Operational loss estimation in irrigation canals by integrating hydraulic simulation and crop growth modeling

Identifying operational losses in irrigation canals can be difficult due to inaccurate simplification in designing and operating national guidelines. However, this study aims to provide a practical solution to this problem by identifying operational losses, which are the primary cause of off-farm ir...

Full description

Saved in:
Bibliographic Details
Published in:Agricultural water management Vol. 288; p. 108478
Main Authors: Karimi Avargani, Habib, Hashemy Shahdany, S. Mehdy, Hashemi Garmdareh, S. Ebrahim, Liaghat, Abdolmajid, Guan, Guanghua, Behzadi, Farhad, Milan, Sami Ghordoyee, Berndtsson, Ronny
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2023
Elsevier
Subjects:
ISSN:0378-3774, 1873-2283
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying operational losses in irrigation canals can be difficult due to inaccurate simplification in designing and operating national guidelines. However, this study aims to provide a practical solution to this problem by identifying operational losses, which are the primary cause of off-farm irrigation water losses. The method involves simulating the daily delivered water to individual Irrigation Units (IUs) through off-take structures using hydraulic simulation. The daily agricultural water demand for individual IUs is then calculated using a crop growth model and irrigation system efficiency. This approach offers an effective way to accurately identify operational losses in agricultural water distribution systems. The Roodasht irrigation district in central Iran was used test proposed method. The water distribution simulation was conducted using an open-source Irrigation Conveyance System Simulation (ICSS) in three separate scenarios, including 29, 22, and 55 days, and each showed a typical operation based on history. The IUs’ agricultural water demand, at each off-take location, was calculated by the Aquacrop estimation including the existing information of the on-farm water efficiency depending on irrigation system. According to the study, the amount of water lost daily varied between 60% and 82%, 50–70%, and 44–61% in IUs that used drip, sprinkler, and surface water application systems, respectively, during normal operational scenarios. In situations where water was scarce, the water loss range was 4–87%, 68–80%, and 60–70%, respectively.The results of this study confirmed that losses in the conveyance and distribution systems varied according to the distance from the source and were often higher than the recommended guidelines for irrigation system design and operation (such as the 10–20% suggested in Iranian guidelines). The proposed methodology can be used to improve estimation of actual water losses for irrigation districts with similar operation systems and climatic conditions. •Proposing a practical method to assess operational losses for individual Irrigated Units (IUs) in irrigation districts.•Integrating hydraulic simulation and crop growth models for versatile application in various IUs in the irrigation districts.•The research shows that the adequacy varies 28–51%, 18–32% & 15–20% for upstream, midstream, and downstream IUs, respectively.•IUs’ total losses in surface, sprinkler & drip irrigation range from 60% to 82%, 50–70%, & 44–61% during normal operation.•During water-scarcity the total losses varies 64-87%, 68–80%, & 60–70% for Ius’ with surface, sprinkler & drip irrigation.
AbstractList Identifying operational losses in irrigation canals can be difficult due to inaccurate simplification in designing and operating national guidelines. However, this study aims to provide a practical solution to this problem by identifying operational losses, which are the primary cause of off-farm irrigation water losses. The method involves simulating the daily delivered water to individual Irrigation Units (IUs) through off-take structures using hydraulic simulation. The daily agricultural water demand for individual IUs is then calculated using a crop growth model and irrigation system efficiency. This approach offers an effective way to accurately identify operational losses in agricultural water distribution systems. The Roodasht irrigation district in central Iran was used test proposed method. The water distribution simulation was conducted using an open-source Irrigation Conveyance System Simulation (ICSS) in three separate scenarios, including 29, 22, and 55 days, and each showed a typical operation based on history. The IUs’ agricultural water demand, at each off-take location, was calculated by the Aquacrop estimation including the existing information of the on-farm water efficiency depending on irrigation system. According to the study, the amount of water lost daily varied between 60% and 82%, 50–70%, and 44–61% in IUs that used drip, sprinkler, and surface water application systems, respectively, during normal operational scenarios. In situations where water was scarce, the water loss range was 4–87%, 68–80%, and 60–70%, respectively.The results of this study confirmed that losses in the conveyance and distribution systems varied according to the distance from the source and were often higher than the recommended guidelines for irrigation system design and operation (such as the 10–20% suggested in Iranian guidelines). The proposed methodology can be used to improve estimation of actual water losses for irrigation districts with similar operation systems and climatic conditions.
Identifying operational losses in irrigation canals can be difficult due to inaccurate simplification in designing and operating national guidelines. However, this study aims to provide a practical solution to this problem by identifying operational losses, which are the primary cause of off-farm irrigation water losses. The method involves simulating the daily delivered water to individual Irrigation Units (IUs) through off-take structures using hydraulic simulation. The daily agricultural water demand for individual IUs is then calculated using a crop growth model and irrigation system efficiency. This approach offers an effective way to accurately identify operational losses in agricultural water distribution systems. The Roodasht irrigation district in central Iran was used test proposed method. The water distribution simulation was conducted using an open-source Irrigation Conveyance System Simulation (ICSS) in three separate scenarios, including 29, 22, and 55 days, and each showed a typical operation based on history. The IUs’ agricultural water demand, at each off-take location, was calculated by the Aquacrop estimation including the existing information of the on-farm water efficiency depending on irrigation system. According to the study, the amount of water lost daily varied between 60% and 82%, 50–70%, and 44–61% in IUs that used drip, sprinkler, and surface water application systems, respectively, during normal operational scenarios. In situations where water was scarce, the water loss range was 4–87%, 68–80%, and 60–70%, respectively.The results of this study confirmed that losses in the conveyance and distribution systems varied according to the distance from the source and were often higher than the recommended guidelines for irrigation system design and operation (such as the 10–20% suggested in Iranian guidelines). The proposed methodology can be used to improve estimation of actual water losses for irrigation districts with similar operation systems and climatic conditions. •Proposing a practical method to assess operational losses for individual Irrigated Units (IUs) in irrigation districts.•Integrating hydraulic simulation and crop growth models for versatile application in various IUs in the irrigation districts.•The research shows that the adequacy varies 28–51%, 18–32% & 15–20% for upstream, midstream, and downstream IUs, respectively.•IUs’ total losses in surface, sprinkler & drip irrigation range from 60% to 82%, 50–70%, & 44–61% during normal operation.•During water-scarcity the total losses varies 64-87%, 68–80%, & 60–70% for Ius’ with surface, sprinkler & drip irrigation.
ArticleNumber 108478
Author Hashemy Shahdany, S. Mehdy
Guan, Guanghua
Behzadi, Farhad
Liaghat, Abdolmajid
Karimi Avargani, Habib
Hashemi Garmdareh, S. Ebrahim
Berndtsson, Ronny
Milan, Sami Ghordoyee
Author_xml – sequence: 1
  givenname: Habib
  orcidid: 0000-0003-1574-606X
  surname: Karimi Avargani
  fullname: Karimi Avargani, Habib
  organization: Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: S. Mehdy
  surname: Hashemy Shahdany
  fullname: Hashemy Shahdany, S. Mehdy
  email: mehdi.hashemy@ut.ac.ir
  organization: Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: S. Ebrahim
  surname: Hashemi Garmdareh
  fullname: Hashemi Garmdareh, S. Ebrahim
  organization: Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
– sequence: 4
  givenname: Abdolmajid
  surname: Liaghat
  fullname: Liaghat, Abdolmajid
  organization: Department of Irrigation and Reclamation Engineering, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
– sequence: 5
  givenname: Guanghua
  orcidid: 0000-0003-3099-0976
  surname: Guan
  fullname: Guan, Guanghua
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
– sequence: 6
  givenname: Farhad
  orcidid: 0000-0002-1240-3830
  surname: Behzadi
  fullname: Behzadi, Farhad
  organization: Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
– sequence: 7
  givenname: Sami Ghordoyee
  surname: Milan
  fullname: Milan, Sami Ghordoyee
  organization: Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
– sequence: 8
  givenname: Ronny
  surname: Berndtsson
  fullname: Berndtsson, Ronny
  email: ronny.berndtsson@tvrl.lth.se
  organization: Division of Water Resources Engineering & Centre for Advanced Middle Eastern Studies, Lund University, Lund, Sweden
BookMark eNp9Uk2P0zAUtNAi0S38Ai45cmnxV2PnwAGtYFlppb3A-enFeUldJXGwE6r-e9wGIXFBsmV7PG9sj-ee3Y1hJMbeC74XXJQfT3vszjjvJZcqI1Yb-4pthDVqJ6VVd2zDlbE7ZYx-w-5TOnHONddmw4aXiSLOPozYF31IqaA0--GGFD63GH23rhxmTirqS8Zn6q5VY1ccL03EpfeuSH5Y-pWKY1O4GKaii-E8H4shNNRn9lv2us0a9O7PuGU_vn75_vBt9_zy-PTw-XnntDXzrixJlK6uhdSqtig0r_JUqoa7vEPyYJArargspW2wlGi1LK8dKykMObVlT6tuE_AEU8wPihcI6OEGhNgBxtm7nsBWjTCGV0pyp2X2TkrFreIkLBeHbN6W4aqVzjQt9T9qU4gz9hApEUZ3hH6BRJBZ2Y-bEwmMFrw1tYWGKgG6QgVIqIGc4arlysq2zmd8WM-YYvi55B-AwSdHfY8jhSWBEgctyrIyZaaqlZr9TSlS-_dCgsM1DHCCWxjgGgZYw5CrPq1VlF3_5SlCcp5GR42P5OZsi_9v_W_-M8Eh
Cites_doi 10.1061/(ASCE)0733-9437(2001)127:1(27)
10.1016/j.agwat.2015.06.006
10.1007/s00271-010-0222-8
10.1061/(ASCE)IR.1943-4774.0000414
10.1016/j.agwat.2020.106321
10.1016/j.compag.2019.105122
10.1016/j.envsoft.2014.08.005
10.1007/s11269-015-1000-4
10.1016/j.agwat.2020.106578
10.1061/(ASCE)IR.1943-4774.0000256
10.1016/j.agwat.2021.106833
10.1016/j.agwat.2020.106265
10.1002/ird.1917
10.3390/w12092407
10.1002/ird.1978
10.1002/ird.1975
10.1061/(ASCE)IR.1943-4774.0000351
10.1002/ird.2335
10.1007/s11269-017-1671-0
10.1016/j.agwat.2019.05.012
10.1016/j.advwatres.2017.08.015
10.1061/(ASCE)IR.1943-4774.0000649
10.1061/(ASCE)IR.1943-4774.0001089
10.1061/(ASCE)WR.1943-5452.0001286
10.1007/s11269-018-2042-1
10.1109/CDC.2014.7040151
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
CorporateAuthor Departments of Administrative, Economic and Social Sciences
Institutioner vid LTH
Faculty of Social Sciences
Samhällsvetenskapliga fakulteten
Faculty of Engineering, LTH
Lunds Tekniska Högskola
LTH Profile areas
LTH Profile Area: Water
Strategiska forskningsområden (SFO)
Department of Building and Environmental Technology
Samhällsvetenskapliga institutioner och centrumbildningar
Division of Water Resources Engineering
Institutionen för bygg- och miljöteknologi
Avdelningen för Teknisk vattenresurslära
Departments at LTH
Lunds universitet
Profile areas and other strong research environments
LTH profilområden
Lund University
LTH profilområde: Vatten
Centrum för Mellanösternstudier (CMES)
MECW: The Middle East in the Contemporary World
Strategic research areas (SRA)
Centre for Advanced Middle Eastern Studies (CMES)
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Strategiska forskningsområden (SFO)
– name: Samhällsvetenskapliga institutioner och centrumbildningar
– name: Strategic research areas (SRA)
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Faculty of Engineering, LTH
– name: Lund University
– name: Department of Building and Environmental Technology
– name: Profile areas and other strong research environments
– name: Samhällsvetenskapliga fakulteten
– name: Institutioner vid LTH
– name: Faculty of Social Sciences
– name: Departments of Administrative, Economic and Social Sciences
– name: MECW: The Middle East in the Contemporary World
– name: LTH profilområde: Vatten
– name: LTH Profile Area: Water
– name: Institutionen för bygg- och miljöteknologi
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: LTH Profile areas
– name: LTH profilområden
– name: Avdelningen för Teknisk vattenresurslära
– name: Centre for Advanced Middle Eastern Studies (CMES)
– name: Centrum för Mellanösternstudier (CMES)
– name: Division of Water Resources Engineering
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOA
DOI 10.1016/j.agwat.2023.108478
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID oai_doaj_org_article_89d17709320c421082230830e1801528
oai_portal_research_lu_se_publications_7410f7b8_de91_49a3_aea4_ec703f0382fb
10_1016_j_agwat_2023_108478
S0378377423003438
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
VH1
WUQ
XPP
ZMT
~HD
7S9
L.6
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c487t-66e16cbb1243b8a140912423d0c6e1e257a03ed02628da62a84268426a9217ec3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001144697700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-3774
IngestDate Fri Oct 03 12:39:00 EDT 2025
Tue Dec 02 03:10:40 EST 2025
Thu Oct 02 21:44:10 EDT 2025
Sat Nov 29 07:15:46 EST 2025
Fri Feb 23 02:35:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Water conservation
Water accounting
Hydrodynamic simulation model
Sustainable water management
AquaCrop
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-66e16cbb1243b8a140912423d0c6e1e257a03ed02628da62a84268426a9217ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1240-3830
0000-0003-1574-606X
0000-0003-3099-0976
OpenAccessLink https://doaj.org/article/89d17709320c421082230830e1801528
PQID 3154166976
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_89d17709320c421082230830e1801528
swepub_primary_oai_portal_research_lu_se_publications_7410f7b8_de91_49a3_aea4_ec703f0382fb
proquest_miscellaneous_3154166976
crossref_primary_10_1016_j_agwat_2023_108478
elsevier_sciencedirect_doi_10_1016_j_agwat_2023_108478
PublicationCentury 2000
PublicationDate 2023-10-01
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pereira, Paredes, Rodrigues, Neves (bib22) 2015; 159
Fipps, G., 2000. Potential water savings in irrigated agriculture for the Rio Grande Planning Region (Region M). Texas Cooperative Extension, Texas A&M University System.
Hashemy, Van Overloop (bib10) 2013; 139
Guan, Clemmens, Kacerek, Wahlin (bib9) 2011; 137
Van Overloop (bib33) 2006
Barkhordari, Shahdany (bib4) 2021; 250
Maestre, J.M., Overloop, P.J..v., Hashemy, M., Sadowska, A., Camacho, E.F., 2014. Human in the loop model Predictive Control: an irrigation canal case study, 53rd IEEE Conference on Decision and Control, pp. 4881–4886.
Shahdany, Monem, Isapoor, Van Overloop (bib25) 2013; 62
USBR (bib32) 2005
Dejen, Schultz, Hayde (bib6) 2015; 64
Jalil, Akhtar, Awan (bib13) 2020; 240
Akkuzu (bib2) 2012; 138
Manz, D., 1990. Use of the ICSS model for prediction of conveyance system operational characteristics, Proceedings 14th International Congress on Irrigation and Drainage, Rio de Janeiro, Brazil. International Commission on Irrigation and Drainage, pp. 1–18.
Shahverdi, Maestre, Alamiyan-Harandi, Tian (bib29) 2020; 12
Vanuytrecht, Raes, Steduto, Hsiao, Fereres, Heng, Vila, Moreno (bib34) 2014; 62
Kaghazchi, Hashemy Shahdany, Roozbahani (bib15) 2021; 245
Tian, Negenborn, van Overloop, María Maestre, Sadowska, van de Giesen (bib31) 2017; 109
Kamrani, Roozbahani, Shahdany (bib16) 2020; 239
Serra, Salvati, Queralt, Pin, Gonzalez, Pons (bib24) 2016; 65
Zhong, Guan, Tian, Maestre, Mao (bib35) 2020; 146
Shahdany, Firoozfar (bib26) 2017; 31
Savari, Monem, Shahverdi (bib23) 2016; 142
Babaei, Roozbahani, Shahdany (bib3) 2018; 32
Shahverdi, Monem, Nili (bib28) 2016; 65
Tariq, Latif (bib30) 2011; 29
Monem, M.J., Shuurmans, W., 1992. Performance of canal delivery strategies and control systems, International workshop on the application of mathematical modeling for the improvement of irrigation canal operation, pp. 307–315.
Hassani, Hashemy Shahdany, Maestre, Zahraie, Ghorbani, Henneberry, Kulshreshtha (bib12) 2019; 221
Agide, Z., Haileslassie, A., Sally, H., Erkossa, T., Schmitter, P., Langan, S., Hoekstra, D., 2016. Analysis of water delivery performance of smallholder irrigation schemes in Ethiopia: Diversity and lessons across schemes, typologies and reaches, LIVES Working Paper 15. International Livestock Research Institute (ILRI), Nairobi, Kenya, p. 17.
Hassani, Hashemy Shahdany (bib11) 2019; 68
Kaghazchi, Hashemy Shahdany, Firoozfar (bib14) 2021
van Overloop, Clemmens, Strand, Wagemaker, Bautista (bib21) 2010; 136
Garnero, G., Minucciani, V., Fabrizio, E., 2017. Viewpoints and visibility analysis: a case study on the UNESCO site of Langhe-Roero and Monferrato (Piemonte Region), 11th International AIIA Conference “Biosystems Engineering addressing the human challenges of the 21st century”. Università degli studi di Bari Aldo Moro, pp. 535–538.
Shahdany, Maestre, van Overloop (bib27) 2015; 29
Mishra, Anand, Singh, Raghuwanshi (bib19) 2001; 127
Barkhordari, Shahadany, Taghvaeian, Firoozfar, Maestre (bib5) 2020; 168
USBR (10.1016/j.agwat.2023.108478_bib32) 2005
Hassani (10.1016/j.agwat.2023.108478_bib12) 2019; 221
Jalil (10.1016/j.agwat.2023.108478_bib13) 2020; 240
van Overloop (10.1016/j.agwat.2023.108478_bib21) 2010; 136
Shahdany (10.1016/j.agwat.2023.108478_bib25) 2013; 62
Barkhordari (10.1016/j.agwat.2023.108478_bib5) 2020; 168
Babaei (10.1016/j.agwat.2023.108478_bib3) 2018; 32
Pereira (10.1016/j.agwat.2023.108478_bib22) 2015; 159
Barkhordari (10.1016/j.agwat.2023.108478_bib4) 2021; 250
Savari (10.1016/j.agwat.2023.108478_bib23) 2016; 142
Hassani (10.1016/j.agwat.2023.108478_bib11) 2019; 68
Mishra (10.1016/j.agwat.2023.108478_bib19) 2001; 127
Tian (10.1016/j.agwat.2023.108478_bib31) 2017; 109
Vanuytrecht (10.1016/j.agwat.2023.108478_bib34) 2014; 62
Hashemy (10.1016/j.agwat.2023.108478_bib10) 2013; 139
Shahdany (10.1016/j.agwat.2023.108478_bib26) 2017; 31
Van Overloop (10.1016/j.agwat.2023.108478_bib33) 2006
Kaghazchi (10.1016/j.agwat.2023.108478_bib15) 2021; 245
Zhong (10.1016/j.agwat.2023.108478_bib35) 2020; 146
10.1016/j.agwat.2023.108478_bib1
Tariq (10.1016/j.agwat.2023.108478_bib30) 2011; 29
Dejen (10.1016/j.agwat.2023.108478_bib6) 2015; 64
Shahverdi (10.1016/j.agwat.2023.108478_bib29) 2020; 12
10.1016/j.agwat.2023.108478_bib20
Shahdany (10.1016/j.agwat.2023.108478_bib27) 2015; 29
Shahverdi (10.1016/j.agwat.2023.108478_bib28) 2016; 65
10.1016/j.agwat.2023.108478_bib7
10.1016/j.agwat.2023.108478_bib8
Guan (10.1016/j.agwat.2023.108478_bib9) 2011; 137
10.1016/j.agwat.2023.108478_bib17
Kamrani (10.1016/j.agwat.2023.108478_bib16) 2020; 239
10.1016/j.agwat.2023.108478_bib18
Akkuzu (10.1016/j.agwat.2023.108478_bib2) 2012; 138
Kaghazchi (10.1016/j.agwat.2023.108478_bib14) 2021
Serra (10.1016/j.agwat.2023.108478_bib24) 2016; 65
References_xml – volume: 221
  start-page: 348
  year: 2019
  end-page: 361
  ident: bib12
  article-title: An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing
  publication-title: Agric. Water Manag.
– reference: Agide, Z., Haileslassie, A., Sally, H., Erkossa, T., Schmitter, P., Langan, S., Hoekstra, D., 2016. Analysis of water delivery performance of smallholder irrigation schemes in Ethiopia: Diversity and lessons across schemes, typologies and reaches, LIVES Working Paper 15. International Livestock Research Institute (ILRI), Nairobi, Kenya, p. 17.
– reference: Garnero, G., Minucciani, V., Fabrizio, E., 2017. Viewpoints and visibility analysis: a case study on the UNESCO site of Langhe-Roero and Monferrato (Piemonte Region), 11th International AIIA Conference “Biosystems Engineering addressing the human challenges of the 21st century”. Università degli studi di Bari Aldo Moro, pp. 535–538.
– volume: 12
  start-page: 2407
  year: 2020
  ident: bib29
  article-title: Generalizing fuzzy SARSA learning for real-time operation of irrigation canals
  publication-title: Water
– volume: 142
  year: 2016
  ident: bib23
  article-title: Comparing the performance of FSL and traditional operation methods for on-request water delivery in the Aghili Network, Iran
  publication-title: J. Irrig. Drain. Eng.
– volume: 65
  start-page: 578
  year: 2016
  end-page: 588
  ident: bib24
  article-title: Estimating water consumption and irrigation requirements in a long‐established mediterranean rural community by remote sensing and field data
  publication-title: Irrig. Drain.
– volume: 62
  start-page: 351
  year: 2014
  end-page: 360
  ident: bib34
  article-title: AquaCrop: FAO's crop water productivity and yield response model
  publication-title: Environ. Model. Softw.
– volume: 29
  start-page: 127
  year: 2011
  end-page: 134
  ident: bib30
  article-title: Flexibility analysis of irrigation outlet structures using simulation of irrigation canal hydrodynamic model
  publication-title: Irrig. Sci.
– volume: 240
  year: 2020
  ident: bib13
  article-title: Evaluation of the AquaCrop model for winter wheat under different irrigation optimization strategies at the downstream Kabul River Basin of Afghanistan
  publication-title: Agric. Water Manag.
– volume: 32
  start-page: 4079
  year: 2018
  end-page: 4101
  ident: bib3
  article-title: Risk assessment of agricultural water conveyance and delivery systems by fuzzy fault tree analysis method
  publication-title: Water Resour. Manag.
– volume: 127
  start-page: 27
  year: 2001
  end-page: 34
  ident: bib19
  article-title: Hydraulic modeling of Kangsabati main canal for performance assessment
  publication-title: J. Irrig. Drain. Eng.
– year: 2006
  ident: bib33
  article-title: Model predictive control on open water systems
– volume: 250
  year: 2021
  ident: bib4
  article-title: Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations
  publication-title: Agric. Water Manag.
– volume: 137
  start-page: 747
  year: 2011
  end-page: 753
  ident: bib9
  article-title: Applying water-level difference control to central Arizona Project
  publication-title: J. Irrig. Drain E-ASCE
– volume: 168
  year: 2020
  ident: bib5
  article-title: Reducing losses in earthen agricultural water conveyance and distribution systems by employing automatic control systems
  publication-title: Comput. Electron. Agric.
– volume: 136
  start-page: 747
  year: 2010
  end-page: 756
  ident: bib21
  article-title: Real-time implementation of model predictive control on maricopa-stanfield irrigation and drainage District’s WM Canal
  publication-title: J. Irrig. Drain. Eng.
– volume: 64
  start-page: 479
  year: 2015
  end-page: 490
  ident: bib6
  article-title: Water delivery performance at metahara large-scale irrigation scheme, Ethiopia
  publication-title: Irrig. Drain.
– reference: Maestre, J.M., Overloop, P.J..v., Hashemy, M., Sadowska, A., Camacho, E.F., 2014. Human in the loop model Predictive Control: an irrigation canal case study, 53rd IEEE Conference on Decision and Control, pp. 4881–4886.
– volume: 65
  start-page: 276
  year: 2016
  end-page: 284
  ident: bib28
  article-title: Fuzzy SARSA learning of operational instructions to schedule water distribution and delivery
  publication-title: Irrig. Drain.
– volume: 239
  year: 2020
  ident: bib16
  article-title: Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus
  publication-title: Agric. Water Manag.
– volume: 245
  year: 2021
  ident: bib15
  article-title: Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model
  publication-title: Agric. Water Manag.
– volume: 146
  year: 2020
  ident: bib35
  article-title: Evaluating optimization objectives in linear quadratic control applied to open canal automation
  publication-title: J. Water Res. Plan. Manag.
– volume: 109
  start-page: 58
  year: 2017
  end-page: 68
  ident: bib31
  article-title: Efficient multi-scenario Model Predictive Control for water resources management with ensemble streamflow forecasts
  publication-title: Adv. Water Resour.
– volume: 159
  start-page: 239
  year: 2015
  end-page: 254
  ident: bib22
  article-title: Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models
  publication-title: Agric. Water Manag.
– volume: 138
  start-page: 455
  year: 2012
  end-page: 460
  ident: bib2
  article-title: Usefulness of empirical equations in assessing canal losses through seepage in concrete-lined canal
  publication-title: J. Irrig. Drain. Eng.
– volume: 29
  start-page: 3315
  year: 2015
  end-page: 3328
  ident: bib27
  article-title: Equitable water distribution in main irrigation canals with constrained water supply
  publication-title: Water Resour. Manag.
– reference: Manz, D., 1990. Use of the ICSS model for prediction of conveyance system operational characteristics, Proceedings 14th International Congress on Irrigation and Drainage, Rio de Janeiro, Brazil. International Commission on Irrigation and Drainage, pp. 1–18.
– volume: 68
  start-page: 443
  year: 2019
  end-page: 451
  ident: bib11
  article-title: Agricultural water distribution under drought conditions based on economic priorities: case study of Qazvin irrigation district
  publication-title: Irrig. Drain.
– volume: 139
  start-page: 1037
  year: 2013
  end-page: 1044
  ident: bib10
  article-title: Applying decentralized water level difference control for operation of the Dez main canal under water shortage
  publication-title: J. Irrig. Drain. Eng.
– year: 2021
  ident: bib14
  article-title: Prioritization of agricultural water distribution operating systems based on the sustainable development indicators
  publication-title: Sustain. Dev. N./a
– volume: 62
  year: 2013
  ident: bib25
  article-title: Using in-line reservoir operational strategy to improve Dez main irrigation canal performance
  publication-title: Irrig. Drain.
– reference: Fipps, G., 2000. Potential water savings in irrigated agriculture for the Rio Grande Planning Region (Region M). Texas Cooperative Extension, Texas A&M University System.
– volume: 31
  start-page: 3343
  year: 2017
  end-page: 3354
  ident: bib26
  article-title: Providing a reliable water level control in main canals under significant inflow fluctuations at drought periods within canal automation
  publication-title: Water Resour. Manag.
– year: 2005
  ident: bib32
  article-title: Reclamation Managing Water in the West, Appraisal Report, Water Supply Augmentation
– reference: Monem, M.J., Shuurmans, W., 1992. Performance of canal delivery strategies and control systems, International workshop on the application of mathematical modeling for the improvement of irrigation canal operation, pp. 307–315.
– volume: 127
  start-page: 27
  year: 2001
  ident: 10.1016/j.agwat.2023.108478_bib19
  article-title: Hydraulic modeling of Kangsabati main canal for performance assessment
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2001)127:1(27)
– volume: 159
  start-page: 239
  year: 2015
  ident: 10.1016/j.agwat.2023.108478_bib22
  article-title: Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.06.006
– year: 2006
  ident: 10.1016/j.agwat.2023.108478_bib33
– volume: 29
  start-page: 127
  year: 2011
  ident: 10.1016/j.agwat.2023.108478_bib30
  article-title: Flexibility analysis of irrigation outlet structures using simulation of irrigation canal hydrodynamic model
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-010-0222-8
– volume: 138
  start-page: 455
  year: 2012
  ident: 10.1016/j.agwat.2023.108478_bib2
  article-title: Usefulness of empirical equations in assessing canal losses through seepage in concrete-lined canal
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000414
– volume: 240
  year: 2020
  ident: 10.1016/j.agwat.2023.108478_bib13
  article-title: Evaluation of the AquaCrop model for winter wheat under different irrigation optimization strategies at the downstream Kabul River Basin of Afghanistan
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106321
– ident: 10.1016/j.agwat.2023.108478_bib1
– volume: 168
  year: 2020
  ident: 10.1016/j.agwat.2023.108478_bib5
  article-title: Reducing losses in earthen agricultural water conveyance and distribution systems by employing automatic control systems
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105122
– ident: 10.1016/j.agwat.2023.108478_bib18
– ident: 10.1016/j.agwat.2023.108478_bib20
– volume: 62
  start-page: 351
  year: 2014
  ident: 10.1016/j.agwat.2023.108478_bib34
  article-title: AquaCrop: FAO's crop water productivity and yield response model
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.08.005
– ident: 10.1016/j.agwat.2023.108478_bib7
– volume: 29
  start-page: 3315
  year: 2015
  ident: 10.1016/j.agwat.2023.108478_bib27
  article-title: Equitable water distribution in main irrigation canals with constrained water supply
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1000-4
– volume: 245
  year: 2021
  ident: 10.1016/j.agwat.2023.108478_bib15
  article-title: Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106578
– volume: 136
  start-page: 747
  year: 2010
  ident: 10.1016/j.agwat.2023.108478_bib21
  article-title: Real-time implementation of model predictive control on maricopa-stanfield irrigation and drainage District’s WM Canal
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000256
– volume: 62
  year: 2013
  ident: 10.1016/j.agwat.2023.108478_bib25
  article-title: Using in-line reservoir operational strategy to improve Dez main irrigation canal performance
  publication-title: Irrig. Drain.
– volume: 250
  year: 2021
  ident: 10.1016/j.agwat.2023.108478_bib4
  article-title: Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.106833
– volume: 239
  year: 2020
  ident: 10.1016/j.agwat.2023.108478_bib16
  article-title: Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106265
– volume: 64
  start-page: 479
  year: 2015
  ident: 10.1016/j.agwat.2023.108478_bib6
  article-title: Water delivery performance at metahara large-scale irrigation scheme, Ethiopia
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.1917
– volume: 12
  start-page: 2407
  year: 2020
  ident: 10.1016/j.agwat.2023.108478_bib29
  article-title: Generalizing fuzzy SARSA learning for real-time operation of irrigation canals
  publication-title: Water
  doi: 10.3390/w12092407
– year: 2021
  ident: 10.1016/j.agwat.2023.108478_bib14
  article-title: Prioritization of agricultural water distribution operating systems based on the sustainable development indicators
  publication-title: Sustain. Dev. N./a
– volume: 65
  start-page: 578
  year: 2016
  ident: 10.1016/j.agwat.2023.108478_bib24
  article-title: Estimating water consumption and irrigation requirements in a long‐established mediterranean rural community by remote sensing and field data
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.1978
– volume: 65
  start-page: 276
  year: 2016
  ident: 10.1016/j.agwat.2023.108478_bib28
  article-title: Fuzzy SARSA learning of operational instructions to schedule water distribution and delivery
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.1975
– volume: 137
  start-page: 747
  year: 2011
  ident: 10.1016/j.agwat.2023.108478_bib9
  article-title: Applying water-level difference control to central Arizona Project
  publication-title: J. Irrig. Drain E-ASCE
  doi: 10.1061/(ASCE)IR.1943-4774.0000351
– volume: 68
  start-page: 443
  year: 2019
  ident: 10.1016/j.agwat.2023.108478_bib11
  article-title: Agricultural water distribution under drought conditions based on economic priorities: case study of Qazvin irrigation district
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.2335
– volume: 31
  start-page: 3343
  year: 2017
  ident: 10.1016/j.agwat.2023.108478_bib26
  article-title: Providing a reliable water level control in main canals under significant inflow fluctuations at drought periods within canal automation
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1671-0
– volume: 221
  start-page: 348
  year: 2019
  ident: 10.1016/j.agwat.2023.108478_bib12
  article-title: An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.05.012
– ident: 10.1016/j.agwat.2023.108478_bib8
– volume: 109
  start-page: 58
  year: 2017
  ident: 10.1016/j.agwat.2023.108478_bib31
  article-title: Efficient multi-scenario Model Predictive Control for water resources management with ensemble streamflow forecasts
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.08.015
– volume: 139
  start-page: 1037
  year: 2013
  ident: 10.1016/j.agwat.2023.108478_bib10
  article-title: Applying decentralized water level difference control for operation of the Dez main canal under water shortage
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000649
– volume: 142
  year: 2016
  ident: 10.1016/j.agwat.2023.108478_bib23
  article-title: Comparing the performance of FSL and traditional operation methods for on-request water delivery in the Aghili Network, Iran
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0001089
– year: 2005
  ident: 10.1016/j.agwat.2023.108478_bib32
– volume: 146
  year: 2020
  ident: 10.1016/j.agwat.2023.108478_bib35
  article-title: Evaluating optimization objectives in linear quadratic control applied to open canal automation
  publication-title: J. Water Res. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001286
– volume: 32
  start-page: 4079
  year: 2018
  ident: 10.1016/j.agwat.2023.108478_bib3
  article-title: Risk assessment of agricultural water conveyance and delivery systems by fuzzy fault tree analysis method
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-2042-1
– ident: 10.1016/j.agwat.2023.108478_bib17
  doi: 10.1109/CDC.2014.7040151
SSID ssj0004047
Score 2.4076087
Snippet Identifying operational losses in irrigation canals can be difficult due to inaccurate simplification in designing and operating national guidelines. However,...
SourceID doaj
swepub
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 108478
SubjectTerms AquaCrop
Civil Engineering
crop models
Engineering and Technology
Hydrodynamic simulation model
Iran
irrigation systems
irrigation water
Samhällsbyggnadsteknik
surface water
Sustainable water management
systems engineering
Teknik
Vattenteknik
Water accounting
Water conservation
water distribution
Water Engineering
Title Operational loss estimation in irrigation canals by integrating hydraulic simulation and crop growth modeling
URI https://dx.doi.org/10.1016/j.agwat.2023.108478
https://www.proquest.com/docview/3154166976
https://doaj.org/article/89d17709320c421082230830e1801528
Volume 288
WOSCitedRecordID wos001144697700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQiQIKxFMsLxmJkojE9jlOeSBOFOigAHSiscb2ZDdoL7dKdkH37xnbCco10CClSWLFj0_2fOOMv2HslYq7VB6gAHfsCgWiKVxD88q0xmgdnBdpQ__bx_rszJyfN58Xqb5iTFiWB84D98Y0oapr8rtF6RX5J2TQJNGGEitaW49FOuZLrGd2puYTkaWqZ42hFM0F618QQyeFjFF1KmZVW9ihJNd_zRwt6eZSQjSZndO77M7EF_lJbuc9dgP7--z2yXqYNDPwAbv4tMNh2tPjW6qMR-WMfCSRd3QNQ9LRoLsY4rUdubvis0wEWS6-uQoDHLad52N3MaXz4tAHHtN78TU56vsNTylzqPRD9vX0_Zd3H4opi0LhyRnZF1pjpb1zZMilMxAFrqpIokLp6Q3SlIVSYiBfTJgAWoBRUQFGaGjIXUEvH7Gj_rLHx4xLUNAK9AFRqtZr00qBZduECIhpqhV7PY-p3WWxDDtHkf2wCQIbIbAZghV7G8f9T9GodJ0eEP52wt_-C_8V0zNqdiINmQzQp7q_1_5yxtjSlIr_SaDHy8NoJdHKSmsiaiv2PYN_rY3ZMbKTGtPGbg92RLtbbLNa4mllWztjAzaVVQ1ICwjKoqcVti2lEa178j-6_5Tdin3K4YXP2NF-OOBzdtP_3Hfj8CJNit_9-RBw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operational+loss+estimation+in+irrigation+canals+by+integrating+hydraulic+simulation+and+crop+growth+modeling&rft.jtitle=Agricultural+water+management&rft.au=Karimi+Avargani%2C+Habib&rft.au=Hashemy+Shahdany%2C+S.+Mehdy&rft.au=Hashemi+Garmdareh%2C+S.+Ebrahim&rft.au=Liaghat%2C+Abdolmajid&rft.date=2023-10-01&rft.issn=0378-3774&rft.volume=288&rft.spage=108478&rft_id=info:doi/10.1016%2Fj.agwat.2023.108478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agwat_2023_108478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon