; 30
D. Knossow (284_CR24) 2008; 79
284_CR49
284_CR46
284_CR44
284_CR10
P. Kohli (284_CR25) 2008; 79
I. A. Kakadiaris (284_CR22) 1998; 30
C. R. Wren (284_CR48) 1997; 19
A. Bottino (284_CR9) 2001; 83
D. Gavrila (284_CR18) 1999; 73
284_CR39
284_CR37
284_CR38
284_CR35
C. Cedras (284_CR11) 1995; 13
D. Hogg (284_CR20) 1983; 1
284_CR40
284_CR41
A. Leardini (284_CR27) 2005; 21
References_xml – volume: 15
  start-page: 399
  year: 2004
  end-page: 406
  ident: CR47
  article-title: Automated markerless extraction of walking people using deformable contour models
  publication-title: Computer Animation and Virtual Worlds
  doi: 10.1002/cav.43
– ident: CR49
– ident: CR4
– ident: CR39
– ident: CR16
– volume: 120
  start-page: 743
  year: 1998
  end-page: 749
  ident: CR2
  article-title: A point cluster method for in vivo motion analysis: applied to a study of knee kinematics
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2834888
– ident: CR35
– ident: CR29
– volume: 73
  start-page: 82
  issue: 3
  year: 1999
  end-page: 98
  ident: CR18
  article-title: The visual analysis of human movement: a survey
  publication-title: Computer Vision and Image Understanding
  doi: 10.1006/cviu.1998.0716
– ident: CR8
– volume: 21
  start-page: 221
  year: 2005
  end-page: 225
  ident: CR27
  article-title: Human movement analysis using stereophotogrammetry. Part 3: Soft tissue artifact assessment and compensation
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2004.05.002
– ident: CR21
– ident: CR46
– ident: CR19
– ident: CR15
– volume: 5665
  start-page: 278
  year: 2005
  end-page: 287
  ident: CR36
  article-title: Most favorable camera configuration for a shape-from-silhouette markerless motion capture system for biomechanical analysis
  publication-title: Proceedings of SPIE-IS&T Electronic Imaging
  doi: 10.1117/12.587970
– volume: 16
  start-page: 150
  year: 1994
  end-page: 162
  ident: CR26
  article-title: The Visual Hull concept for silhouette base image understanding
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.273735
– volume: 79
  start-page: 285
  issue: 3
  year: 2008
  end-page: 298
  ident: CR25
  article-title: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0120-6
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  end-page: 256
  ident: CR7
  article-title: A method for registration of 3D shapes
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.121791
– ident: CR5
– volume: 62
  start-page: 221
  year: 2005
  end-page: 247
  ident: CR12
  article-title: Shape-from-silhouette across time part I: Theory and algorithm
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-005-4881-5
– volume: 1
  start-page: 45
  year: 2006
  end-page: 51
  ident: CR45
  article-title: A system for marker-less motion capture
  publication-title: Künstliche Intelligenz (KI)
– volume: 53
  start-page: 199
  year: 2003
  end-page: 223
  ident: CR33
  article-title: Human body model acquisition and tracking using voxel data
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1023012723347
– volume: 30
  start-page: 148
  year: 1985
  end-page: 168
  ident: CR28
  article-title: Determination of 3D human body posture from a single view
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/0734-189X(85)90094-5
– volume: 30
  start-page: 191
  year: 1998
  ident: CR22
  article-title: Three-dimensional human body model acquisition from multiple views
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1008071332753
– volume: 104
  start-page: 90
  issue: 2
  year: 2006
  end-page: 126
  ident: CR34
  article-title: A survey of advances in vision-based human motion capture and analysis
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2006.08.002
– ident: CR14
– volume: 25
  start-page: 1182
  year: 2003
  end-page: 1187
  ident: CR43
  article-title: Articulated soft objects for multiview shape and motion capture
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1227995
– ident: CR37
– volume: 19
  start-page: 780
  year: 1997
  end-page: 785
  ident: CR48
  article-title: Pfinder—real-time tracking of the human body
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.598236
– volume: 5
  start-page: 18
  issue: 1
  year: 2001
  end-page: 26
  ident: CR32
  article-title: A 3-D marker-free system for the analysis of movement disabilities—an application to the legs
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/4233.908371
– ident: CR10
– ident: CR6
– ident: CR40
– volume: 79
  start-page: 247
  issue: 2
  year: 2008
  end-page: 269
  ident: CR24
  article-title: Human motion tracking with a kinematic parameterization of extremal contours
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0116-2
– volume: 83
  start-page: 79
  year: 2001
  ident: CR9
  article-title: A silhouette based technique for the reconstruction of human movement
  publication-title: Computer Vision and Image Understanding
  doi: 10.1006/cviu.2001.0918
– ident: CR23
– volume: 34
  start-page: 1019
  issue: 6
  year: 2006
  end-page: 1029
  ident: CR13
  article-title: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach
  publication-title: Annals Biomedical Engineering
  doi: 10.1007/s10439-006-9122-8
– ident: CR44
– volume: 1
  start-page: 5
  year: 1983
  ident: CR20
  article-title: Model-based vision: a program to see a walking person
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(83)90003-3
– ident: CR3
– ident: CR38
– ident: CR17
– ident: CR31
– volume: 13
  start-page: 129
  issue: 2
  year: 1995
  end-page: 155
  ident: CR11
  article-title: Motion-based recognition: a survey
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(95)93154-K
– volume: 9
  start-page: 1066
  year: 1998
  end-page: 1070
  ident: CR30
  article-title: A marker-free system for the analysis of. movement disabilities
  publication-title: Medinfo
– ident: CR41
– volume: 73
  start-page: 295
  issue: 3
  year: 1999
  end-page: 304
  ident: CR1
  article-title: Human motion analysis: a review
  publication-title: Computer Vision and Image Understanding
  doi: 10.1006/cviu.1998.0744
– volume: 2
  start-page: 522
  year: 1980
  end-page: 536
  ident: CR42
  article-title: Model-based image analysis of human motion using constraint propagation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 284_CR29
  doi: 10.1111/1467-8659.00392
– volume: 79
  start-page: 285
  issue: 3
  year: 2008
  ident: 284_CR25
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0120-6
– ident: 284_CR8
  doi: 10.1109/MNRAO.1994.346252
– volume: 15
  start-page: 399
  year: 2004
  ident: 284_CR47
  publication-title: Computer Animation and Virtual Worlds
  doi: 10.1002/cav.43
– volume: 62
  start-page: 221
  year: 2005
  ident: 284_CR12
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-005-4881-5
– ident: 284_CR37
  doi: 10.1186/1743-0003-3-6
– ident: 284_CR40
– volume: 34
  start-page: 1019
  issue: 6
  year: 2006
  ident: 284_CR13
  publication-title: Annals Biomedical Engineering
  doi: 10.1007/s10439-006-9122-8
– volume: 1
  start-page: 45
  year: 2006
  ident: 284_CR45
  publication-title: Künstliche Intelligenz (KI)
– ident: 284_CR5
  doi: 10.1109/CVPR.2007.383340
– volume: 5
  start-page: 18
  issue: 1
  year: 2001
  ident: 284_CR32
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/4233.908371
– ident: 284_CR16
  doi: 10.1007/978-3-540-24672-5_15
– volume: 120
  start-page: 743
  year: 1998
  ident: 284_CR2
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2834888
– ident: 284_CR19
– ident: 284_CR15
– volume: 79
  start-page: 247
  issue: 2
  year: 2008
  ident: 284_CR24
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0116-2
– volume: 16
  start-page: 150
  year: 1994
  ident: 284_CR26
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.273735
– ident: 284_CR6
  doi: 10.1145/1276377.1276467
– volume: 30
  start-page: 148
  year: 1985
  ident: 284_CR28
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/0734-189X(85)90094-5
– volume: 5665
  start-page: 278
  year: 2005
  ident: 284_CR36
  publication-title: Proceedings of SPIE-IS&T Electronic Imaging
– ident: 284_CR23
– volume: 73
  start-page: 295
  issue: 3
  year: 1999
  ident: 284_CR1
  publication-title: Computer Vision and Image Understanding
  doi: 10.1006/cviu.1998.0744
– volume: 30
  start-page: 191
  year: 1998
  ident: 284_CR22
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1008071332753
– ident: 284_CR35
  doi: 10.1109/ICCV.2001.937641
– volume: 2
  start-page: 522
  year: 1980
  ident: 284_CR42
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1980.6447699
– volume: 53
  start-page: 199
  year: 2003
  ident: 284_CR33
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1023012723347
– ident: 284_CR44
  doi: 10.1007/11556121_6
– ident: 284_CR3
– volume: 19
  start-page: 780
  year: 1997
  ident: 284_CR48
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.598236
– volume: 21
  start-page: 221
  year: 2005
  ident: 284_CR27
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2004.05.002
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 284_CR7
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.121791
– volume: 83
  start-page: 79
  year: 2001
  ident: 284_CR9
  publication-title: Computer Vision and Image Understanding
  doi: 10.1006/cviu.2001.0918
– ident: 284_CR17
  doi: 10.1109/CVPR.2000.854758
– volume: 73
  start-page: 82
  issue: 3
  year: 1999
  ident: 284_CR18
  publication-title: Computer Vision and Image Understanding
  doi: 10.1006/cviu.1998.0716
– volume: 104
  start-page: 90
  issue: 2
  year: 2006
  ident: 284_CR34
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2006.08.002
– ident: 284_CR38
  doi: 10.1109/CVPR.2007.383302
– volume: 9
  start-page: 1066
  year: 1998
  ident: 284_CR30
  publication-title: Medinfo
– volume: 25
  start-page: 1182
  year: 2003
  ident: 284_CR43
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1227995
– ident: 284_CR41
  doi: 10.5244/C.19.45
– ident: 284_CR46
– ident: 284_CR21
– ident: 284_CR4
  doi: 10.1145/1186822.1073207
– ident: 284_CR39
– ident: 284_CR49
  doi: 10.1109/CVPR.1991.139772
– volume: 13
  start-page: 129
  issue: 2
  year: 1995
  ident: 284_CR11
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(95)93154-K
– volume: 1
  start-page: 5
  year: 1983
  ident: 284_CR20
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(83)90003-3
– ident: 284_CR10
– ident: 284_CR14
– ident: 284_CR31
SSID ssj0002823
Score 2.3677104
Snippet An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an...
Issue Title: Special Issue: Evaluation of Articulated Human Motion and Pose Estimation An approach for accurately measuring human motion through Markerless...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Cameras
Computer animation
Computer Imaging
Computer programs
Computer Science
Datasets
Degrees of freedom
Image Processing and Computer Vision
Mathematical analysis
Mathematical models
Motion capture
Pattern Recognition
Pattern Recognition and Graphics
Segments
Studies
Surgical implants
Toy industry
Tracking
Vision
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7atIdemqYPunkUUQqFtgavJUv2MSwJySEhJG3ITUiyVBaCN0Tr_P7M2PLm0Qe0V3k8eo9mNKP5AD7lMjeF4E1WKm4zYUyRWetDxmtpnKiKIGzowSbU8XF1cVGfpHfccYx2H12SvaS-e-w2LcjnSJf5KFMz_hSe4WlXEV7D6dn5SvyiDTHgx6NdVMp6Oroyf8fiwWH0WCT_4hvtj5z99f9q7Ct4mTRMtjssiQ144tvXsJ60TZb2csSiEdBhLHsDDb3c8eR-j-yoh_dhM3NFPgaW8HzY-Tx2yP0ALddvQx2E_4WMD2cnzLRYQWfpaof1wPZh7hihrV2yIb01sXwLP_b3vs8OsgTDkOFkqWWGGm2ulA_SudyieWc46ghKyBCsKz0XaBLZpiwdmibc1o2XqrFK-EIo4yqCk3kHa-2i9e-B1S40tlBWTo0UTjZVjQYSgbN7X1deFRPIx_nQLuUoJ6iMS32XXZkGVuPAahpYzSfwZfXL1ZCg42_EH2mSNSW-aCmy5qfpYtSHZ6d6l0tRofpaqAl8TkRhgZU7kx4qYBcoV9YDyu1xsei09SOZVH1O_hx7w1afcdOSJ8a0ftFFXVNaQo5cJvB1XD_3OPyp-Zv_RL0FL4ZQBwqY24a15XXnd-C5u1nO4_WHftPcAu5pDt8
  priority: 102
  providerName: Springer Nature
Title Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation
URI https://link.springer.com/article/10.1007/s11263-009-0284-3
https://www.proquest.com/docview/1113647202
https://www.proquest.com/docview/907933485
Volume 87
WOSCitedRecordID wos000273242300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQdeGJ8iMCoLISEBFmnsxMkTGtWmTWhV1cEYvFi246BKU1qWhr-fu8TpGIi98GIpjnN2dPb5zne-H8DLOItNIkXJUyUsl8Yk3FpfcVFkxsk8qaStOrAJNZ3m5-fFLBy4NSGscpCJnaAul47OyN8RJDqlOo-T96sfnFCjyLsaIDS2YIc0GwrpO4knG0mM5kQPJY8mUpoV48Gr2V2dGyfkwSTXAEpoLq7tS39K57_cpN3uc7j7v-O-B3eD3sn2-4lyH275-gHsBh2UhRXeYNUA8zDUPYSS7vN4cso37KQD_WETsyLPAwsoP-xs0bRI_Qjt2bd9H4QKhoSPJzNmauygtXTgwzq4-2rhGGGwXbA-6TWRfASfDw8-TY54AGfgyEK15qjnxkr5KnMutmj0GYGag5JZVVmXeiHRULJlmjo0WIQtSp-p0irpE6mMywlk5jFs18vaPwFWuKq0ibLZ2GTSZWVeoNlEkO3eF7lXSQTxwBrtQuZyAtC40Fc5l4mbGrmpiZtaRPB688mqT9txU-MXxG9N6TBqirf5btqm0cenc72PvMtRqU1UBK9Co2qJnTsTri_gL1AGrWst94aZoINAaPTVNIiAbV7jUib_jKn9sm10QckKBVKJ4M0w3X6j8K_hP725v2dwp494oLi5PdheX7b-Odx2P9eL5nIEW-rL1xHsfDiYzub49FHxUbeIsJyl37Ccn579AoA1HsA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgQQvjE8RGGAhEBJgkdpunDwgNBWmVt2qiQ20N2M7Dpo0pWVpQPxT_I3c5aNjIPa2B15T965Jf76P3Pl-AE_jJLZCyZwPtXRcWSu4c6HgMkusV6kolCsasgk9m6WHh9neGvzsz8JQW2VvExtDnc89vSN_TZToNOo8Fm8XXzmxRlF1tafQaGExDT--Y8pWvZm8w__3mRDb7w9GY96xCnDUrZccA7RY61Ak3scOsxUr0eVplRSF88MgFUb4Lh8OPUba0mV5SHTutApCaetTYkdBuZfgspKppn011Xxl-TF9aanrMSUbJtmgr6I2R_UGgiqmVIpAj8DlGT_4pzf4qyzbeLvtjf_tOd2A611czbbajXAT1kJ5Cza6GJt1FqzCSz2NRX_tNuR0XilQ00HFdhtSIzayC6qssI7FiH06qmqUPsZ8_VWrg1jPUPBktMdsiQpqRy-02P4iNE2OjDjmjlk71JtE3oGPF3L7d2G9nJfhHrDMF7kT2iUDmyif5GmGaSFR0oeQpUGLCOIeCsZ3k9mJIOTYnM6UJvQYRI8h9BgZwYvVVxbtWJLzFj8hfBka91FSP9EXW1eVmex_MFuIlRSDdqEjeN4tKuao3NvueAbeAk0IO7Nys0ee6QxeZU5hFwFbfYymiupPtgzzujIZDWOUKCWClz28f5Pwr59__3x9j-Hq-GB3x-xMZtMHcK3t7qAewU1YX57U4SFc8d-WR9XJo2azMvh80aj_BSrvdXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXyqsiUMBCICTAatZ5ODkgVG1ZdVVYrSigiotrOw6qVGWXZgPir_XXdSZxthREbz1wTZxxnHyZR2Y8H8CzMA21iKOCJzIyPNZacGNcyaM81TbORBmbsiWbkJNJtr-fT1fgpN8LQ2WVvU5sFXUxs_SPfJMo0anVeSg2S18WMd0evZ1_58QgRZnWnk6jg8iu-_UTw7f6zXgb3_VzIUbvPg13uGcY4HgfcsHRWQuldGVqbWgwctERmj8Zp2VpbOKiGL19UySJRa87MnnhUlkYGTsRS20zYkpBuVfgKl6RUznhNPm6tAIYynQ09hieJWk-6DOq7ba9gaDsKaUl0Drw6JxN_NMy_JWibS3faO1_fma34Kb3t9lW94HchhVX3YE173szr9lqPNTTW_TH7kJB-5gcFSPU7ENLdsSGek4ZF-bZjdiXw7pB6Tu47NfdHMSGhoLHwynTFU7QGPrRxfbmri1-ZMQ9d8S6Zt8k8h58vpTlr8NqNavcfWC5LQsjpEkHOo1tWmQ5hotEVe9cnjkpAgh7WCjrO7YTcciROus1TUhSiCRFSFJRAC-Xl8y7diUXDX5KWFPUBqQicHzTTV2r8d5HtYW4ydCZFzKAF35QOcPJrfbbNnAJ1Dns3MiNHoXKK8JanUEwALY8jSqM8lK6crOmVjk1aYxQSgCveqj_JuFft__g4vmewHUEu3o_nuw-hBtd0QeVDm7A6uK4cY_gmv2xOKyPH7ffLYODywb9KTznfpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Markerless+motion+capture+through+visual+hull%2C+articulated+ICP+and+subject+specific+model+generation&rft.jtitle=International+journal+of+computer+vision&rft.au=Corazza%2C+Stefano&rft.au=Mundermann%2C+Lars&rft.au=Gambaretto%2C+Emiliano&rft.au=Ferrigno%2C+Giancarlo&rft.date=2010-03-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=87&rft.issue=1-2&rft.spage=156&rft_id=info:doi/10.1007%2Fs11263-009-0284-3&rft.externalDBID=ISR&rft.externalDocID=A364854027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon