Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters

Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics Vol. 48; no. 3; pp. 345 - 364
Main Authors: Takizawa, Kenji, Spielman, Timothy, Tezduyar, Tayfun E.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.09.2011
Springer
Springer Nature B.V
Subjects:
ISSN:0178-7675, 1432-0924
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space–time FSI technique developed and improved over the years by the . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the . In this paper we describe the technique developed by the for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics.
AbstractList Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid--structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from 'rings' and 'sails' with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling (T \bigstar AFSM)Unknown control sequence '\bigstar' has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space--time FSI technique developed and improved over the years by the T \bigstar AFSMUnknown control sequence '\bigstar' . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the T \bigstar AFSMUnknown control sequence '\bigstar' . In this paper we describe the technique developed by the T \bigstar AFSMUnknown control sequence '\bigstar' for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics.
Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling \[{({{\rm T} \bigstar {\rm AFSM}})}\] has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space–time FSI technique developed and improved over the years by the \[{{{\rm T} \bigstar {\rm AFSM}}}\] . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the \[{{{\rm T} \bigstar {\rm AFSM}}}\] . In this paper we describe the technique developed by the \[{{{\rm T} \bigstar {\rm AFSM}}}\] for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics.
Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid-structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from "rings" and "sails" with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling (T*AFSM) has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space-time FSI technique developed and improved over the years by the T*AFSM. The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the T*AFSM. In this paper we describe the technique developed by the T*AFSM for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics. Keywords Fluid-structure interaction * Spacecraft parachutes * Parachute clusters * Ringsail parachute * Space-time technique * Geometric porosity * Contact
Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space–time FSI technique developed and improved over the years by the . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the . In this paper we describe the technique developed by the for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics.
Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid-structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from "rings" and "sails" with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling (T*AFSM) has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space-time FSI technique developed and improved over the years by the T*AFSM. The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the T*AFSM. In this paper we describe the technique developed by the T*AFSM for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics.
Audience Academic
Author Takizawa, Kenji
Tezduyar, Tayfun E.
Spielman, Timothy
Author_xml – sequence: 1
  givenname: Kenji
  surname: Takizawa
  fullname: Takizawa, Kenji
  organization: Department of Modern Mechanical Engineering, Waseda Institute for Advanced Study, Waseda University
– sequence: 2
  givenname: Timothy
  surname: Spielman
  fullname: Spielman, Timothy
  organization: Mechanical Engineering, Rice University
– sequence: 3
  givenname: Tayfun E.
  surname: Tezduyar
  fullname: Tezduyar, Tayfun E.
  email: tezduyar@rice.edu
  organization: Mechanical Engineering, Rice University
BookMark eNp9kd9qFDEUh4NUcFt9AO8GvBAvpp5M_s1clmLtQkFw9TpmMydrSmZmTTLQvfMdfEOfpFlHlBaUXISE78vJOb9TcjJOIxLyksI5BVBvEwCXsgZKaxAd1N0TsqKcNTV0DT8hK6CqrZVU4hk5TekWgIqWiRX5stkbiz-__8h-wOpqs66Gqcfgx11lxr7qD6MZvDWhnEw4JJ-qyVXp6NhoXK72Jhr7dc6YfvF_jpUNc8oY03Py1JmQ8MXv_Yx8vnr36fK6vvnwfn15cVNb3qpcS6RUcCspR0GVQNN2nQLXC0QnRA9GUmEdp47aLTX9tgUFvXOU9-2WMbZlZ-T18u4-Tt9mTFkPPlkMwYw4zUl3jWRMQtMW8tUj8naaY2kv6aaRlJWPACvU-ULtTEDtRzfl0lpZPZaBlOE7X-4vmBBcKuh4Ed48EAqT8S7vzJySXm8-PmTpwto4pRTR6X30g4kHTUEf89RLnrrkqY956q446pFjfTbZlzLR-PBfs1nMVKqMO4x_G_63dA9Ju7Yw
CitedBy_id crossref_primary_10_1115_1_2012_DEC_2
crossref_primary_10_1016_j_cma_2023_116137
crossref_primary_10_1007_s00466_013_0875_2
crossref_primary_10_1088_1742_6596_1786_1_012012
crossref_primary_10_1016_j_cma_2020_112842
crossref_primary_10_1007_s00466_016_1262_6
crossref_primary_10_1007_s00466_014_1074_5
crossref_primary_10_1007_s00466_012_0760_4
crossref_primary_10_1016_j_jfluidstructs_2012_08_011
crossref_primary_10_1016_j_cma_2013_07_009
crossref_primary_10_1007_s00466_014_1052_y
crossref_primary_10_1007_s00466_014_0999_z
crossref_primary_10_1007_s00466_014_1017_1
crossref_primary_10_1007_s00466_013_0880_5
crossref_primary_10_1007_s00466_013_0935_7
crossref_primary_10_1007_s11831_012_9071_3
crossref_primary_10_1007_s00466_024_02534_9
crossref_primary_10_1007_s00466_013_0866_3
crossref_primary_10_1007_s00466_013_0905_0
crossref_primary_10_1007_s00466_011_0614_5
crossref_primary_10_1007_s00466_011_0618_1
crossref_primary_10_1007_s00466_022_02265_9
crossref_primary_10_1088_1755_1315_240_6_062014
crossref_primary_10_1016_j_cma_2014_10_040
crossref_primary_10_1061__ASCE_AS_1943_5525_0000430
crossref_primary_10_1002_nme_6783
crossref_primary_10_1007_s00466_013_0890_3
crossref_primary_10_1007_s00466_012_0758_y
crossref_primary_10_1007_s00466_014_1116_z
crossref_primary_10_1007_s00466_012_0776_9
crossref_primary_10_1051_jnwpu_20244261021
crossref_primary_10_1007_s00466_014_1007_3
crossref_primary_10_1016_j_compfluid_2015_12_004
crossref_primary_10_1177_155892501501000119
crossref_primary_10_1007_s00466_012_0772_0
crossref_primary_10_1007_s11831_014_9113_0
crossref_primary_10_1007_s00466_012_0781_z
crossref_primary_10_1016_j_cma_2012_11_009
crossref_primary_10_1007_s00466_012_0761_3
crossref_primary_10_1007_s11831_012_9070_4
crossref_primary_10_1016_j_cma_2014_09_037
crossref_primary_10_1007_s00466_014_1090_5
crossref_primary_10_1016_j_compfluid_2012_11_008
crossref_primary_10_1007_s00466_018_1620_7
crossref_primary_10_1016_j_camwa_2021_09_005
crossref_primary_10_1007_s00466_019_01792_2
crossref_primary_10_1155_2020_2361534
crossref_primary_10_1007_s00466_011_0619_0
crossref_primary_10_1016_j_jfluidstructs_2022_103513
crossref_primary_10_2514_1_J051939
crossref_primary_10_1007_s00466_012_0794_7
crossref_primary_10_1007_s00466_014_1069_2
crossref_primary_10_1007_s00466_016_1367_y
crossref_primary_10_1007_s00466_014_0980_x
crossref_primary_10_1007_s00466_012_0759_x
crossref_primary_10_1016_j_compfluid_2016_02_019
crossref_primary_10_1016_j_compfluid_2015_07_013
Cites_doi 10.1007/s00466-006-0059-4
10.1115/1.3059576
10.1002/fld.1633
10.1007/s00466-009-0419-y
10.1016/0045-7825(92)90059-S
10.1007/s00466-008-0254-6
10.1115/1.1530634
10.1002/fld.2454
10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L
10.1007/s004660050393
10.1007/s00466-009-0421-4
10.1002/fld.1497
10.1007/s00466-008-0260-8
10.1016/0045-7825(94)00077-8
10.1016/j.cma.2003.12.046
10.1016/S0045-7825(00)00379-0
10.1016/j.cma.2009.04.015
10.1007/BF00350249
10.1016/S0045-7825(00)00208-5
10.1007/s00466-008-0299-6
10.1137/0907058
10.1016/0045-7825(94)90029-9
10.1109/2.237441
10.1007/BF02897870
10.1002/fld.2348
10.1016/0045-7825(92)90141-6
10.1002/fld.2359
10.1007/s00466-008-0255-5
10.1016/j.compfluid.2005.06.007
10.1007/s00466-009-0439-7
10.1016/j.cma.2005.08.023
10.1007/s00466-008-0325-8
10.1016/S0045-7825(00)00204-8
10.1007/s00466-009-0425-0
10.1007/s00466-008-0261-7
10.1016/0045-7825(82)90071-8
10.1137/S1064827595287997
10.1016/S0045-7825(01)00312-7
10.1002/fld.1443
10.1002/fld.2415
10.1007/s00466-008-0315-x
10.1002/cnm.1289
10.1007/s00466-009-0426-z
10.1002/fld.505
10.1007/s10237-010-0189-7
10.1016/S0065-2156(08)70153-4
10.1002/cnm.1241
10.1007/s00466-006-0065-6
10.1002/fld.1430
10.1002/fld.1650211011
10.1016/0045-7825(81)90049-9
10.1115/1.1530635
10.1007/s00466-009-0423-2
10.1016/j.cma.2008.05.024
10.1007/s00466-008-0276-0
10.1137/S1064827503431430
10.2514/2.2864
10.1016/j.compfluid.2005.07.014
10.1016/0045-7825(92)90060-W
10.1002/eqe.4290050306
10.1002/fld.2400
10.1007/s00466-006-0084-3
10.1016/0045-7825(94)00082-4
10.1002/fld.2221
10.1161/STROKEAHA.107.503698
10.1016/j.cma.2005.05.050
10.1016/j.cma.2008.08.020
10.1016/j.cma.2004.09.014
10.1109/MCISE.2003.1166551
10.1016/S0045-7825(01)00311-5
10.1007/s00466-011-0571-z
10.1299/kikaia.70.1224
10.1002/cnm.1433
ContentType Journal Article
Copyright Springer-Verlag 2011
COPYRIGHT 2011 Springer
Computational Mechanics is a copyright of Springer, (2011). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag 2011
– notice: COPYRIGHT 2011 Springer
– notice: Computational Mechanics is a copyright of Springer, (2011). All Rights Reserved.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1007/s00466-011-0590-9
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Engineering Database



Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1432-0924
EndPage 364
ExternalDocumentID A355467094
10_1007_s00466_011_0590_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7TB
8FD
FR3
H8D
KR7
L7M
PUEGO
ID FETCH-LOGICAL-c487t-6e1154c614e5175ea89970fd5eef55d0a615cf41f1cb1adb8070dff14d8b333b3
IEDL.DBID RSV
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294346200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-7675
IngestDate Thu Sep 04 17:20:35 EDT 2025
Wed Nov 26 13:52:10 EST 2025
Sun Nov 23 08:54:48 EST 2025
Wed Nov 26 09:56:26 EST 2025
Sat Nov 29 06:01:18 EST 2025
Tue Nov 18 21:51:33 EST 2025
Fri Feb 21 02:32:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Space–time technique
Fluid–structure interaction
Geometric porosity
Parachute clusters
Ringsail parachute
Spacecraft parachutes
Contact
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-6e1154c614e5175ea89970fd5eef55d0a615cf41f1cb1adb8070dff14d8b333b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 2261311503
PQPubID 2043755
PageCount 20
ParticipantIDs proquest_miscellaneous_926336028
proquest_journals_2261311503
gale_infotracacademiconefile_A355467094
gale_incontextgauss_ISR_A355467094
crossref_primary_10_1007_s00466_011_0590_9
crossref_citationtrail_10_1007_s00466_011_0590_9
springer_journals_10_1007_s00466_011_0590_9
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2011
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References Tezduyar, Mittal, Ray, Shih (CR70) 1992; 95
Tezduyar, Sathe, Cragin, Nanna, Conklin, Pausewang, Schwaab (CR28) 2007; 54
Tezduyar, Behr, Liou (CR66) 1992; 94
Mittal, Tezduyar (CR8) 1995; 21
Tezduyar, Sathe (CR31) 2007; 54
Johnson, Tezduyar (CR11) 1999; 23
Stein, Tezduyar, Kumar, Sathe, Benney, Thornburg, Kyle, Nonoshita (CR63) 2003; 70
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR32) 2007; 54
Khurram, Masud (CR27) 2006; 38
Ohayon (CR16) 2001; 190
Manguoglu, Takizawa, Sameh, Tezduyar (CR50) 2010; 46
CR75
Isaksen, Bazilevs, Kvamsdal, Zhang, Kaspersen, Waterloo, Romner, Ingebrigtsen (CR37) 2008; 39
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR24) 2006; 195
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR35) 2008; 43
CR71
Tezduyar, Behr, Mittal, Liou (CR67) 1992; 94
Stein, Tezduyar, Benney (CR64) 2003; 5
Karypis, Kumar (CR76) 1998; 20
Tezduyar, Takizawa, Moorman, Wright, Christopher (CR48) 2010; 46
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR49) 2010; 26
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR29) 2007; 36
Brooks, Hughes (CR69) 1982; 32
Takizawa, Moorman, Wright, Christopher, Tezduyar (CR47) 2010; 46
Stein, Benney, Tezduyar, Potvin (CR61) 2001; 191
Stein, Tezduyar, Benney (CR18) 2004; 193
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR41) 2009; 198
Tezduyar, Sathe, Stein (CR23) 2006; 195
Tezduyar, Sathe, Schwaab, Conklin (CR34) 2008; 57
Saad, Schultz (CR77) 1986; 7
Takizawa, Wright, Moorman, Tezduyar (CR3) 2011; 65
CR46
Tezduyar (CR68) 2003; 43
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR51) 2010; 46
Tezduyar, Sathe, Pausewang, Schwaab, Christopher, Crabtree (CR2) 2008; 43
Hughes, Liu, Zimmermann (CR4) 1981; 29
Kalro, Tezduyar (CR12) 2000; 190
Bazilevs, Calo, Zhang, Hughes (CR26) 2006; 38
Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (CR56) 2011; 65
Tezduyar, Aliabadi, Behr, Mittal (CR6) 1994; 119
Tezduyar, Schwaab, Sathe (CR40) 2009; 198
Johnson, Tezduyar (CR10) 1997; 24
Bazilevs, Gohean, Hughes, Moser, Zhang (CR43) 2009; 198
Bazilevs, Hsu, Zhang, Wang, Kvamsdal, Hentschel, Isaksen (CR54) 2010; 9
Tezduyar (CR65) 1992; 28
Sathe, Tezduyar (CR73) 2008; 43
CR59
Stein, Benney, Kalro, Tezduyar, Leonard, Accorsi (CR13) 2000; 190
Tezduyar, Takizawa, Moorman, Wright, Christopher (CR53) 2010; 64
Bazilevs, Hsu, Benson, Sankaran, Marsden (CR44) 2009; 45
Bazilevs, Hsu, Akkerman, Wright, Takizawa, Henicke, Spielman, Tezduyar (CR55) 2011; 65
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR25) 2006; 38
Tezduyar, Aliabadi, Behr, Johnson, Kalro, Litke (CR9) 1996; 18
Hilber, Hughes, Taylor (CR74) 1977; 5
Mittal, Tezduyar (CR7) 1994; 112
Stein, Tezduyar, Benney (CR17) 2003; 70
Tezduyar, Osawa (CR15) 2001; 191
Bazilevs, Hsu, Zhang, Wang, Liang, Kvamsdal, Brekken, Isaksen (CR52) 2010; 46
Manguoglu, Sameh, Tezduyar, Sathe (CR33) 2008; 43
Bazilevs, Calo, Hughes, Zhang (CR36) 2008; 43
Stein, Benney, Tezduyar, Leonard, Accorsi (CR62) 2001; 38
Takizawa, Moorman, Wright, Spielman, Tezduyar (CR57) 2011; 65
Takizawa, Christopher, Tezduyar, Sathe (CR45) 2010; 26
Tezduyar (CR14) 2001; 8
Tezduyar, Aliabadi, Behr, Johnson, Mittal (CR5) 1993; 26
Tezduyar, Sathe, Keedy, Stein (CR22) 2006; 195
Manguoglu, Takizawa, Sameh, Tezduyar (CR58) 2011; 65
Torii, Oshima, Kobayashi, Takagi, Tezduyar (CR19) 2004; 70
Kuttler, Wall (CR38) 2008; 43
CR20
Tezduyar, Sathe, Pausewang, Schwaab, Christopher, Crabtree (CR1) 2008; 43
Manguoglu, Sameh, Saied, Tezduyar, Sathe (CR42) 2009; 76
CR60
Johnson, Tezduyar (CR72) 1994; 119
Dettmer, Peric (CR39) 2008; 43
van Brummelen, de Borst (CR21) 2005; 27
Sawada, Hisada (CR30) 2007; 36
R Torii (590_CR29) 2007; 36
TE Tezduyar (590_CR2) 2008; 43
R Torii (590_CR49) 2010; 26
AA Johnson (590_CR11) 1999; 23
590_CR59
K Takizawa (590_CR45) 2010; 26
WG Dettmer (590_CR39) 2008; 43
TE Tezduyar (590_CR14) 2001; 8
Y Bazilevs (590_CR52) 2010; 46
TE Tezduyar (590_CR68) 2003; 43
R Torii (590_CR51) 2010; 46
TE Tezduyar (590_CR22) 2006; 195
R Ohayon (590_CR16) 2001; 190
M Manguoglu (590_CR33) 2008; 43
T Tezduyar (590_CR9) 1996; 18
Y Bazilevs (590_CR54) 2010; 9
590_CR60
TE Tezduyar (590_CR6) 1994; 119
Y Bazilevs (590_CR26) 2006; 38
M Manguoglu (590_CR50) 2010; 46
590_CR46
TE Tezduyar (590_CR34) 2008; 57
AN Brooks (590_CR69) 1982; 32
K Stein (590_CR64) 2003; 5
TJR Hughes (590_CR4) 1981; 29
TE Tezduyar (590_CR28) 2007; 54
S Sathe (590_CR73) 2008; 43
TE Tezduyar (590_CR31) 2007; 54
G Karypis (590_CR76) 1998; 20
TE Tezduyar (590_CR40) 2009; 198
K Stein (590_CR63) 2003; 70
RA Khurram (590_CR27) 2006; 38
K Takizawa (590_CR47) 2010; 46
R Torii (590_CR24) 2006; 195
AA Johnson (590_CR10) 1997; 24
Y Saad (590_CR77) 1986; 7
K Stein (590_CR18) 2004; 193
590_CR75
Y Bazilevs (590_CR36) 2008; 43
K Stein (590_CR61) 2001; 191
T Tezduyar (590_CR15) 2001; 191
TE Tezduyar (590_CR67) 1992; 94
EH Brummelen van (590_CR21) 2005; 27
TE Tezduyar (590_CR53) 2010; 64
T Sawada (590_CR30) 2007; 36
Y Bazilevs (590_CR55) 2011; 65
U Kuttler (590_CR38) 2008; 43
K Stein (590_CR13) 2000; 190
JG Isaksen (590_CR37) 2008; 39
K Takizawa (590_CR57) 2011; 65
Y Bazilevs (590_CR43) 2009; 198
R Torii (590_CR35) 2008; 43
TE Tezduyar (590_CR48) 2010; 46
M Manguoglu (590_CR58) 2011; 65
TE Tezduyar (590_CR23) 2006; 195
590_CR20
TE Tezduyar (590_CR70) 1992; 95
R Torii (590_CR25) 2006; 38
TE Tezduyar (590_CR66) 1992; 94
K Takizawa (590_CR3) 2011; 65
R Torii (590_CR41) 2009; 198
Y Bazilevs (590_CR56) 2011; 65
KR Stein (590_CR62) 2001; 38
AA Johnson (590_CR72) 1994; 119
M Manguoglu (590_CR42) 2009; 76
V Kalro (590_CR12) 2000; 190
TE Tezduyar (590_CR65) 1992; 28
TE Tezduyar (590_CR1) 2008; 43
R Torii (590_CR19) 2004; 70
S Mittal (590_CR8) 1995; 21
590_CR71
K Stein (590_CR17) 2003; 70
T Tezduyar (590_CR5) 1993; 26
HM Hilber (590_CR74) 1977; 5
R Torii (590_CR32) 2007; 54
S Mittal (590_CR7) 1994; 112
Y Bazilevs (590_CR44) 2009; 45
References_xml – volume: 38
  start-page: 403
  year: 2006
  end-page: 416
  ident: CR27
  article-title: A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction
  publication-title: Comput Mech
  doi: 10.1007/s00466-006-0059-4
– volume: 76
  start-page: 021204
  year: 2009
  ident: CR42
  article-title: Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows
  publication-title: J Appl Mech
  doi: 10.1115/1.3059576
– volume: 57
  start-page: 601
  year: 2008
  end-page: 629
  ident: CR34
  article-title: Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1633
– volume: 45
  start-page: 77
  year: 2009
  end-page: 89
  ident: CR44
  article-title: Computational fluid–structure interaction: methods and application to a total cavopulmonary connection
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0419-y
– volume: 94
  start-page: 339
  year: 1992
  end-page: 351
  ident: CR66
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(92)90059-S
– volume: 43
  start-page: 81
  year: 2008
  end-page: 90
  ident: CR39
  article-title: On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0254-6
– volume: 70
  start-page: 50
  year: 2003
  end-page: 57
  ident: CR63
  article-title: Aerodynamic interactions between parachute canopies
  publication-title: J Appl Mech
  doi: 10.1115/1.1530634
– volume: 65
  start-page: 236
  year: 2011
  end-page: 253
  ident: CR56
  article-title: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2454
– volume: 24
  start-page: 1321
  year: 1997
  end-page: 1340
  ident: CR10
  article-title: Parallel computation of incompressible flows with complex geometries
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L
– volume: 23
  start-page: 130
  year: 1999
  end-page: 143
  ident: CR11
  article-title: Advanced mesh generation and update methods for 3D flow simulations
  publication-title: Comput Mech
  doi: 10.1007/s004660050393
– volume: 46
  start-page: 3
  year: 2010
  end-page: 16
  ident: CR52
  article-title: A fully-coupled fluid–structure interaction simulation of cerebral aneurysms
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0421-4
– volume: 54
  start-page: 995
  year: 2007
  end-page: 1009
  ident: CR32
  article-title: Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1497
– volume: 43
  start-page: 133
  year: 2008
  end-page: 142
  ident: CR2
  article-title: Fluid–structure interaction modeling of ringsail parachutes
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0260-8
– volume: 119
  start-page: 73
  year: 1994
  end-page: 94
  ident: CR72
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)00077-8
– volume: 193
  start-page: 2019
  year: 2004
  end-page: 2032
  ident: CR18
  article-title: Automatic mesh update with the solid-extension mesh moving technique
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.046
– volume: 190
  start-page: 3009
  year: 2001
  end-page: 3019
  ident: CR16
  article-title: Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00379-0
– volume: 198
  start-page: 3534
  year: 2009
  end-page: 3550
  ident: CR43
  article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.04.015
– volume: 18
  start-page: 397
  year: 1996
  end-page: 412
  ident: CR9
  article-title: Flow simulation and high performance computing
  publication-title: Comput Mech
  doi: 10.1007/BF00350249
– volume: 190
  start-page: 373
  year: 2000
  end-page: 386
  ident: CR13
  article-title: Parachute fluid–structure interactions: 3-D computation
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00208-5
– volume: 43
  start-page: 51
  year: 2008
  end-page: 60
  ident: CR73
  article-title: Modeling of fluid–structure interactions with the space–time finite elements: contact problems
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0299-6
– ident: CR46
– ident: CR71
– volume: 7
  start-page: 856
  year: 1986
  end-page: 869
  ident: CR77
  article-title: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J Sci Stat Comput
  doi: 10.1137/0907058
– volume: 112
  start-page: 253
  year: 1994
  end-page: 282
  ident: CR7
  article-title: Massively parallel finite element computation of incompressible flows involving fluid-body interactions
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)90029-9
– ident: CR75
– volume: 26
  start-page: 27
  year: 1993
  end-page: 36
  ident: CR5
  article-title: Parallel finite-element computation of 3D flows
  publication-title: Computer
  doi: 10.1109/2.237441
– volume: 8
  start-page: 83
  year: 2001
  end-page: 130
  ident: CR14
  article-title: Finite element methods for flow problems with moving boundaries and interfaces
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/BF02897870
– volume: 65
  start-page: 271
  year: 2011
  end-page: 285
  ident: CR57
  article-title: Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2348
– volume: 95
  start-page: 221
  year: 1992
  end-page: 242
  ident: CR70
  article-title: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(92)90141-6
– volume: 65
  start-page: 286
  year: 2011
  end-page: 307
  ident: CR3
  article-title: Fluid–structure interaction modeling of parachute clusters
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2359
– volume: 43
  start-page: 61
  year: 2008
  end-page: 72
  ident: CR38
  article-title: Fixed-point fluid–structure interaction solvers with dynamic relaxation
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0255-5
– ident: CR60
– volume: 36
  start-page: 136
  year: 2007
  end-page: 146
  ident: CR30
  article-title: Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2005.06.007
– volume: 46
  start-page: 43
  year: 2010
  end-page: 52
  ident: CR51
  article-title: Role of 0D peripheral vasculature model in fluid– structure interaction modeling of aneurysms
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0439-7
– volume: 195
  start-page: 5743
  year: 2006
  end-page: 5753
  ident: CR23
  article-title: Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2005.08.023
– volume: 43
  start-page: 151
  year: 2008
  end-page: 159
  ident: CR35
  article-title: Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0325-8
– volume: 190
  start-page: 321
  year: 2000
  end-page: 332
  ident: CR12
  article-title: A parallel 3D computational method for fluid–structure interactions in parachute systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00204-8
– volume: 46
  start-page: 31
  year: 2010
  end-page: 41
  ident: CR47
  article-title: Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0425-0
– volume: 43
  start-page: 39
  year: 2008
  end-page: 49
  ident: CR1
  article-title: Interface projection techniques for fluid– structure interaction modeling with moving-mesh methods
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0261-7
– volume: 32
  start-page: 199
  year: 1982
  end-page: 259
  ident: CR69
  article-title: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(82)90071-8
– volume: 20
  start-page: 359
  year: 1998
  end-page: 392
  ident: CR76
  article-title: A fast and high quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827595287997
– volume: 191
  start-page: 673
  year: 2001
  end-page: 687
  ident: CR61
  article-title: Fluid–structure interactions of a cross parachute: numerical simulation
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00312-7
– volume: 54
  start-page: 901
  year: 2007
  end-page: 922
  ident: CR28
  article-title: Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1443
– volume: 65
  start-page: 135
  year: 2011
  end-page: 149
  ident: CR58
  article-title: Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2415
– volume: 43
  start-page: 3
  year: 2008
  end-page: 37
  ident: CR36
  article-title: Isogeometric fluid–structure interaction: theory, algorithms, and computations
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0315-x
– volume: 26
  start-page: 336
  year: 2010
  end-page: 347
  ident: CR49
  article-title: Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.1289
– volume: 70
  start-page: 1224
  year: 2004
  end-page: 1231
  ident: CR19
  article-title: of wall elasticity on image-based blood flow simulation
  publication-title: Jpn Soc Mech Eng J Ser A
– volume: 46
  start-page: 83
  year: 2010
  end-page: 89
  ident: CR50
  article-title: Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0426-z
– volume: 43
  start-page: 555
  year: 2003
  end-page: 575
  ident: CR68
  article-title: Computation of moving boundaries and interfaces and stabilization parameters
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.505
– volume: 9
  start-page: 481
  year: 2010
  end-page: 498
  ident: CR54
  article-title: Computational fluid–structure interaction: methods and application to cerebral aneurysms
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-010-0189-7
– volume: 28
  start-page: 1
  year: 1992
  end-page: 44
  ident: CR65
  article-title: Stabilized finite element formulations for incompressible flow computations
  publication-title: Adv Appl Mech
  doi: 10.1016/S0065-2156(08)70153-4
– volume: 26
  start-page: 101
  year: 2010
  end-page: 116
  ident: CR45
  article-title: Space–time finite element computation of arterial fluid–structure interactions with patient-specific data
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.1241
– volume: 38
  start-page: 482
  year: 2006
  end-page: 490
  ident: CR25
  article-title: Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures
  publication-title: Comput Mech
  doi: 10.1007/s00466-006-0065-6
– volume: 54
  start-page: 855
  year: 2007
  end-page: 900
  ident: CR31
  article-title: Modeling of fluid–structure interactions with the space–time finite elements: solution techniques
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1430
– volume: 21
  start-page: 933
  year: 1995
  end-page: 953
  ident: CR8
  article-title: Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1650211011
– volume: 29
  start-page: 329
  year: 1981
  end-page: 349
  ident: CR4
  article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(81)90049-9
– volume: 70
  start-page: 58
  year: 2003
  end-page: 63
  ident: CR17
  article-title: Mesh moving techniques for fluid–structure interactions with large displacements
  publication-title: J Appl Mech
  doi: 10.1115/1.1530635
– volume: 46
  start-page: 17
  year: 2010
  end-page: 29
  ident: CR48
  article-title: Multiscale sequentially-coupled arterial FSI technique
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0423-2
– volume: 198
  start-page: 3524
  year: 2009
  end-page: 3533
  ident: CR40
  article-title: Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.05.024
– volume: 43
  start-page: 73
  year: 2008
  end-page: 80
  ident: CR33
  article-title: A nested iterative scheme for computation of incompressible flows in long domains
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0276-0
– volume: 27
  start-page: 599
  year: 2005
  end-page: 621
  ident: CR21
  article-title: On the nonnormality of subiteration for a fluid-structure interaction problem
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827503431430
– volume: 38
  start-page: 800
  year: 2001
  end-page: 808
  ident: CR62
  article-title: Fluid–structure interactions of a round parachute: modeling and simulation techniques
  publication-title: J Aircr
  doi: 10.2514/2.2864
– volume: 36
  start-page: 160
  year: 2007
  end-page: 168
  ident: CR29
  article-title: Influence of wall elasticity in patient-specific hemodynamic simulations
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2005.07.014
– volume: 94
  start-page: 353
  year: 1992
  end-page: 371
  ident: CR67
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(92)90060-W
– volume: 5
  start-page: 283
  year: 1977
  end-page: 292
  ident: CR74
  article-title: Improved numerical dissipation for time integration algorithms in structural dynamics
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290050306
– volume: 65
  start-page: 207
  year: 2011
  end-page: 235
  ident: CR55
  article-title: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2400
– volume: 38
  start-page: 310
  year: 2006
  end-page: 322
  ident: CR26
  article-title: Isogeometric fluid–structure interaction analysis with applications to arterial blood flow
  publication-title: Comput Mech
  doi: 10.1007/s00466-006-0084-3
– volume: 119
  start-page: 157
  year: 1994
  end-page: 177
  ident: CR6
  article-title: Massively parallel finite element simulation of compressible and incompressible flows
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)00082-4
– volume: 64
  start-page: 1201
  year: 2010
  end-page: 1218
  ident: CR53
  article-title: Space–time finite element computation of complex fluid–structure interactions
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2221
– volume: 39
  start-page: 3172
  year: 2008
  end-page: 3178
  ident: CR37
  article-title: Determination of wall tension in cerebral artery aneurysms by numerical simulation
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.503698
– volume: 195
  start-page: 1885
  year: 2006
  end-page: 1895
  ident: CR24
  article-title: Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2005.05.050
– volume: 198
  start-page: 3613
  year: 2009
  end-page: 3621
  ident: CR41
  article-title: Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.08.020
– volume: 195
  start-page: 2002
  year: 2006
  end-page: 2027
  ident: CR22
  article-title: Space–time finite element techniques for computation of fluid–structure interactions
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.09.014
– ident: CR59
– volume: 5
  start-page: 39
  year: 2003
  end-page: 46
  ident: CR64
  article-title: Computational methods for modeling parachute systems
  publication-title: Comput Sci Eng
  doi: 10.1109/MCISE.2003.1166551
– volume: 191
  start-page: 717
  year: 2001
  end-page: 726
  ident: CR15
  article-title: Fluid–structure interactions of a parachute crossing the far wake of an aircraft
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00311-5
– ident: CR20
– volume: 54
  start-page: 995
  year: 2007
  ident: 590_CR32
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1497
– volume: 191
  start-page: 673
  year: 2001
  ident: 590_CR61
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00312-7
– volume: 190
  start-page: 373
  year: 2000
  ident: 590_CR13
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00208-5
– volume: 43
  start-page: 73
  year: 2008
  ident: 590_CR33
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0276-0
– volume: 195
  start-page: 2002
  year: 2006
  ident: 590_CR22
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.09.014
– volume: 43
  start-page: 51
  year: 2008
  ident: 590_CR73
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0299-6
– volume: 32
  start-page: 199
  year: 1982
  ident: 590_CR69
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(82)90071-8
– volume: 38
  start-page: 310
  year: 2006
  ident: 590_CR26
  publication-title: Comput Mech
  doi: 10.1007/s00466-006-0084-3
– ident: 590_CR20
– volume: 43
  start-page: 3
  year: 2008
  ident: 590_CR36
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0315-x
– volume: 29
  start-page: 329
  year: 1981
  ident: 590_CR4
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(81)90049-9
– volume: 94
  start-page: 339
  year: 1992
  ident: 590_CR66
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(92)90059-S
– volume: 5
  start-page: 39
  year: 2003
  ident: 590_CR64
  publication-title: Comput Sci Eng
  doi: 10.1109/MCISE.2003.1166551
– volume: 39
  start-page: 3172
  year: 2008
  ident: 590_CR37
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.503698
– volume: 43
  start-page: 61
  year: 2008
  ident: 590_CR38
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0255-5
– volume: 65
  start-page: 236
  year: 2011
  ident: 590_CR56
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2454
– volume: 24
  start-page: 1321
  year: 1997
  ident: 590_CR10
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.0.CO;2-L
– volume: 18
  start-page: 397
  year: 1996
  ident: 590_CR9
  publication-title: Comput Mech
  doi: 10.1007/BF00350249
– volume: 9
  start-page: 481
  year: 2010
  ident: 590_CR54
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-010-0189-7
– volume: 46
  start-page: 17
  year: 2010
  ident: 590_CR48
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0423-2
– ident: 590_CR60
  doi: 10.1007/s00466-011-0571-z
– volume: 65
  start-page: 135
  year: 2011
  ident: 590_CR58
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2415
– volume: 45
  start-page: 77
  year: 2009
  ident: 590_CR44
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0419-y
– volume: 46
  start-page: 83
  year: 2010
  ident: 590_CR50
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0426-z
– volume: 36
  start-page: 160
  year: 2007
  ident: 590_CR29
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2005.07.014
– volume: 198
  start-page: 3524
  year: 2009
  ident: 590_CR40
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.05.024
– volume: 54
  start-page: 855
  year: 2007
  ident: 590_CR31
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1430
– ident: 590_CR46
– volume: 43
  start-page: 39
  year: 2008
  ident: 590_CR1
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0261-7
– volume: 198
  start-page: 3613
  year: 2009
  ident: 590_CR41
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.08.020
– volume: 190
  start-page: 3009
  year: 2001
  ident: 590_CR16
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00379-0
– volume: 193
  start-page: 2019
  year: 2004
  ident: 590_CR18
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.046
– volume: 70
  start-page: 50
  year: 2003
  ident: 590_CR63
  publication-title: J Appl Mech
  doi: 10.1115/1.1530634
– volume: 20
  start-page: 359
  year: 1998
  ident: 590_CR76
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827595287997
– volume: 38
  start-page: 800
  year: 2001
  ident: 590_CR62
  publication-title: J Aircr
  doi: 10.2514/2.2864
– volume: 65
  start-page: 286
  year: 2011
  ident: 590_CR3
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2359
– volume: 43
  start-page: 133
  year: 2008
  ident: 590_CR2
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0260-8
– volume: 38
  start-page: 403
  year: 2006
  ident: 590_CR27
  publication-title: Comput Mech
  doi: 10.1007/s00466-006-0059-4
– volume: 76
  start-page: 021204
  year: 2009
  ident: 590_CR42
  publication-title: J Appl Mech
  doi: 10.1115/1.3059576
– volume: 38
  start-page: 482
  year: 2006
  ident: 590_CR25
  publication-title: Comput Mech
  doi: 10.1007/s00466-006-0065-6
– volume: 195
  start-page: 5743
  year: 2006
  ident: 590_CR23
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2005.08.023
– volume: 26
  start-page: 336
  year: 2010
  ident: 590_CR49
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.1289
– volume: 57
  start-page: 601
  year: 2008
  ident: 590_CR34
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1633
– volume: 7
  start-page: 856
  year: 1986
  ident: 590_CR77
  publication-title: SIAM J Sci Stat Comput
  doi: 10.1137/0907058
– volume: 70
  start-page: 58
  year: 2003
  ident: 590_CR17
  publication-title: J Appl Mech
  doi: 10.1115/1.1530635
– volume: 46
  start-page: 31
  year: 2010
  ident: 590_CR47
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0425-0
– volume: 54
  start-page: 901
  year: 2007
  ident: 590_CR28
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1443
– volume: 36
  start-page: 136
  year: 2007
  ident: 590_CR30
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2005.06.007
– volume: 46
  start-page: 3
  year: 2010
  ident: 590_CR52
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0421-4
– volume: 64
  start-page: 1201
  year: 2010
  ident: 590_CR53
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2221
– volume: 26
  start-page: 101
  year: 2010
  ident: 590_CR45
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.1241
– volume: 119
  start-page: 73
  year: 1994
  ident: 590_CR72
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)00077-8
– volume: 5
  start-page: 283
  year: 1977
  ident: 590_CR74
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290050306
– volume: 26
  start-page: 27
  year: 1993
  ident: 590_CR5
  publication-title: Computer
  doi: 10.1109/2.237441
– volume: 43
  start-page: 555
  year: 2003
  ident: 590_CR68
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.505
– volume: 21
  start-page: 933
  year: 1995
  ident: 590_CR8
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1650211011
– volume: 95
  start-page: 221
  year: 1992
  ident: 590_CR70
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(92)90141-6
– volume: 43
  start-page: 81
  year: 2008
  ident: 590_CR39
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0254-6
– volume: 46
  start-page: 43
  year: 2010
  ident: 590_CR51
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0439-7
– volume: 191
  start-page: 717
  year: 2001
  ident: 590_CR15
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00311-5
– volume: 28
  start-page: 1
  year: 1992
  ident: 590_CR65
  publication-title: Adv Appl Mech
  doi: 10.1016/S0065-2156(08)70153-4
– volume: 119
  start-page: 157
  year: 1994
  ident: 590_CR6
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)00082-4
– volume: 198
  start-page: 3534
  year: 2009
  ident: 590_CR43
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.04.015
– volume: 65
  start-page: 207
  year: 2011
  ident: 590_CR55
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2400
– volume: 65
  start-page: 271
  year: 2011
  ident: 590_CR57
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.2348
– volume: 8
  start-page: 83
  year: 2001
  ident: 590_CR14
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/BF02897870
– volume: 27
  start-page: 599
  year: 2005
  ident: 590_CR21
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827503431430
– volume: 112
  start-page: 253
  year: 1994
  ident: 590_CR7
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)90029-9
– volume: 43
  start-page: 151
  year: 2008
  ident: 590_CR35
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0325-8
– volume: 70
  start-page: 1224
  year: 2004
  ident: 590_CR19
  publication-title: Jpn Soc Mech Eng J Ser A
  doi: 10.1299/kikaia.70.1224
– volume: 195
  start-page: 1885
  year: 2006
  ident: 590_CR24
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2005.05.050
– volume: 23
  start-page: 130
  year: 1999
  ident: 590_CR11
  publication-title: Comput Mech
  doi: 10.1007/s004660050393
– volume: 190
  start-page: 321
  year: 2000
  ident: 590_CR12
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00204-8
– volume: 94
  start-page: 353
  year: 1992
  ident: 590_CR67
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(92)90060-W
– ident: 590_CR59
  doi: 10.1002/cnm.1433
– ident: 590_CR75
– ident: 590_CR71
SSID ssj0015835
Score 2.2797291
Snippet Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI)...
Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid-structure interaction (FSI)...
Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid--structure interaction...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 345
SubjectTerms Analysis
Classical and Continuum Physics
Cluster analysis
Clusters
Complexity
Computation
Computational Science and Engineering
Computer simulation
Computer-generated environments
Contact
Dealing
Engineering
Flow simulation
Mathematical models
Original Paper
Parachute descent
Parachutes
Porosity
Sails
Slits
Space ships
Space vehicles
Spacecraft
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwEB1BywIWFAqIQEEWQkICReTlPFaooF7RzVXVC1J3xs-CVCXl-oY1_8Af8iXMJE5KQXTDMvIr0djjMx7nHIDniFktRsdVrBFOxIVr0li5QsZVhg0QjmRVpgexiWq5rE9OmqNw4ObDtcrJJw6O2nSazshfI0wYmGGS_M3515hUoyi7GiQ0rsM2MZXhPN9-e7A8Op7zCLweJTZTjJWItmTKayYjjWhJ0TSG07xJ4ubSzvSnf_4rUTrsP4ud_33zO3A7IE-2P06Vu3DNtruwE1AoC2vc78Kt3ygK78GnFQbV9uf3HyRCzxarQzZo52AZk61hZhS0x35lYDdhnWOe2ui1dBtG1OL6c4-Adqg_PzJ91hNHg78PHxcHH969j4MqQ6wxuNnEpSUGH43buuWIPazEiK1KnOHWOs5NIhEjaVekLtUqlUbV6FSMc2lhapXnucofwFbbtfYhMKN4nhnuUinrgieZqpTJS9kohf1XvIogmSwidKAsJ-WMMzGTLQ9GFGhEQUYUTQQv5ybnI1_HVZWfkZkF8WC0dNHmVPbei8PVsdgnHEbcdkUEL0Il1-HgWob_FvATiDrrUs29aQKI4Am8uLB-BGwuxjVMiRnZ2q73osnKPC8R6UXwapplFz388_UfXT3eY7g5HoDThbg92Nqse_sEbuhvmy9-_TSslF9xtxlb
  priority: 102
  providerName: ProQuest
Title Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters
URI https://link.springer.com/article/10.1007/s00466-011-0590-9
https://www.proquest.com/docview/2261311503
https://www.proquest.com/docview/926336028
Volume 48
WOSCitedRecordID wos000294346200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BywEOFAqIQLuyEBISKFISx5vk2KKu6GVVNYB6M_4sSFUWbTac-Q_8Q34JM4mTUgpIcIw8dhx_vpex3wA8R8zqkB0XsUE4Eee-SmPtcxUXGWZAOJIVmemDTRTLZXl2Vp2Ee9zteNp9dEn2K_V02Y2oHLFfpL-iSuLqJmwLEpshil6_n1wHohyiaqZIj0ipZHRl_q6IK5vRr0vyNd9ov-Usdv6rsvfgbkCY7GAYEvfhhmt2YSegTRbmcrsLd36SInwAH2okz-77128UbJ4t6mPWx8jBNKYay-wQuB7LVUHFhK08aymPWSu_YSQhbj52CFx7--mRmYuOtBjah_BucfT29Zs4RF-IDZKYTTx3pNRjcPt2AjGGU8jMisRb4ZwXwiYKsZDxeepTo1NldYmLh_U-zW2pOeeaP4KtZtW4x8CsFjyzwqdKlblIMl1oy-eq0hrLL0QRQTJ2gzRBmpwiZFzISVS5b0-J7SmpPWUVwcspy-dBl-Nvxs-obyXpXTR0oOZcdW0rj-tTeUB4izTs8gheBCO_wpcbFe4n4CeQRNYVy71xjMgw41uJMLZXLkp4BGxKxrlKDhjVuFXXyiqbcz5HRBfBq3HYXJbwx-o_-Sfrp3B7-O9N5-D2YGuz7tw-3DJfNp_a9Qy2D4-WJ6czOuNaz_qZ8wMBWBA1
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FCRJwIBBAGAK0EAiJyMJbezkgFCCjjBJGUSZIuXV6hUjBHsY2KDf-gf_go_gSqr2FgMgtB46Wu9vb66pXXe1XAE-Qs2qMjhNXIp1wI5P5rjARd5MAOyAdCZJANsUmkuk0PTjIdpfgR_8vjN1W2dvExlCrQto18hdIExplGC98Nf_s2qpRNrval9BoYbGtT75iyFa-nLzF7_s0CMab-2-23K6qgCuRnFdurK0CjUS3pCn6Ts0x4kg8o6jWhlLlcfTx0kS-8aXwuRIpTgpljB-pVIRhKEIc9xIsR2EU0xEsv96c7u4NeQuatiU9fYzNrExKn0f1WtnS2EbvGL7TzHOzM57wT3_wV2K28Xfjlf_tTd2A6x2zJhvtVLgJSzpfhZWOZZPOhpWrcO03CcZbcDibc6l_fvteHX3SZDybkKY2EJ4jPFdEneS8EVTAo1a9hRSGlLaPXHBTESudLj_WSNib9sMhkce11aAob8P7C3nqOzDKi1zfBaIEDQNFjc95GlEvEIlQYcwzIXD8hCYOeD0CmOwk2W1lkGM2iEk3oGEIGmZBwzIHng9d5q0eyXmNH1tYMavzkduNRB94XZZsMttjG5ZnWu2-yIFnXSNT4MUl7_7LwEew0mBnWq71gGOdpSvZKdocIMNptFE28cRzXdQly4I4DGNksg6s96g-HeGft3_v_Os9gitb--922M5kun0frraL_Xbz3xqMqkWtH8Bl-aU6KhcPu1lK4PCi4f4LQcR3EQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7oKqIPrq4rVlcNIghK2d4ybR8XdXBQhmVHZd9iriosnWXS-ux_8B_6SzynTavrDcTHkpM0zfX7epLvADxEzGqRHZexRjgRF65OY-UKGZcZZkA4kpWZ7oNNlMtldXxcH4Y4p3487T66JIc7DaTS1LT7p8btTxffiNYRE0YqzOskrs_DhQKJDJ3pOlq9ndwIvBoibKZIlUi1ZHRr_q6IMxvTz8vzL37SfvuZb_93xa_B1YA82cEwVK7DOdvswHZAoSzMcb8DV36QKLwB71ZIqu3Xz18oCD2brxasj52DaUw2hpkhoD2WK4O6CVs75imP3kjXMpIW1x86BLS9_fTI9ElHGg1-F97Mn79--iIOURlijeSmjWeWFHw0buuWI_awEhlbmTjDrXWcm0QiRtKuSF2qVSqNqnBRMc6lhalUnucqvwlbzbqxt4AZxfPMcJdKWRU8yVSpTD6TtVJYfsnLCJKxS4QOkuUUOeNETGLLfXsKbE9B7SnqCB5PWU4HvY6_GT-gfhakg9HQQZv3svNeLFZH4oBwGGnbFRE8CkZujS_XMtxbwE8g6awzlnvjeBFhJfAC4W2vaJTkEbApGecwOWZkY9edF3U2y_MZIr0InoxD6HsJf6z-7X-yvg-XDp_NxavF8uUduDz8Gqejcnuw1W46excu6k_tR7-510-hbzceGWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space--time+FSI+modeling+and+dynamical+analysis+of+spacecraft+parachutes+and+parachute+clusters&rft.jtitle=Computational+mechanics&rft.au=Takizawa%2C+Kenji&rft.au=Spielman%2C+Timothy&rft.au=Tezduyar%2C+Tayfun+E&rft.date=2011-09-01&rft.issn=0178-7675&rft.volume=48&rft.issue=3&rft.spage=345&rft.epage=364&rft_id=info:doi/10.1007%2Fs00466-011-0590-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon