Predicting poverty and wealth from mobile phone metadata

Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) Vol. 350; no. 6264; p. 1073
Main Authors: Blumenstock, Joshua, Cadamuro, Gabriel, On, Robert
Format: Journal Article
Language:English
Published: United States 27.11.2015
Subjects:
ISSN:1095-9203, 1095-9203
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods.
AbstractList Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods.Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods.
Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods.
Author Cadamuro, Gabriel
Blumenstock, Joshua
On, Robert
Author_xml – sequence: 1
  givenname: Joshua
  surname: Blumenstock
  fullname: Blumenstock, Joshua
  email: joshblum@uw.edu
  organization: Information School, University of Washington, Seattle, WA 98195, USA. joshblum@uw.edu
– sequence: 2
  givenname: Gabriel
  surname: Cadamuro
  fullname: Cadamuro, Gabriel
  organization: Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
– sequence: 3
  givenname: Robert
  surname: On
  fullname: On, Robert
  organization: School of Information, University of California, Berkeley, Berkeley, CA 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26612950$$D View this record in MEDLINE/PubMed
BookMark eNpNj8tLxDAYxIOsuA89e5McvXRNvqRJc5TFFyzoQc8lj69upS-bVNn_3gVX8DQz8GOGWZJZ13dIyCVna85B3URfY-dxba2XEtgJWXBm8swAE7N_fk6WMX4wdshGnJE5KMXB5GxBipcRQ-1T3b3Tof_CMe2p7QL9RtukHa3GvqVt7-oG6bA7bNMWkw022XNyWtkm4sVRV-Tt_u5185htnx-eNrfbzMtCp0wpLXmhvQpBGAlglHYmL3gwiMFLUA6cdwqC4RoKbnOGjgmGxivjq4LBilz_9g5j_zlhTGVbR49NYzvsp1hyLbTUSjBxQK-O6ORaDOUw1q0d9-XfW_gB5dRYwQ
CitedBy_id crossref_primary_10_15201_hungeobull_70_2_3
crossref_primary_10_1111_obes_12678
crossref_primary_10_1016_j_cobeha_2017_07_001
crossref_primary_10_1038_s41598_022_10273_1
crossref_primary_10_1016_j_fss_2025_109511
crossref_primary_10_1016_j_chieco_2024_102147
crossref_primary_10_1016_j_jag_2022_102709
crossref_primary_10_1080_01559982_2023_2295161
crossref_primary_10_1177_10780874221124610
crossref_primary_10_1016_j_ins_2016_10_012
crossref_primary_10_3390_rs15245770
crossref_primary_10_1016_j_trpro_2023_12_073
crossref_primary_10_1111_insr_12253
crossref_primary_10_1080_03066150_2019_1658080
crossref_primary_10_1007_s13278_018_0486_1
crossref_primary_10_1016_j_jenvman_2020_110238
crossref_primary_10_1017_dap_2020_4
crossref_primary_10_3389_fhumd_2025_1540827
crossref_primary_10_1080_02681102_2019_1650244
crossref_primary_10_1051_e3sconf_202125703032
crossref_primary_10_1093_jrsssc_qlaf043
crossref_primary_10_1002_aepp_13175
crossref_primary_10_3390_app15063090
crossref_primary_10_3390_ijgi9060345
crossref_primary_10_3390_ijgi12120501
crossref_primary_10_1111_imig_12984
crossref_primary_10_1016_j_cities_2025_105703
crossref_primary_10_1080_26939169_2022_2089411
crossref_primary_10_1140_epjds_s13688_020_00255_6
crossref_primary_10_3390_rs13163160
crossref_primary_10_1038_s41597_024_03329_6
crossref_primary_10_1371_journal_pone_0198502
crossref_primary_10_3233_SJI_230033
crossref_primary_10_1371_journal_pone_0201458
crossref_primary_10_1016_j_rsase_2024_101388
crossref_primary_10_1089_big_2022_0182
crossref_primary_10_1126_science_aah5217
crossref_primary_10_1073_pnas_2020258118
crossref_primary_10_1371_journal_pone_0241791
crossref_primary_10_1016_j_jdeveco_2023_103199
crossref_primary_10_1145_3130983
crossref_primary_10_1145_3432229
crossref_primary_10_1002_cl2_1149
crossref_primary_10_2196_13421
crossref_primary_10_3390_rs13204022
crossref_primary_10_3390_w12020483
crossref_primary_10_1016_j_trd_2020_102260
crossref_primary_10_1073_pnas_2113658119
crossref_primary_10_3390_su11143934
crossref_primary_10_3390_bdcc5030028
crossref_primary_10_1073_pnas_1700035114
crossref_primary_10_1093_wbro_lky001
crossref_primary_10_1146_annurev_soc_073117_041106
crossref_primary_10_1057_s41304_022_00396_4
crossref_primary_10_1177_13563890251357650
crossref_primary_10_1007_s00521_018_03967_z
crossref_primary_10_1038_s41467_025_58026_8
crossref_primary_10_1016_j_jocs_2019_02_002
crossref_primary_10_1038_s41598_019_41192_3
crossref_primary_10_1038_s41746_025_01757_1
crossref_primary_10_1093_jeea_jvac025
crossref_primary_10_3233_SJI_200711
crossref_primary_10_1057_s41599_021_00848_0
crossref_primary_10_1007_s11071_018_4649_4
crossref_primary_10_1073_pnas_2100664118
crossref_primary_10_1038_s41598_020_70808_2
crossref_primary_10_2139_ssrn_5410642
crossref_primary_10_1007_s41060_019_00195_z
crossref_primary_10_3390_info10120397
crossref_primary_10_1145_3534581
crossref_primary_10_1109_ACCESS_2020_2976881
crossref_primary_10_1080_10095020_2023_2250388
crossref_primary_10_1111_rssa_12315
crossref_primary_10_3390_su14169815
crossref_primary_10_1007_s10489_021_02264_y
crossref_primary_10_1016_j_apgeog_2025_103541
crossref_primary_10_1038_s41467_018_05690_8
crossref_primary_10_1017_als_2020_34
crossref_primary_10_1098_rsos_201898
crossref_primary_10_1016_j_jue_2025_103797
crossref_primary_10_1016_j_knosys_2016_11_008
crossref_primary_10_1016_j_techfore_2018_06_044
crossref_primary_10_1016_j_apgeog_2024_103260
crossref_primary_10_3390_su14052497
crossref_primary_10_1140_epjds_s13688_017_0125_5
crossref_primary_10_1016_j_foodpol_2021_102153
crossref_primary_10_1016_j_jdeveco_2022_103016
crossref_primary_10_1002_asi_24114
crossref_primary_10_1146_annurev_economics_063016_103638
crossref_primary_10_1287_isre_2023_0305
crossref_primary_10_3389_fdata_2022_1006352
crossref_primary_10_1007_s41324_024_00584_y
crossref_primary_10_1016_j_scs_2025_106799
crossref_primary_10_1016_j_worlddev_2018_03_007
crossref_primary_10_1057_s41599_021_00953_0
crossref_primary_10_1140_epjds_s13688_017_0099_3
crossref_primary_10_1007_s11151_025_10015_3
crossref_primary_10_1017_dap_2021_2
crossref_primary_10_1111_rssa_12305
crossref_primary_10_1016_j_compenvurbsys_2024_102158
crossref_primary_10_1007_s11187_019_00208_y
crossref_primary_10_1080_13658816_2017_1287369
crossref_primary_10_1038_s41893_022_00874_z
crossref_primary_10_1177_2399808320938803
crossref_primary_10_1016_j_seps_2020_100905
crossref_primary_10_4000_netcom_2556
crossref_primary_10_1007_s42001_020_00073_w
crossref_primary_10_1016_j_envdev_2025_101141
crossref_primary_10_1055_a_2376_6332
crossref_primary_10_1080_08898480_2017_1418113
crossref_primary_10_1016_j_compenvurbsys_2018_04_001
crossref_primary_10_1109_TEM_2020_2974761
crossref_primary_10_1016_j_jag_2022_102694
crossref_primary_10_1007_s42001_023_00205_y
crossref_primary_10_3390_ijgi11010050
crossref_primary_10_1371_journal_pone_0210050
crossref_primary_10_3389_fpsyg_2023_1249185
crossref_primary_10_1016_j_jdeveco_2025_103477
crossref_primary_10_1016_j_ufug_2022_127709
crossref_primary_10_1080_19439342_2018_1530279
crossref_primary_10_1016_j_jdeveco_2022_103033
crossref_primary_10_3389_frsus_2022_908822
crossref_primary_10_1080_2150704X_2021_1987575
crossref_primary_10_1109_ACCESS_2022_3215732
crossref_primary_10_1155_2019_2834894
crossref_primary_10_1209_0295_5075_125_68002
crossref_primary_10_3390_urbansci7010015
crossref_primary_10_1002_jid_3751
crossref_primary_10_1155_2019_4053970
crossref_primary_10_1080_07352166_2022_2078723
crossref_primary_10_1108_QRAM_03_2022_0042
crossref_primary_10_1093_wber_lhz008
crossref_primary_10_1093_wber_lhz006
crossref_primary_10_1017_dap_2021_7
crossref_primary_10_1038_s41598_025_11087_7
crossref_primary_10_1111_gec3_12663
crossref_primary_10_3390_su11071943
crossref_primary_10_1016_j_apgeog_2023_103179
crossref_primary_10_17208_jkpa_2021_02_56_1_177
crossref_primary_10_33003_fjs_2024_0803_2524
crossref_primary_10_1073_pnas_2316730121
crossref_primary_10_1016_j_jmse_2024_01_003
crossref_primary_10_1080_16549716_2021_1974676
crossref_primary_10_23736_S0022_4707_19_09601_4
crossref_primary_10_4000_poldev_2468
crossref_primary_10_1371_journal_pone_0235224
crossref_primary_10_2139_ssrn_4992873
crossref_primary_10_1080_24694452_2020_1773232
crossref_primary_10_1007_s11205_016_1495_y
crossref_primary_10_1088_2632_072X_ac60b1
crossref_primary_10_3390_su11226312
crossref_primary_10_1007_s13278_020_00690_3
crossref_primary_10_1016_j_worlddev_2019_04_010
crossref_primary_10_1111_padr_12671
crossref_primary_10_1038_s43016_022_00587_8
crossref_primary_10_1016_j_seps_2021_101195
crossref_primary_10_1038_s41598_022_24474_1
crossref_primary_10_1111_agec_70013
crossref_primary_10_1016_S1045_2354_19_30023_1
crossref_primary_10_1038_s41467_023_42122_8
crossref_primary_10_1002_aepp_13221
crossref_primary_10_1016_j_physrep_2021_10_005
crossref_primary_10_3390_s19092156
crossref_primary_10_1038_tp_2017_1
crossref_primary_10_1007_s00521_023_08304_7
crossref_primary_10_1371_journal_pone_0184616
crossref_primary_10_1126_science_aal4321
crossref_primary_10_3390_su151813493
crossref_primary_10_1111_rsp3_12415
crossref_primary_10_1038_d41586_018_06215_5
crossref_primary_10_1155_2017_7653706
crossref_primary_10_1038_s41467_020_16185_w
crossref_primary_10_3390_ijgi7070259
crossref_primary_10_1186_s12966_021_01238_0
crossref_primary_10_1371_journal_pone_0244317
crossref_primary_10_1080_1369118X_2019_1594334
crossref_primary_10_1088_2632_072X_ac2072
crossref_primary_10_1007_s10109_022_00388_4
crossref_primary_10_1093_erae_jbz033
crossref_primary_10_1002_aepp_13214
crossref_primary_10_1016_j_cose_2022_102942
crossref_primary_10_1016_j_tele_2021_101622
crossref_primary_10_1038_nature23018
crossref_primary_10_2139_ssrn_5374618
crossref_primary_10_1016_j_jdeveco_2025_103462
crossref_primary_10_1146_annurev_economics_080218_030333
crossref_primary_10_1140_epjds_s13688_018_0151_y
crossref_primary_10_1080_13658816_2018_1434888
crossref_primary_10_1088_1748_9326_aafa8f
crossref_primary_10_1093_jssam_smab033
crossref_primary_10_1016_j_rsase_2024_101304
crossref_primary_10_1162_rest_a_01085
crossref_primary_10_1109_ACCESS_2023_3321831
crossref_primary_10_3390_su11030809
crossref_primary_10_1007_s11943_016_0190_4
crossref_primary_10_1093_wber_lhae044
crossref_primary_10_1017_dap_2024_83
crossref_primary_10_1016_j_ject_2025_05_002
crossref_primary_10_1108_AAAJ_02_2022_5666
crossref_primary_10_1016_j_jdeveco_2025_103555
crossref_primary_10_1038_s41598_025_17218_4
crossref_primary_10_1073_pnas_1903064116
crossref_primary_10_1007_s13524_018_0715_2
crossref_primary_10_1038_s41598_025_16663_5
crossref_primary_10_1038_s41467_021_27714_6
crossref_primary_10_3390_info12110468
crossref_primary_10_1007_s43546_022_00328_w
crossref_primary_10_1007_s11442_021_1890_4
crossref_primary_10_1016_j_compenvurbsys_2019_101368
crossref_primary_10_1093_oxrep_grz015
crossref_primary_10_1016_j_tele_2019_01_001
crossref_primary_10_1007_s40847_022_00194_0
crossref_primary_10_1515_teb_2025_0001
crossref_primary_10_1257_pandp_20251118
crossref_primary_10_3233_JCM_230023
crossref_primary_10_1007_s10708_024_11122_6
crossref_primary_10_1016_j_spasta_2020_100461
crossref_primary_10_1287_mnsc_2022_4436
crossref_primary_10_1038_s41586_022_04484_9
crossref_primary_10_1016_j_physa_2017_11_084
crossref_primary_10_1177_00811750221125799
crossref_primary_10_3390_rs15020381
crossref_primary_10_1126_science_aaf7894
crossref_primary_10_1007_s00181_022_02199_4
crossref_primary_10_1016_j_jrurstud_2019_01_008
crossref_primary_10_1038_s41598_021_85185_7
crossref_primary_10_1111_obes_12491
crossref_primary_10_1016_j_scs_2024_105670
crossref_primary_10_1038_s41598_020_77091_1
crossref_primary_10_2196_12171
crossref_primary_10_1111_tgis_12860
crossref_primary_10_1016_j_worlddev_2024_106702
crossref_primary_10_1007_s11442_020_1725_8
crossref_primary_10_1007_s43621_022_00109_3
crossref_primary_10_1038_s41467_022_30099_9
crossref_primary_10_1038_s41586_025_09321_3
crossref_primary_10_1371_journal_pone_0318482
crossref_primary_10_1016_j_physrep_2018_05_002
crossref_primary_10_1016_j_physrep_2019_05_002
crossref_primary_10_1038_s41597_020_00792_9
crossref_primary_10_3390_e22121421
crossref_primary_10_1016_j_jdeveco_2020_102559
crossref_primary_10_1016_j_spasta_2022_100631
crossref_primary_10_1038_s41598_024_52752_7
crossref_primary_10_1007_s41060_020_00224_2
crossref_primary_10_1016_j_cosust_2017_02_010
crossref_primary_10_1111_dpr_12477
crossref_primary_10_1177_0308518X16651445
crossref_primary_10_1177_26349825231224029
crossref_primary_10_1016_j_techfore_2022_122016
crossref_primary_10_1016_j_jdeveco_2024_103377
crossref_primary_10_1002_pra2_2018_14505501015
crossref_primary_10_1016_j_foodpol_2019_03_001
crossref_primary_10_1111_tgis_13189
crossref_primary_10_3390_socsci12050296
crossref_primary_10_1111_roiw_12438
crossref_primary_10_1007_s11205_022_02883_z
crossref_primary_10_1140_epjds_s13688_020_00245_8
crossref_primary_10_1016_j_worlddev_2021_105422
crossref_primary_10_1073_pnas_2005241118
crossref_primary_10_3390_a16060271
crossref_primary_10_1038_mp_2016_224
crossref_primary_10_1177_0094306119853802a
crossref_primary_10_1371_journal_pone_0219058
crossref_primary_10_2196_16309
crossref_primary_10_1073_pnas_1815928115
crossref_primary_10_3390_e22030368
crossref_primary_10_1038_d41586_025_00565_7
crossref_primary_10_3390_ijgi10050328
crossref_primary_10_1109_ACCESS_2022_3161574
crossref_primary_10_1016_j_jdeveco_2021_102704
crossref_primary_10_1088_1748_9326_ab443e
crossref_primary_10_1007_s10660_020_09424_1
crossref_primary_10_1111_dech_12857
crossref_primary_10_1007_s11356_022_23839_3
crossref_primary_10_1016_j_jag_2021_102466
crossref_primary_10_1016_j_jdeveco_2020_102564
crossref_primary_10_1080_1369118X_2018_1563206
crossref_primary_10_1016_j_ins_2016_10_048
crossref_primary_10_1016_j_jretconser_2024_104194
crossref_primary_10_25300_MISQ_2023_17330
crossref_primary_10_1080_13504509_2022_2032461
crossref_primary_10_1073_pnas_1700319114
crossref_primary_10_1140_epjds_s13688_021_00294_7
crossref_primary_10_1145_3447739
crossref_primary_10_1007_s11135_020_01037_y
crossref_primary_10_1140_epjds_s13688_020_00235_w
crossref_primary_10_1109_JSTARS_2020_2968468
crossref_primary_10_1111_jpim_12406
crossref_primary_10_2308_TAR_2024_0046
crossref_primary_10_1007_s11442_022_2054_x
crossref_primary_10_1016_j_worlddev_2022_105838
crossref_primary_10_1016_j_scs_2020_102014
crossref_primary_10_1257_jel_20241646
crossref_primary_10_1080_01972243_2024_2382802
crossref_primary_10_1016_j_isprsjprs_2025_01_038
crossref_primary_10_1016_j_jdeveco_2024_103352
crossref_primary_10_1080_02681102_2020_1811945
crossref_primary_10_1016_j_cities_2020_102625
crossref_primary_10_1016_j_trc_2016_04_005
crossref_primary_10_1177_0022002720939304
crossref_primary_10_4054_DemRes_2020_43_27
crossref_primary_10_1007_s40304_019_00177_4
crossref_primary_10_1016_j_cities_2020_102984
crossref_primary_10_1109_ACCESS_2019_2933247
crossref_primary_10_1257_aer_20200187
crossref_primary_10_1186_s40537_022_00681_5
crossref_primary_10_1257_jep_31_2_87
crossref_primary_10_3390_e23060780
crossref_primary_10_1007_s13194_022_00484_8
crossref_primary_10_1073_pnas_2120025119
crossref_primary_10_1109_JSTARS_2019_2915646
crossref_primary_10_1002_aepp_13515
crossref_primary_10_1155_2021_5574093
crossref_primary_10_1002_isd2_12063
crossref_primary_10_1017_dap_2024_49
crossref_primary_10_1038_d41586_020_01747_1
crossref_primary_10_1145_3675160
crossref_primary_10_1371_journal_pone_0241981
crossref_primary_10_1080_17538947_2024_2353160
crossref_primary_10_1177_14614448221146174
crossref_primary_10_3390_rs9080802
crossref_primary_10_3390_buildings12060757
crossref_primary_10_4018_IJSSTA_319720
crossref_primary_10_1016_j_envdev_2024_100966
crossref_primary_10_1016_j_iref_2019_07_002
crossref_primary_10_1016_j_worlddev_2019_06_008
crossref_primary_10_1257_aer_20221650
crossref_primary_10_1016_j_techsoc_2020_101516
crossref_primary_10_1080_15230406_2018_1524314
crossref_primary_10_1140_epjds_s13688_018_0152_x
crossref_primary_10_1016_j_geosus_2020_03_006
crossref_primary_10_1145_3134730
crossref_primary_10_1371_journal_pone_0240407
crossref_primary_10_1038_s41586_025_09465_2
crossref_primary_10_1002_cjas_1755
crossref_primary_10_1126_science_aah5309
crossref_primary_10_1098_rsif_2016_0690
crossref_primary_10_1007_s10823_016_9291_3
ContentType Journal Article
Copyright Copyright © 2015, American Association for the Advancement of Science.
Copyright_xml – notice: Copyright © 2015, American Association for the Advancement of Science.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1126/science.aac4420
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 26612950
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CGR
CS3
CUY
CVF
DB2
DCCCD
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7X8
ID FETCH-LOGICAL-c487t-6674187c6dd39422967b9581d9eedc426b2bcb62d917281a50eb030e9c69cf802
IEDL.DBID 7X8
ISICitedReferencesCount 412
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366422600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1095-9203
IngestDate Sun Sep 28 01:23:35 EDT 2025
Mon Jul 21 06:00:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6264
Language English
License Copyright © 2015, American Association for the Advancement of Science.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-6674187c6dd39422967b9581d9eedc426b2bcb62d917281a50eb030e9c69cf802
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://escholarship.org/uc/item/3k9724q8
PMID 26612950
PQID 1737476303
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1737476303
pubmed_primary_26612950
PublicationCentury 2000
PublicationDate 2015-Nov-27
20151127
PublicationDateYYYYMMDD 2015-11-27
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-Nov-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2015
SSID ssj0009593
Score 2.6566973
Snippet Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1073
SubjectTerms Cell Phone - statistics & numerical data
Censuses
Developing Countries - statistics & numerical data
Family Characteristics
Humans
Poverty - statistics & numerical data
Rwanda
Social Class
Title Predicting poverty and wealth from mobile phone metadata
URI https://www.ncbi.nlm.nih.gov/pubmed/26612950
https://www.proquest.com/docview/1737476303
Volume 350
WOSCitedRecordID wos000366422600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnhRd32tLyJ40EM0TdO0OYmIixeXPSjsreRV8GB33VZl_72TNosiCIKX3krLZDLzJfPNfAidRVwzVlhHVOwE4XHmiDSWkwIcWkK6NLGmjdhEOhxm47EchQu3KtAqFzGxCdR2Yvwd-VWUxoB8BUTc6-kr8apRvroaJDSWUScGKOO9Oh1nP4fuRtTrETIah9E-35pmLpUynDP6O75s8sxg879_uIU2AsLEN61LdNGSK3tordWcnPdQN-zmCp-HkdMX2ygbzXzBxlOg8dSTOus5VqXFHw07DPseFPwy0RBBsOeyO_ziauXJpTvoaXD3eHtPgqYCMXA0qYkQflxNaoS1seSMSZFqmQBolZAsDaRrzbTRglnphasilVCnIQ44aYQ0RUbZLlop4Tv7CCvAJs661BhuYZG5FgU1hbXUcBPJRPXR6cJOOfisL0So0k3eqvzLUn201xo7n7bDNXIPGJhM6MEf3j5E64BfEt8ayNIj1Clgx7pjtGre6-dqdtI4AzyHo4dPkbC-1Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+poverty+and+wealth+from+mobile+phone+metadata&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Blumenstock%2C+Joshua&rft.au=Cadamuro%2C+Gabriel&rft.au=On%2C+Robert&rft.date=2015-11-27&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=350&rft.issue=6264&rft.spage=1073&rft_id=info:doi/10.1126%2Fscience.aac4420&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon