Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters
Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with...
Saved in:
| Published in: | Computational mechanics Vol. 48; no. 3; pp. 345 - 364 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer-Verlag
01.09.2011
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0178-7675, 1432-0924 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling
has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space–time FSI technique developed and improved over the years by the
. The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the
. In this paper we describe the technique developed by the
for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics. |
|---|---|
| AbstractList | Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid--structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from 'rings' and 'sails' with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling (T \bigstar AFSM)Unknown control sequence '\bigstar' has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space--time FSI technique developed and improved over the years by the T \bigstar AFSMUnknown control sequence '\bigstar' . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the T \bigstar AFSMUnknown control sequence '\bigstar' . In this paper we describe the technique developed by the T \bigstar AFSMUnknown control sequence '\bigstar' for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics. Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling \[{({{\rm T} \bigstar {\rm AFSM}})}\] has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space–time FSI technique developed and improved over the years by the \[{{{\rm T} \bigstar {\rm AFSM}}}\] . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the \[{{{\rm T} \bigstar {\rm AFSM}}}\] . In this paper we describe the technique developed by the \[{{{\rm T} \bigstar {\rm AFSM}}}\] for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics. Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid-structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from "rings" and "sails" with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling (T*AFSM) has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space-time FSI technique developed and improved over the years by the T*AFSM. The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the T*AFSM. In this paper we describe the technique developed by the T*AFSM for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics. Keywords Fluid-structure interaction * Spacecraft parachutes * Parachute clusters * Ringsail parachute * Space-time technique * Geometric porosity * Contact Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space–time FSI technique developed and improved over the years by the . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the . In this paper we describe the technique developed by the for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics. Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid-structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from "rings" and "sails" with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling (T*AFSM) has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space-time FSI technique developed and improved over the years by the T*AFSM. The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the T*AFSM. In this paper we describe the technique developed by the T*AFSM for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics. |
| Audience | Academic |
| Author | Takizawa, Kenji Tezduyar, Tayfun E. Spielman, Timothy |
| Author_xml | – sequence: 1 givenname: Kenji surname: Takizawa fullname: Takizawa, Kenji organization: Department of Modern Mechanical Engineering, Waseda Institute for Advanced Study, Waseda University – sequence: 2 givenname: Timothy surname: Spielman fullname: Spielman, Timothy organization: Mechanical Engineering, Rice University – sequence: 3 givenname: Tayfun E. surname: Tezduyar fullname: Tezduyar, Tayfun E. email: tezduyar@rice.edu organization: Mechanical Engineering, Rice University |
| BookMark | eNp9kd9qFDEUh4NUcFt9AO8GvBAvpp5M_s1clmLtQkFw9TpmMydrSmZmTTLQvfMdfEOfpFlHlBaUXISE78vJOb9TcjJOIxLyksI5BVBvEwCXsgZKaxAd1N0TsqKcNTV0DT8hK6CqrZVU4hk5TekWgIqWiRX5stkbiz-__8h-wOpqs66Gqcfgx11lxr7qD6MZvDWhnEw4JJ-qyVXp6NhoXK72Jhr7dc6YfvF_jpUNc8oY03Py1JmQ8MXv_Yx8vnr36fK6vvnwfn15cVNb3qpcS6RUcCspR0GVQNN2nQLXC0QnRA9GUmEdp47aLTX9tgUFvXOU9-2WMbZlZ-T18u4-Tt9mTFkPPlkMwYw4zUl3jWRMQtMW8tUj8naaY2kv6aaRlJWPACvU-ULtTEDtRzfl0lpZPZaBlOE7X-4vmBBcKuh4Ed48EAqT8S7vzJySXm8-PmTpwto4pRTR6X30g4kHTUEf89RLnrrkqY956q446pFjfTbZlzLR-PBfs1nMVKqMO4x_G_63dA9Ju7Yw |
| CitedBy_id | crossref_primary_10_1115_1_2012_DEC_2 crossref_primary_10_1016_j_cma_2023_116137 crossref_primary_10_1007_s00466_013_0875_2 crossref_primary_10_1088_1742_6596_1786_1_012012 crossref_primary_10_1016_j_cma_2020_112842 crossref_primary_10_1007_s00466_016_1262_6 crossref_primary_10_1007_s00466_014_1074_5 crossref_primary_10_1007_s00466_012_0760_4 crossref_primary_10_1016_j_jfluidstructs_2012_08_011 crossref_primary_10_1016_j_cma_2013_07_009 crossref_primary_10_1007_s00466_014_1052_y crossref_primary_10_1007_s00466_014_0999_z crossref_primary_10_1007_s00466_014_1017_1 crossref_primary_10_1007_s00466_013_0880_5 crossref_primary_10_1007_s00466_013_0935_7 crossref_primary_10_1007_s11831_012_9071_3 crossref_primary_10_1007_s00466_024_02534_9 crossref_primary_10_1007_s00466_013_0866_3 crossref_primary_10_1007_s00466_013_0905_0 crossref_primary_10_1007_s00466_011_0614_5 crossref_primary_10_1007_s00466_011_0618_1 crossref_primary_10_1007_s00466_022_02265_9 crossref_primary_10_1088_1755_1315_240_6_062014 crossref_primary_10_1016_j_cma_2014_10_040 crossref_primary_10_1061__ASCE_AS_1943_5525_0000430 crossref_primary_10_1002_nme_6783 crossref_primary_10_1007_s00466_013_0890_3 crossref_primary_10_1007_s00466_012_0758_y crossref_primary_10_1007_s00466_014_1116_z crossref_primary_10_1007_s00466_012_0776_9 crossref_primary_10_1051_jnwpu_20244261021 crossref_primary_10_1007_s00466_014_1007_3 crossref_primary_10_1016_j_compfluid_2015_12_004 crossref_primary_10_1177_155892501501000119 crossref_primary_10_1007_s00466_012_0772_0 crossref_primary_10_1007_s11831_014_9113_0 crossref_primary_10_1007_s00466_012_0781_z crossref_primary_10_1016_j_cma_2012_11_009 crossref_primary_10_1007_s00466_012_0761_3 crossref_primary_10_1007_s11831_012_9070_4 crossref_primary_10_1016_j_cma_2014_09_037 crossref_primary_10_1007_s00466_014_1090_5 crossref_primary_10_1016_j_compfluid_2012_11_008 crossref_primary_10_1007_s00466_018_1620_7 crossref_primary_10_1016_j_camwa_2021_09_005 crossref_primary_10_1007_s00466_019_01792_2 crossref_primary_10_1155_2020_2361534 crossref_primary_10_1007_s00466_011_0619_0 crossref_primary_10_1016_j_jfluidstructs_2022_103513 crossref_primary_10_2514_1_J051939 crossref_primary_10_1007_s00466_012_0794_7 crossref_primary_10_1007_s00466_014_1069_2 crossref_primary_10_1007_s00466_016_1367_y crossref_primary_10_1007_s00466_014_0980_x crossref_primary_10_1007_s00466_012_0759_x crossref_primary_10_1016_j_compfluid_2016_02_019 crossref_primary_10_1016_j_compfluid_2015_07_013 |
| Cites_doi | 10.1007/s00466-006-0059-4 10.1115/1.3059576 10.1002/fld.1633 10.1007/s00466-009-0419-y 10.1016/0045-7825(92)90059-S 10.1007/s00466-008-0254-6 10.1115/1.1530634 10.1002/fld.2454 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L 10.1007/s004660050393 10.1007/s00466-009-0421-4 10.1002/fld.1497 10.1007/s00466-008-0260-8 10.1016/0045-7825(94)00077-8 10.1016/j.cma.2003.12.046 10.1016/S0045-7825(00)00379-0 10.1016/j.cma.2009.04.015 10.1007/BF00350249 10.1016/S0045-7825(00)00208-5 10.1007/s00466-008-0299-6 10.1137/0907058 10.1016/0045-7825(94)90029-9 10.1109/2.237441 10.1007/BF02897870 10.1002/fld.2348 10.1016/0045-7825(92)90141-6 10.1002/fld.2359 10.1007/s00466-008-0255-5 10.1016/j.compfluid.2005.06.007 10.1007/s00466-009-0439-7 10.1016/j.cma.2005.08.023 10.1007/s00466-008-0325-8 10.1016/S0045-7825(00)00204-8 10.1007/s00466-009-0425-0 10.1007/s00466-008-0261-7 10.1016/0045-7825(82)90071-8 10.1137/S1064827595287997 10.1016/S0045-7825(01)00312-7 10.1002/fld.1443 10.1002/fld.2415 10.1007/s00466-008-0315-x 10.1002/cnm.1289 10.1007/s00466-009-0426-z 10.1002/fld.505 10.1007/s10237-010-0189-7 10.1016/S0065-2156(08)70153-4 10.1002/cnm.1241 10.1007/s00466-006-0065-6 10.1002/fld.1430 10.1002/fld.1650211011 10.1016/0045-7825(81)90049-9 10.1115/1.1530635 10.1007/s00466-009-0423-2 10.1016/j.cma.2008.05.024 10.1007/s00466-008-0276-0 10.1137/S1064827503431430 10.2514/2.2864 10.1016/j.compfluid.2005.07.014 10.1016/0045-7825(92)90060-W 10.1002/eqe.4290050306 10.1002/fld.2400 10.1007/s00466-006-0084-3 10.1016/0045-7825(94)00082-4 10.1002/fld.2221 10.1161/STROKEAHA.107.503698 10.1016/j.cma.2005.05.050 10.1016/j.cma.2008.08.020 10.1016/j.cma.2004.09.014 10.1109/MCISE.2003.1166551 10.1016/S0045-7825(01)00311-5 10.1007/s00466-011-0571-z 10.1299/kikaia.70.1224 10.1002/cnm.1433 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag 2011 COPYRIGHT 2011 Springer Computational Mechanics is a copyright of Springer, (2011). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag 2011 – notice: COPYRIGHT 2011 Springer – notice: Computational Mechanics is a copyright of Springer, (2011). All Rights Reserved. |
| DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1007/s00466-011-0590-9 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1432-0924 |
| EndPage | 364 |
| ExternalDocumentID | A355467094 10_1007_s00466_011_0590_9 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 XH6 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7TB 8FD FR3 H8D KR7 L7M PUEGO |
| ID | FETCH-LOGICAL-c487t-6e1154c614e5175ea89970fd5eef55d0a615cf41f1cb1adb8070dff14d8b333b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294346200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-7675 |
| IngestDate | Thu Sep 04 17:20:35 EDT 2025 Wed Nov 26 13:52:10 EST 2025 Sun Nov 23 08:54:48 EST 2025 Wed Nov 26 09:56:26 EST 2025 Sat Nov 29 06:01:18 EST 2025 Tue Nov 18 21:51:33 EST 2025 Fri Feb 21 02:32:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Space–time technique Fluid–structure interaction Geometric porosity Parachute clusters Ringsail parachute Spacecraft parachutes Contact |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-6e1154c614e5175ea89970fd5eef55d0a615cf41f1cb1adb8070dff14d8b333b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 2261311503 |
| PQPubID | 2043755 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_926336028 proquest_journals_2261311503 gale_infotracacademiconefile_A355467094 gale_incontextgauss_ISR_A355467094 crossref_primary_10_1007_s00466_011_0590_9 crossref_citationtrail_10_1007_s00466_011_0590_9 springer_journals_10_1007_s00466_011_0590_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics |
| PublicationTitle | Computational mechanics |
| PublicationTitleAbbrev | Comput Mech |
| PublicationYear | 2011 |
| Publisher | Springer-Verlag Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
| References | Tezduyar, Mittal, Ray, Shih (CR70) 1992; 95 Tezduyar, Sathe, Cragin, Nanna, Conklin, Pausewang, Schwaab (CR28) 2007; 54 Tezduyar, Behr, Liou (CR66) 1992; 94 Mittal, Tezduyar (CR8) 1995; 21 Tezduyar, Sathe (CR31) 2007; 54 Johnson, Tezduyar (CR11) 1999; 23 Stein, Tezduyar, Kumar, Sathe, Benney, Thornburg, Kyle, Nonoshita (CR63) 2003; 70 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR32) 2007; 54 Khurram, Masud (CR27) 2006; 38 Ohayon (CR16) 2001; 190 Manguoglu, Takizawa, Sameh, Tezduyar (CR50) 2010; 46 CR75 Isaksen, Bazilevs, Kvamsdal, Zhang, Kaspersen, Waterloo, Romner, Ingebrigtsen (CR37) 2008; 39 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR24) 2006; 195 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR35) 2008; 43 CR71 Tezduyar, Behr, Mittal, Liou (CR67) 1992; 94 Stein, Tezduyar, Benney (CR64) 2003; 5 Karypis, Kumar (CR76) 1998; 20 Tezduyar, Takizawa, Moorman, Wright, Christopher (CR48) 2010; 46 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR49) 2010; 26 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR29) 2007; 36 Brooks, Hughes (CR69) 1982; 32 Takizawa, Moorman, Wright, Christopher, Tezduyar (CR47) 2010; 46 Stein, Benney, Tezduyar, Potvin (CR61) 2001; 191 Stein, Tezduyar, Benney (CR18) 2004; 193 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR41) 2009; 198 Tezduyar, Sathe, Stein (CR23) 2006; 195 Tezduyar, Sathe, Schwaab, Conklin (CR34) 2008; 57 Saad, Schultz (CR77) 1986; 7 Takizawa, Wright, Moorman, Tezduyar (CR3) 2011; 65 CR46 Tezduyar (CR68) 2003; 43 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR51) 2010; 46 Tezduyar, Sathe, Pausewang, Schwaab, Christopher, Crabtree (CR2) 2008; 43 Hughes, Liu, Zimmermann (CR4) 1981; 29 Kalro, Tezduyar (CR12) 2000; 190 Bazilevs, Calo, Zhang, Hughes (CR26) 2006; 38 Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (CR56) 2011; 65 Tezduyar, Aliabadi, Behr, Mittal (CR6) 1994; 119 Tezduyar, Schwaab, Sathe (CR40) 2009; 198 Johnson, Tezduyar (CR10) 1997; 24 Bazilevs, Gohean, Hughes, Moser, Zhang (CR43) 2009; 198 Bazilevs, Hsu, Zhang, Wang, Kvamsdal, Hentschel, Isaksen (CR54) 2010; 9 Tezduyar (CR65) 1992; 28 Sathe, Tezduyar (CR73) 2008; 43 CR59 Stein, Benney, Kalro, Tezduyar, Leonard, Accorsi (CR13) 2000; 190 Tezduyar, Takizawa, Moorman, Wright, Christopher (CR53) 2010; 64 Bazilevs, Hsu, Benson, Sankaran, Marsden (CR44) 2009; 45 Bazilevs, Hsu, Akkerman, Wright, Takizawa, Henicke, Spielman, Tezduyar (CR55) 2011; 65 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR25) 2006; 38 Tezduyar, Aliabadi, Behr, Johnson, Kalro, Litke (CR9) 1996; 18 Hilber, Hughes, Taylor (CR74) 1977; 5 Mittal, Tezduyar (CR7) 1994; 112 Stein, Tezduyar, Benney (CR17) 2003; 70 Tezduyar, Osawa (CR15) 2001; 191 Bazilevs, Hsu, Zhang, Wang, Liang, Kvamsdal, Brekken, Isaksen (CR52) 2010; 46 Manguoglu, Sameh, Tezduyar, Sathe (CR33) 2008; 43 Bazilevs, Calo, Hughes, Zhang (CR36) 2008; 43 Stein, Benney, Tezduyar, Leonard, Accorsi (CR62) 2001; 38 Takizawa, Moorman, Wright, Spielman, Tezduyar (CR57) 2011; 65 Takizawa, Christopher, Tezduyar, Sathe (CR45) 2010; 26 Tezduyar (CR14) 2001; 8 Tezduyar, Aliabadi, Behr, Johnson, Mittal (CR5) 1993; 26 Tezduyar, Sathe, Keedy, Stein (CR22) 2006; 195 Manguoglu, Takizawa, Sameh, Tezduyar (CR58) 2011; 65 Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR19) 2004; 70 Kuttler, Wall (CR38) 2008; 43 CR20 Tezduyar, Sathe, Pausewang, Schwaab, Christopher, Crabtree (CR1) 2008; 43 Manguoglu, Sameh, Saied, Tezduyar, Sathe (CR42) 2009; 76 CR60 Johnson, Tezduyar (CR72) 1994; 119 Dettmer, Peric (CR39) 2008; 43 van Brummelen, de Borst (CR21) 2005; 27 Sawada, Hisada (CR30) 2007; 36 R Torii (590_CR29) 2007; 36 TE Tezduyar (590_CR2) 2008; 43 R Torii (590_CR49) 2010; 26 AA Johnson (590_CR11) 1999; 23 590_CR59 K Takizawa (590_CR45) 2010; 26 WG Dettmer (590_CR39) 2008; 43 TE Tezduyar (590_CR14) 2001; 8 Y Bazilevs (590_CR52) 2010; 46 TE Tezduyar (590_CR68) 2003; 43 R Torii (590_CR51) 2010; 46 TE Tezduyar (590_CR22) 2006; 195 R Ohayon (590_CR16) 2001; 190 M Manguoglu (590_CR33) 2008; 43 T Tezduyar (590_CR9) 1996; 18 Y Bazilevs (590_CR54) 2010; 9 590_CR60 TE Tezduyar (590_CR6) 1994; 119 Y Bazilevs (590_CR26) 2006; 38 M Manguoglu (590_CR50) 2010; 46 590_CR46 TE Tezduyar (590_CR34) 2008; 57 AN Brooks (590_CR69) 1982; 32 K Stein (590_CR64) 2003; 5 TJR Hughes (590_CR4) 1981; 29 TE Tezduyar (590_CR28) 2007; 54 S Sathe (590_CR73) 2008; 43 TE Tezduyar (590_CR31) 2007; 54 G Karypis (590_CR76) 1998; 20 TE Tezduyar (590_CR40) 2009; 198 K Stein (590_CR63) 2003; 70 RA Khurram (590_CR27) 2006; 38 K Takizawa (590_CR47) 2010; 46 R Torii (590_CR24) 2006; 195 AA Johnson (590_CR10) 1997; 24 Y Saad (590_CR77) 1986; 7 K Stein (590_CR18) 2004; 193 590_CR75 Y Bazilevs (590_CR36) 2008; 43 K Stein (590_CR61) 2001; 191 T Tezduyar (590_CR15) 2001; 191 TE Tezduyar (590_CR67) 1992; 94 EH Brummelen van (590_CR21) 2005; 27 TE Tezduyar (590_CR53) 2010; 64 T Sawada (590_CR30) 2007; 36 Y Bazilevs (590_CR55) 2011; 65 U Kuttler (590_CR38) 2008; 43 K Stein (590_CR13) 2000; 190 JG Isaksen (590_CR37) 2008; 39 K Takizawa (590_CR57) 2011; 65 Y Bazilevs (590_CR43) 2009; 198 R Torii (590_CR35) 2008; 43 TE Tezduyar (590_CR48) 2010; 46 M Manguoglu (590_CR58) 2011; 65 TE Tezduyar (590_CR23) 2006; 195 590_CR20 TE Tezduyar (590_CR70) 1992; 95 R Torii (590_CR25) 2006; 38 TE Tezduyar (590_CR66) 1992; 94 K Takizawa (590_CR3) 2011; 65 R Torii (590_CR41) 2009; 198 Y Bazilevs (590_CR56) 2011; 65 KR Stein (590_CR62) 2001; 38 AA Johnson (590_CR72) 1994; 119 M Manguoglu (590_CR42) 2009; 76 V Kalro (590_CR12) 2000; 190 TE Tezduyar (590_CR65) 1992; 28 TE Tezduyar (590_CR1) 2008; 43 R Torii (590_CR19) 2004; 70 S Mittal (590_CR8) 1995; 21 590_CR71 K Stein (590_CR17) 2003; 70 T Tezduyar (590_CR5) 1993; 26 HM Hilber (590_CR74) 1977; 5 R Torii (590_CR32) 2007; 54 S Mittal (590_CR7) 1994; 112 Y Bazilevs (590_CR44) 2009; 45 |
| References_xml | – volume: 38 start-page: 403 year: 2006 end-page: 416 ident: CR27 article-title: A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction publication-title: Comput Mech doi: 10.1007/s00466-006-0059-4 – volume: 76 start-page: 021204 year: 2009 ident: CR42 article-title: Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows publication-title: J Appl Mech doi: 10.1115/1.3059576 – volume: 57 start-page: 601 year: 2008 end-page: 629 ident: CR34 article-title: Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1633 – volume: 45 start-page: 77 year: 2009 end-page: 89 ident: CR44 article-title: Computational fluid–structure interaction: methods and application to a total cavopulmonary connection publication-title: Comput Mech doi: 10.1007/s00466-009-0419-y – volume: 94 start-page: 339 year: 1992 end-page: 351 ident: CR66 article-title: A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(92)90059-S – volume: 43 start-page: 81 year: 2008 end-page: 90 ident: CR39 article-title: On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction publication-title: Comput Mech doi: 10.1007/s00466-008-0254-6 – volume: 70 start-page: 50 year: 2003 end-page: 57 ident: CR63 article-title: Aerodynamic interactions between parachute canopies publication-title: J Appl Mech doi: 10.1115/1.1530634 – volume: 65 start-page: 236 year: 2011 end-page: 253 ident: CR56 article-title: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2454 – volume: 24 start-page: 1321 year: 1997 end-page: 1340 ident: CR10 article-title: Parallel computation of incompressible flows with complex geometries publication-title: Int J Numer Methods Fluids doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L – volume: 23 start-page: 130 year: 1999 end-page: 143 ident: CR11 article-title: Advanced mesh generation and update methods for 3D flow simulations publication-title: Comput Mech doi: 10.1007/s004660050393 – volume: 46 start-page: 3 year: 2010 end-page: 16 ident: CR52 article-title: A fully-coupled fluid–structure interaction simulation of cerebral aneurysms publication-title: Comput Mech doi: 10.1007/s00466-009-0421-4 – volume: 54 start-page: 995 year: 2007 end-page: 1009 ident: CR32 article-title: Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1497 – volume: 43 start-page: 133 year: 2008 end-page: 142 ident: CR2 article-title: Fluid–structure interaction modeling of ringsail parachutes publication-title: Comput Mech doi: 10.1007/s00466-008-0260-8 – volume: 119 start-page: 73 year: 1994 end-page: 94 ident: CR72 article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)00077-8 – volume: 193 start-page: 2019 year: 2004 end-page: 2032 ident: CR18 article-title: Automatic mesh update with the solid-extension mesh moving technique publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.046 – volume: 190 start-page: 3009 year: 2001 end-page: 3019 ident: CR16 article-title: Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00379-0 – volume: 198 start-page: 3534 year: 2009 end-page: 3550 ident: CR43 article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2009.04.015 – volume: 18 start-page: 397 year: 1996 end-page: 412 ident: CR9 article-title: Flow simulation and high performance computing publication-title: Comput Mech doi: 10.1007/BF00350249 – volume: 190 start-page: 373 year: 2000 end-page: 386 ident: CR13 article-title: Parachute fluid–structure interactions: 3-D computation publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00208-5 – volume: 43 start-page: 51 year: 2008 end-page: 60 ident: CR73 article-title: Modeling of fluid–structure interactions with the space–time finite elements: contact problems publication-title: Comput Mech doi: 10.1007/s00466-008-0299-6 – ident: CR46 – ident: CR71 – volume: 7 start-page: 856 year: 1986 end-page: 869 ident: CR77 article-title: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J Sci Stat Comput doi: 10.1137/0907058 – volume: 112 start-page: 253 year: 1994 end-page: 282 ident: CR7 article-title: Massively parallel finite element computation of incompressible flows involving fluid-body interactions publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)90029-9 – ident: CR75 – volume: 26 start-page: 27 year: 1993 end-page: 36 ident: CR5 article-title: Parallel finite-element computation of 3D flows publication-title: Computer doi: 10.1109/2.237441 – volume: 8 start-page: 83 year: 2001 end-page: 130 ident: CR14 article-title: Finite element methods for flow problems with moving boundaries and interfaces publication-title: Arch Comput Methods Eng doi: 10.1007/BF02897870 – volume: 65 start-page: 271 year: 2011 end-page: 285 ident: CR57 article-title: Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2348 – volume: 95 start-page: 221 year: 1992 end-page: 242 ident: CR70 article-title: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(92)90141-6 – volume: 65 start-page: 286 year: 2011 end-page: 307 ident: CR3 article-title: Fluid–structure interaction modeling of parachute clusters publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2359 – volume: 43 start-page: 61 year: 2008 end-page: 72 ident: CR38 article-title: Fixed-point fluid–structure interaction solvers with dynamic relaxation publication-title: Comput Mech doi: 10.1007/s00466-008-0255-5 – ident: CR60 – volume: 36 start-page: 136 year: 2007 end-page: 146 ident: CR30 article-title: Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method publication-title: Comput Fluids doi: 10.1016/j.compfluid.2005.06.007 – volume: 46 start-page: 43 year: 2010 end-page: 52 ident: CR51 article-title: Role of 0D peripheral vasculature model in fluid– structure interaction modeling of aneurysms publication-title: Comput Mech doi: 10.1007/s00466-009-0439-7 – volume: 195 start-page: 5743 year: 2006 end-page: 5753 ident: CR23 article-title: Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2005.08.023 – volume: 43 start-page: 151 year: 2008 end-page: 159 ident: CR35 article-title: Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling publication-title: Comput Mech doi: 10.1007/s00466-008-0325-8 – volume: 190 start-page: 321 year: 2000 end-page: 332 ident: CR12 article-title: A parallel 3D computational method for fluid–structure interactions in parachute systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00204-8 – volume: 46 start-page: 31 year: 2010 end-page: 41 ident: CR47 article-title: Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions publication-title: Comput Mech doi: 10.1007/s00466-009-0425-0 – volume: 43 start-page: 39 year: 2008 end-page: 49 ident: CR1 article-title: Interface projection techniques for fluid– structure interaction modeling with moving-mesh methods publication-title: Comput Mech doi: 10.1007/s00466-008-0261-7 – volume: 32 start-page: 199 year: 1982 end-page: 259 ident: CR69 article-title: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(82)90071-8 – volume: 20 start-page: 359 year: 1998 end-page: 392 ident: CR76 article-title: A fast and high quality multilevel scheme for partitioning irregular graphs publication-title: SIAM J Sci Comput doi: 10.1137/S1064827595287997 – volume: 191 start-page: 673 year: 2001 end-page: 687 ident: CR61 article-title: Fluid–structure interactions of a cross parachute: numerical simulation publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00312-7 – volume: 54 start-page: 901 year: 2007 end-page: 922 ident: CR28 article-title: Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1443 – volume: 65 start-page: 135 year: 2011 end-page: 149 ident: CR58 article-title: Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2415 – volume: 43 start-page: 3 year: 2008 end-page: 37 ident: CR36 article-title: Isogeometric fluid–structure interaction: theory, algorithms, and computations publication-title: Comput Mech doi: 10.1007/s00466-008-0315-x – volume: 26 start-page: 336 year: 2010 end-page: 347 ident: CR49 article-title: Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.1289 – volume: 70 start-page: 1224 year: 2004 end-page: 1231 ident: CR19 article-title: of wall elasticity on image-based blood flow simulation publication-title: Jpn Soc Mech Eng J Ser A – volume: 46 start-page: 83 year: 2010 end-page: 89 ident: CR50 article-title: Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement publication-title: Comput Mech doi: 10.1007/s00466-009-0426-z – volume: 43 start-page: 555 year: 2003 end-page: 575 ident: CR68 article-title: Computation of moving boundaries and interfaces and stabilization parameters publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.505 – volume: 9 start-page: 481 year: 2010 end-page: 498 ident: CR54 article-title: Computational fluid–structure interaction: methods and application to cerebral aneurysms publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-010-0189-7 – volume: 28 start-page: 1 year: 1992 end-page: 44 ident: CR65 article-title: Stabilized finite element formulations for incompressible flow computations publication-title: Adv Appl Mech doi: 10.1016/S0065-2156(08)70153-4 – volume: 26 start-page: 101 year: 2010 end-page: 116 ident: CR45 article-title: Space–time finite element computation of arterial fluid–structure interactions with patient-specific data publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.1241 – volume: 38 start-page: 482 year: 2006 end-page: 490 ident: CR25 article-title: Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures publication-title: Comput Mech doi: 10.1007/s00466-006-0065-6 – volume: 54 start-page: 855 year: 2007 end-page: 900 ident: CR31 article-title: Modeling of fluid–structure interactions with the space–time finite elements: solution techniques publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1430 – volume: 21 start-page: 933 year: 1995 end-page: 953 ident: CR8 article-title: Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1650211011 – volume: 29 start-page: 329 year: 1981 end-page: 349 ident: CR4 article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(81)90049-9 – volume: 70 start-page: 58 year: 2003 end-page: 63 ident: CR17 article-title: Mesh moving techniques for fluid–structure interactions with large displacements publication-title: J Appl Mech doi: 10.1115/1.1530635 – volume: 46 start-page: 17 year: 2010 end-page: 29 ident: CR48 article-title: Multiscale sequentially-coupled arterial FSI technique publication-title: Comput Mech doi: 10.1007/s00466-009-0423-2 – volume: 198 start-page: 3524 year: 2009 end-page: 3533 ident: CR40 article-title: Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.05.024 – volume: 43 start-page: 73 year: 2008 end-page: 80 ident: CR33 article-title: A nested iterative scheme for computation of incompressible flows in long domains publication-title: Comput Mech doi: 10.1007/s00466-008-0276-0 – volume: 27 start-page: 599 year: 2005 end-page: 621 ident: CR21 article-title: On the nonnormality of subiteration for a fluid-structure interaction problem publication-title: SIAM J Sci Comput doi: 10.1137/S1064827503431430 – volume: 38 start-page: 800 year: 2001 end-page: 808 ident: CR62 article-title: Fluid–structure interactions of a round parachute: modeling and simulation techniques publication-title: J Aircr doi: 10.2514/2.2864 – volume: 36 start-page: 160 year: 2007 end-page: 168 ident: CR29 article-title: Influence of wall elasticity in patient-specific hemodynamic simulations publication-title: Comput Fluids doi: 10.1016/j.compfluid.2005.07.014 – volume: 94 start-page: 353 year: 1992 end-page: 371 ident: CR67 article-title: A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(92)90060-W – volume: 5 start-page: 283 year: 1977 end-page: 292 ident: CR74 article-title: Improved numerical dissipation for time integration algorithms in structural dynamics publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290050306 – volume: 65 start-page: 207 year: 2011 end-page: 235 ident: CR55 article-title: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2400 – volume: 38 start-page: 310 year: 2006 end-page: 322 ident: CR26 article-title: Isogeometric fluid–structure interaction analysis with applications to arterial blood flow publication-title: Comput Mech doi: 10.1007/s00466-006-0084-3 – volume: 119 start-page: 157 year: 1994 end-page: 177 ident: CR6 article-title: Massively parallel finite element simulation of compressible and incompressible flows publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)00082-4 – volume: 64 start-page: 1201 year: 2010 end-page: 1218 ident: CR53 article-title: Space–time finite element computation of complex fluid–structure interactions publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2221 – volume: 39 start-page: 3172 year: 2008 end-page: 3178 ident: CR37 article-title: Determination of wall tension in cerebral artery aneurysms by numerical simulation publication-title: Stroke doi: 10.1161/STROKEAHA.107.503698 – volume: 195 start-page: 1885 year: 2006 end-page: 1895 ident: CR24 article-title: Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2005.05.050 – volume: 198 start-page: 3613 year: 2009 end-page: 3621 ident: CR41 article-title: Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.08.020 – volume: 195 start-page: 2002 year: 2006 end-page: 2027 ident: CR22 article-title: Space–time finite element techniques for computation of fluid–structure interactions publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.09.014 – ident: CR59 – volume: 5 start-page: 39 year: 2003 end-page: 46 ident: CR64 article-title: Computational methods for modeling parachute systems publication-title: Comput Sci Eng doi: 10.1109/MCISE.2003.1166551 – volume: 191 start-page: 717 year: 2001 end-page: 726 ident: CR15 article-title: Fluid–structure interactions of a parachute crossing the far wake of an aircraft publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00311-5 – ident: CR20 – volume: 54 start-page: 995 year: 2007 ident: 590_CR32 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1497 – volume: 191 start-page: 673 year: 2001 ident: 590_CR61 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00312-7 – volume: 190 start-page: 373 year: 2000 ident: 590_CR13 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00208-5 – volume: 43 start-page: 73 year: 2008 ident: 590_CR33 publication-title: Comput Mech doi: 10.1007/s00466-008-0276-0 – volume: 195 start-page: 2002 year: 2006 ident: 590_CR22 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.09.014 – volume: 43 start-page: 51 year: 2008 ident: 590_CR73 publication-title: Comput Mech doi: 10.1007/s00466-008-0299-6 – volume: 32 start-page: 199 year: 1982 ident: 590_CR69 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(82)90071-8 – volume: 38 start-page: 310 year: 2006 ident: 590_CR26 publication-title: Comput Mech doi: 10.1007/s00466-006-0084-3 – ident: 590_CR20 – volume: 43 start-page: 3 year: 2008 ident: 590_CR36 publication-title: Comput Mech doi: 10.1007/s00466-008-0315-x – volume: 29 start-page: 329 year: 1981 ident: 590_CR4 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(81)90049-9 – volume: 94 start-page: 339 year: 1992 ident: 590_CR66 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(92)90059-S – volume: 5 start-page: 39 year: 2003 ident: 590_CR64 publication-title: Comput Sci Eng doi: 10.1109/MCISE.2003.1166551 – volume: 39 start-page: 3172 year: 2008 ident: 590_CR37 publication-title: Stroke doi: 10.1161/STROKEAHA.107.503698 – volume: 43 start-page: 61 year: 2008 ident: 590_CR38 publication-title: Comput Mech doi: 10.1007/s00466-008-0255-5 – volume: 65 start-page: 236 year: 2011 ident: 590_CR56 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2454 – volume: 24 start-page: 1321 year: 1997 ident: 590_CR10 publication-title: Int J Numer Methods Fluids doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L – volume: 18 start-page: 397 year: 1996 ident: 590_CR9 publication-title: Comput Mech doi: 10.1007/BF00350249 – volume: 9 start-page: 481 year: 2010 ident: 590_CR54 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-010-0189-7 – volume: 46 start-page: 17 year: 2010 ident: 590_CR48 publication-title: Comput Mech doi: 10.1007/s00466-009-0423-2 – ident: 590_CR60 doi: 10.1007/s00466-011-0571-z – volume: 65 start-page: 135 year: 2011 ident: 590_CR58 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2415 – volume: 45 start-page: 77 year: 2009 ident: 590_CR44 publication-title: Comput Mech doi: 10.1007/s00466-009-0419-y – volume: 46 start-page: 83 year: 2010 ident: 590_CR50 publication-title: Comput Mech doi: 10.1007/s00466-009-0426-z – volume: 36 start-page: 160 year: 2007 ident: 590_CR29 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2005.07.014 – volume: 198 start-page: 3524 year: 2009 ident: 590_CR40 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.05.024 – volume: 54 start-page: 855 year: 2007 ident: 590_CR31 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1430 – ident: 590_CR46 – volume: 43 start-page: 39 year: 2008 ident: 590_CR1 publication-title: Comput Mech doi: 10.1007/s00466-008-0261-7 – volume: 198 start-page: 3613 year: 2009 ident: 590_CR41 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.08.020 – volume: 190 start-page: 3009 year: 2001 ident: 590_CR16 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00379-0 – volume: 193 start-page: 2019 year: 2004 ident: 590_CR18 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.046 – volume: 70 start-page: 50 year: 2003 ident: 590_CR63 publication-title: J Appl Mech doi: 10.1115/1.1530634 – volume: 20 start-page: 359 year: 1998 ident: 590_CR76 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827595287997 – volume: 38 start-page: 800 year: 2001 ident: 590_CR62 publication-title: J Aircr doi: 10.2514/2.2864 – volume: 65 start-page: 286 year: 2011 ident: 590_CR3 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2359 – volume: 43 start-page: 133 year: 2008 ident: 590_CR2 publication-title: Comput Mech doi: 10.1007/s00466-008-0260-8 – volume: 38 start-page: 403 year: 2006 ident: 590_CR27 publication-title: Comput Mech doi: 10.1007/s00466-006-0059-4 – volume: 76 start-page: 021204 year: 2009 ident: 590_CR42 publication-title: J Appl Mech doi: 10.1115/1.3059576 – volume: 38 start-page: 482 year: 2006 ident: 590_CR25 publication-title: Comput Mech doi: 10.1007/s00466-006-0065-6 – volume: 195 start-page: 5743 year: 2006 ident: 590_CR23 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2005.08.023 – volume: 26 start-page: 336 year: 2010 ident: 590_CR49 publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.1289 – volume: 57 start-page: 601 year: 2008 ident: 590_CR34 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1633 – volume: 7 start-page: 856 year: 1986 ident: 590_CR77 publication-title: SIAM J Sci Stat Comput doi: 10.1137/0907058 – volume: 70 start-page: 58 year: 2003 ident: 590_CR17 publication-title: J Appl Mech doi: 10.1115/1.1530635 – volume: 46 start-page: 31 year: 2010 ident: 590_CR47 publication-title: Comput Mech doi: 10.1007/s00466-009-0425-0 – volume: 54 start-page: 901 year: 2007 ident: 590_CR28 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1443 – volume: 36 start-page: 136 year: 2007 ident: 590_CR30 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2005.06.007 – volume: 46 start-page: 3 year: 2010 ident: 590_CR52 publication-title: Comput Mech doi: 10.1007/s00466-009-0421-4 – volume: 64 start-page: 1201 year: 2010 ident: 590_CR53 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2221 – volume: 26 start-page: 101 year: 2010 ident: 590_CR45 publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.1241 – volume: 119 start-page: 73 year: 1994 ident: 590_CR72 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)00077-8 – volume: 5 start-page: 283 year: 1977 ident: 590_CR74 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290050306 – volume: 26 start-page: 27 year: 1993 ident: 590_CR5 publication-title: Computer doi: 10.1109/2.237441 – volume: 43 start-page: 555 year: 2003 ident: 590_CR68 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.505 – volume: 21 start-page: 933 year: 1995 ident: 590_CR8 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1650211011 – volume: 95 start-page: 221 year: 1992 ident: 590_CR70 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(92)90141-6 – volume: 43 start-page: 81 year: 2008 ident: 590_CR39 publication-title: Comput Mech doi: 10.1007/s00466-008-0254-6 – volume: 46 start-page: 43 year: 2010 ident: 590_CR51 publication-title: Comput Mech doi: 10.1007/s00466-009-0439-7 – volume: 191 start-page: 717 year: 2001 ident: 590_CR15 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00311-5 – volume: 28 start-page: 1 year: 1992 ident: 590_CR65 publication-title: Adv Appl Mech doi: 10.1016/S0065-2156(08)70153-4 – volume: 119 start-page: 157 year: 1994 ident: 590_CR6 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)00082-4 – volume: 198 start-page: 3534 year: 2009 ident: 590_CR43 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2009.04.015 – volume: 65 start-page: 207 year: 2011 ident: 590_CR55 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2400 – volume: 65 start-page: 271 year: 2011 ident: 590_CR57 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.2348 – volume: 8 start-page: 83 year: 2001 ident: 590_CR14 publication-title: Arch Comput Methods Eng doi: 10.1007/BF02897870 – volume: 27 start-page: 599 year: 2005 ident: 590_CR21 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827503431430 – volume: 112 start-page: 253 year: 1994 ident: 590_CR7 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)90029-9 – volume: 43 start-page: 151 year: 2008 ident: 590_CR35 publication-title: Comput Mech doi: 10.1007/s00466-008-0325-8 – volume: 70 start-page: 1224 year: 2004 ident: 590_CR19 publication-title: Jpn Soc Mech Eng J Ser A doi: 10.1299/kikaia.70.1224 – volume: 195 start-page: 1885 year: 2006 ident: 590_CR24 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2005.05.050 – volume: 23 start-page: 130 year: 1999 ident: 590_CR11 publication-title: Comput Mech doi: 10.1007/s004660050393 – volume: 190 start-page: 321 year: 2000 ident: 590_CR12 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00204-8 – volume: 94 start-page: 353 year: 1992 ident: 590_CR67 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(92)90060-W – ident: 590_CR59 doi: 10.1002/cnm.1433 – ident: 590_CR75 – ident: 590_CR71 |
| SSID | ssj0015835 |
| Score | 2.2797291 |
| Snippet | Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI)... Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid-structure interaction (FSI)... Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid--structure interaction... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 345 |
| SubjectTerms | Analysis Classical and Continuum Physics Cluster analysis Clusters Complexity Computation Computational Science and Engineering Computer simulation Computer-generated environments Contact Dealing Engineering Flow simulation Mathematical models Original Paper Parachute descent Parachutes Porosity Sails Slits Space ships Space vehicles Spacecraft Theoretical and Applied Mechanics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwEB1BywIWFAqIQEEWQkICReTlPFaooF7RzVXVC1J3xs-CVCXl-oY1_8Af8iXMJE5KQXTDMvIr0djjMx7nHIDniFktRsdVrBFOxIVr0li5QsZVhg0QjmRVpgexiWq5rE9OmqNw4ObDtcrJJw6O2nSazshfI0wYmGGS_M3515hUoyi7GiQ0rsM2MZXhPN9-e7A8Op7zCLweJTZTjJWItmTKayYjjWhJ0TSG07xJ4ubSzvSnf_4rUTrsP4ud_33zO3A7IE-2P06Vu3DNtruwE1AoC2vc78Kt3ygK78GnFQbV9uf3HyRCzxarQzZo52AZk61hZhS0x35lYDdhnWOe2ui1dBtG1OL6c4-Adqg_PzJ91hNHg78PHxcHH969j4MqQ6wxuNnEpSUGH43buuWIPazEiK1KnOHWOs5NIhEjaVekLtUqlUbV6FSMc2lhapXnucofwFbbtfYhMKN4nhnuUinrgieZqpTJS9kohf1XvIogmSwidKAsJ-WMMzGTLQ9GFGhEQUYUTQQv5ybnI1_HVZWfkZkF8WC0dNHmVPbei8PVsdgnHEbcdkUEL0Il1-HgWob_FvATiDrrUs29aQKI4Am8uLB-BGwuxjVMiRnZ2q73osnKPC8R6UXwapplFz388_UfXT3eY7g5HoDThbg92Nqse_sEbuhvmy9-_TSslF9xtxlb priority: 102 providerName: ProQuest |
| Title | Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters |
| URI | https://link.springer.com/article/10.1007/s00466-011-0590-9 https://www.proquest.com/docview/2261311503 https://www.proquest.com/docview/926336028 |
| Volume | 48 |
| WOSCitedRecordID | wos000294346200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-0924 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-0924 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BywEOFAqIQLuyEBISKFISx5vk2KKu6GVVNYB6M_4sSFUWbTac-Q_8Q34JM4mTUgpIcIw8dhx_vpex3wA8R8zqkB0XsUE4Eee-SmPtcxUXGWZAOJIVmemDTRTLZXl2Vp2Ee9zteNp9dEn2K_V02Y2oHLFfpL-iSuLqJmwLEpshil6_n1wHohyiaqZIj0ipZHRl_q6IK5vRr0vyNd9ov-Usdv6rsvfgbkCY7GAYEvfhhmt2YSegTRbmcrsLd36SInwAH2okz-77128UbJ4t6mPWx8jBNKYay-wQuB7LVUHFhK08aymPWSu_YSQhbj52CFx7--mRmYuOtBjah_BucfT29Zs4RF-IDZKYTTx3pNRjcPt2AjGGU8jMisRb4ZwXwiYKsZDxeepTo1NldYmLh_U-zW2pOeeaP4KtZtW4x8CsFjyzwqdKlblIMl1oy-eq0hrLL0QRQTJ2gzRBmpwiZFzISVS5b0-J7SmpPWUVwcspy-dBl-Nvxs-obyXpXTR0oOZcdW0rj-tTeUB4izTs8gheBCO_wpcbFe4n4CeQRNYVy71xjMgw41uJMLZXLkp4BGxKxrlKDhjVuFXXyiqbcz5HRBfBq3HYXJbwx-o_-Sfrp3B7-O9N5-D2YGuz7tw-3DJfNp_a9Qy2D4-WJ6czOuNaz_qZ8wMBWBA1 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FCRJwIBBAGAK0EAiJyMJbezkgFCCjjBJGUSZIuXV6hUjBHsY2KDf-gf_go_gSqr2FgMgtB46Wu9vb66pXXe1XAE-Qs2qMjhNXIp1wI5P5rjARd5MAOyAdCZJANsUmkuk0PTjIdpfgR_8vjN1W2dvExlCrQto18hdIExplGC98Nf_s2qpRNrval9BoYbGtT75iyFa-nLzF7_s0CMab-2-23K6qgCuRnFdurK0CjUS3pCn6Ts0x4kg8o6jWhlLlcfTx0kS-8aXwuRIpTgpljB-pVIRhKEIc9xIsR2EU0xEsv96c7u4NeQuatiU9fYzNrExKn0f1WtnS2EbvGL7TzHOzM57wT3_wV2K28Xfjlf_tTd2A6x2zJhvtVLgJSzpfhZWOZZPOhpWrcO03CcZbcDibc6l_fvteHX3SZDybkKY2EJ4jPFdEneS8EVTAo1a9hRSGlLaPXHBTESudLj_WSNib9sMhkce11aAob8P7C3nqOzDKi1zfBaIEDQNFjc95GlEvEIlQYcwzIXD8hCYOeD0CmOwk2W1lkGM2iEk3oGEIGmZBwzIHng9d5q0eyXmNH1tYMavzkduNRB94XZZsMttjG5ZnWu2-yIFnXSNT4MUl7_7LwEew0mBnWq71gGOdpSvZKdocIMNptFE28cRzXdQly4I4DGNksg6s96g-HeGft3_v_Os9gitb--922M5kun0frraL_Xbz3xqMqkWtH8Bl-aU6KhcPu1lK4PCi4f4LQcR3EQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7oKqIPrq4rVlcNIghK2d4ybR8XdXBQhmVHZd9iriosnWXS-ux_8B_6SzynTavrDcTHkpM0zfX7epLvADxEzGqRHZexRjgRF65OY-UKGZcZZkA4kpWZ7oNNlMtldXxcH4Y4p3487T66JIc7DaTS1LT7p8btTxffiNYRE0YqzOskrs_DhQKJDJ3pOlq9ndwIvBoibKZIlUi1ZHRr_q6IMxvTz8vzL37SfvuZb_93xa_B1YA82cEwVK7DOdvswHZAoSzMcb8DV36QKLwB71ZIqu3Xz18oCD2brxasj52DaUw2hpkhoD2WK4O6CVs75imP3kjXMpIW1x86BLS9_fTI9ElHGg1-F97Mn79--iIOURlijeSmjWeWFHw0buuWI_awEhlbmTjDrXWcm0QiRtKuSF2qVSqNqnBRMc6lhalUnucqvwlbzbqxt4AZxfPMcJdKWRU8yVSpTD6TtVJYfsnLCJKxS4QOkuUUOeNETGLLfXsKbE9B7SnqCB5PWU4HvY6_GT-gfhakg9HQQZv3svNeLFZH4oBwGGnbFRE8CkZujS_XMtxbwE8g6awzlnvjeBFhJfAC4W2vaJTkEbApGecwOWZkY9edF3U2y_MZIr0InoxD6HsJf6z-7X-yvg-XDp_NxavF8uUduDz8Gqejcnuw1W46excu6k_tR7-510-hbzceGWs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space--time+FSI+modeling+and+dynamical+analysis+of+spacecraft+parachutes+and+parachute+clusters&rft.jtitle=Computational+mechanics&rft.au=Takizawa%2C+Kenji&rft.au=Spielman%2C+Timothy&rft.au=Tezduyar%2C+Tayfun+E&rft.date=2011-09-01&rft.issn=0178-7675&rft.volume=48&rft.issue=3&rft.spage=345&rft.epage=364&rft_id=info:doi/10.1007%2Fs00466-011-0590-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon |