Predicting poverty and wealth from mobile phone metadata
Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show...
Uloženo v:
| Vydáno v: | Science (American Association for the Advancement of Science) Ročník 350; číslo 6264; s. 1073 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
27.11.2015
|
| Témata: | |
| ISSN: | 1095-9203, 1095-9203 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods. |
|---|---|
| AbstractList | Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods. Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods.Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer sources of big data exist. We show that an individual's past history of mobile phone use can be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the predicted attributes of millions of individuals can, in turn, accurately reconstruct the distribution of wealth of an entire nation or to infer the asset distribution of microregions composed of just a few households. In resource-constrained environments where censuses and household surveys are rare, this approach creates an option for gathering localized and timely information at a fraction of the cost of traditional methods. |
| Author | Cadamuro, Gabriel Blumenstock, Joshua On, Robert |
| Author_xml | – sequence: 1 givenname: Joshua surname: Blumenstock fullname: Blumenstock, Joshua email: joshblum@uw.edu organization: Information School, University of Washington, Seattle, WA 98195, USA. joshblum@uw.edu – sequence: 2 givenname: Gabriel surname: Cadamuro fullname: Cadamuro, Gabriel organization: Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA – sequence: 3 givenname: Robert surname: On fullname: On, Robert organization: School of Information, University of California, Berkeley, Berkeley, CA 94720, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26612950$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tLxDAYxIOsuA89e5McvXRNvqRJc5TFFyzoQc8lj69upS-bVNn_3gVX8DQz8GOGWZJZ13dIyCVna85B3URfY-dxba2XEtgJWXBm8swAE7N_fk6WMX4wdshGnJE5KMXB5GxBipcRQ-1T3b3Tof_CMe2p7QL9RtukHa3GvqVt7-oG6bA7bNMWkw022XNyWtkm4sVRV-Tt_u5185htnx-eNrfbzMtCp0wpLXmhvQpBGAlglHYmL3gwiMFLUA6cdwqC4RoKbnOGjgmGxivjq4LBilz_9g5j_zlhTGVbR49NYzvsp1hyLbTUSjBxQK-O6ORaDOUw1q0d9-XfW_gB5dRYwQ |
| CitedBy_id | crossref_primary_10_15201_hungeobull_70_2_3 crossref_primary_10_1111_obes_12678 crossref_primary_10_1016_j_cobeha_2017_07_001 crossref_primary_10_1038_s41598_022_10273_1 crossref_primary_10_1016_j_fss_2025_109511 crossref_primary_10_1016_j_chieco_2024_102147 crossref_primary_10_1016_j_jag_2022_102709 crossref_primary_10_1080_01559982_2023_2295161 crossref_primary_10_1177_10780874221124610 crossref_primary_10_1016_j_ins_2016_10_012 crossref_primary_10_3390_rs15245770 crossref_primary_10_1016_j_trpro_2023_12_073 crossref_primary_10_1111_insr_12253 crossref_primary_10_1080_03066150_2019_1658080 crossref_primary_10_1007_s13278_018_0486_1 crossref_primary_10_1016_j_jenvman_2020_110238 crossref_primary_10_1017_dap_2020_4 crossref_primary_10_3389_fhumd_2025_1540827 crossref_primary_10_1080_02681102_2019_1650244 crossref_primary_10_1051_e3sconf_202125703032 crossref_primary_10_1093_jrsssc_qlaf043 crossref_primary_10_1002_aepp_13175 crossref_primary_10_3390_app15063090 crossref_primary_10_3390_ijgi9060345 crossref_primary_10_3390_ijgi12120501 crossref_primary_10_1111_imig_12984 crossref_primary_10_1016_j_cities_2025_105703 crossref_primary_10_1080_26939169_2022_2089411 crossref_primary_10_1140_epjds_s13688_020_00255_6 crossref_primary_10_3390_rs13163160 crossref_primary_10_1038_s41597_024_03329_6 crossref_primary_10_1371_journal_pone_0198502 crossref_primary_10_3233_SJI_230033 crossref_primary_10_1371_journal_pone_0201458 crossref_primary_10_1016_j_rsase_2024_101388 crossref_primary_10_1089_big_2022_0182 crossref_primary_10_1126_science_aah5217 crossref_primary_10_1073_pnas_2020258118 crossref_primary_10_1371_journal_pone_0241791 crossref_primary_10_1016_j_jdeveco_2023_103199 crossref_primary_10_1145_3130983 crossref_primary_10_1145_3432229 crossref_primary_10_1002_cl2_1149 crossref_primary_10_2196_13421 crossref_primary_10_3390_rs13204022 crossref_primary_10_3390_w12020483 crossref_primary_10_1016_j_trd_2020_102260 crossref_primary_10_1073_pnas_2113658119 crossref_primary_10_3390_su11143934 crossref_primary_10_3390_bdcc5030028 crossref_primary_10_1073_pnas_1700035114 crossref_primary_10_1093_wbro_lky001 crossref_primary_10_1146_annurev_soc_073117_041106 crossref_primary_10_1057_s41304_022_00396_4 crossref_primary_10_1177_13563890251357650 crossref_primary_10_1007_s00521_018_03967_z crossref_primary_10_1038_s41467_025_58026_8 crossref_primary_10_1016_j_jocs_2019_02_002 crossref_primary_10_1038_s41598_019_41192_3 crossref_primary_10_1038_s41746_025_01757_1 crossref_primary_10_1093_jeea_jvac025 crossref_primary_10_3233_SJI_200711 crossref_primary_10_1057_s41599_021_00848_0 crossref_primary_10_1007_s11071_018_4649_4 crossref_primary_10_1073_pnas_2100664118 crossref_primary_10_1038_s41598_020_70808_2 crossref_primary_10_2139_ssrn_5410642 crossref_primary_10_1007_s41060_019_00195_z crossref_primary_10_3390_info10120397 crossref_primary_10_1145_3534581 crossref_primary_10_1109_ACCESS_2020_2976881 crossref_primary_10_1080_10095020_2023_2250388 crossref_primary_10_1111_rssa_12315 crossref_primary_10_3390_su14169815 crossref_primary_10_1007_s10489_021_02264_y crossref_primary_10_1016_j_apgeog_2025_103541 crossref_primary_10_1038_s41467_018_05690_8 crossref_primary_10_1017_als_2020_34 crossref_primary_10_1098_rsos_201898 crossref_primary_10_1016_j_jue_2025_103797 crossref_primary_10_1016_j_knosys_2016_11_008 crossref_primary_10_1016_j_techfore_2018_06_044 crossref_primary_10_1016_j_apgeog_2024_103260 crossref_primary_10_3390_su14052497 crossref_primary_10_1140_epjds_s13688_017_0125_5 crossref_primary_10_1016_j_foodpol_2021_102153 crossref_primary_10_1016_j_jdeveco_2022_103016 crossref_primary_10_1002_asi_24114 crossref_primary_10_1146_annurev_economics_063016_103638 crossref_primary_10_1287_isre_2023_0305 crossref_primary_10_3389_fdata_2022_1006352 crossref_primary_10_1007_s41324_024_00584_y crossref_primary_10_1016_j_scs_2025_106799 crossref_primary_10_1016_j_worlddev_2018_03_007 crossref_primary_10_1057_s41599_021_00953_0 crossref_primary_10_1140_epjds_s13688_017_0099_3 crossref_primary_10_1007_s11151_025_10015_3 crossref_primary_10_1017_dap_2021_2 crossref_primary_10_1111_rssa_12305 crossref_primary_10_1016_j_compenvurbsys_2024_102158 crossref_primary_10_1007_s11187_019_00208_y crossref_primary_10_1080_13658816_2017_1287369 crossref_primary_10_1038_s41893_022_00874_z crossref_primary_10_1177_2399808320938803 crossref_primary_10_1016_j_seps_2020_100905 crossref_primary_10_4000_netcom_2556 crossref_primary_10_1007_s42001_020_00073_w crossref_primary_10_1016_j_envdev_2025_101141 crossref_primary_10_1055_a_2376_6332 crossref_primary_10_1080_08898480_2017_1418113 crossref_primary_10_1016_j_compenvurbsys_2018_04_001 crossref_primary_10_1109_TEM_2020_2974761 crossref_primary_10_1016_j_jag_2022_102694 crossref_primary_10_1007_s42001_023_00205_y crossref_primary_10_3390_ijgi11010050 crossref_primary_10_1371_journal_pone_0210050 crossref_primary_10_3389_fpsyg_2023_1249185 crossref_primary_10_1016_j_jdeveco_2025_103477 crossref_primary_10_1016_j_ufug_2022_127709 crossref_primary_10_1080_19439342_2018_1530279 crossref_primary_10_1016_j_jdeveco_2022_103033 crossref_primary_10_3389_frsus_2022_908822 crossref_primary_10_1080_2150704X_2021_1987575 crossref_primary_10_1109_ACCESS_2022_3215732 crossref_primary_10_1155_2019_2834894 crossref_primary_10_1209_0295_5075_125_68002 crossref_primary_10_3390_urbansci7010015 crossref_primary_10_1002_jid_3751 crossref_primary_10_1155_2019_4053970 crossref_primary_10_1080_07352166_2022_2078723 crossref_primary_10_1108_QRAM_03_2022_0042 crossref_primary_10_1093_wber_lhz008 crossref_primary_10_1093_wber_lhz006 crossref_primary_10_1017_dap_2021_7 crossref_primary_10_1038_s41598_025_11087_7 crossref_primary_10_1111_gec3_12663 crossref_primary_10_3390_su11071943 crossref_primary_10_1016_j_apgeog_2023_103179 crossref_primary_10_17208_jkpa_2021_02_56_1_177 crossref_primary_10_33003_fjs_2024_0803_2524 crossref_primary_10_1073_pnas_2316730121 crossref_primary_10_1016_j_jmse_2024_01_003 crossref_primary_10_1080_16549716_2021_1974676 crossref_primary_10_23736_S0022_4707_19_09601_4 crossref_primary_10_4000_poldev_2468 crossref_primary_10_1371_journal_pone_0235224 crossref_primary_10_2139_ssrn_4992873 crossref_primary_10_1080_24694452_2020_1773232 crossref_primary_10_1007_s11205_016_1495_y crossref_primary_10_1088_2632_072X_ac60b1 crossref_primary_10_3390_su11226312 crossref_primary_10_1007_s13278_020_00690_3 crossref_primary_10_1016_j_worlddev_2019_04_010 crossref_primary_10_1111_padr_12671 crossref_primary_10_1038_s43016_022_00587_8 crossref_primary_10_1016_j_seps_2021_101195 crossref_primary_10_1038_s41598_022_24474_1 crossref_primary_10_1111_agec_70013 crossref_primary_10_1016_S1045_2354_19_30023_1 crossref_primary_10_1038_s41467_023_42122_8 crossref_primary_10_1002_aepp_13221 crossref_primary_10_1016_j_physrep_2021_10_005 crossref_primary_10_3390_s19092156 crossref_primary_10_1038_tp_2017_1 crossref_primary_10_1007_s00521_023_08304_7 crossref_primary_10_1371_journal_pone_0184616 crossref_primary_10_1126_science_aal4321 crossref_primary_10_3390_su151813493 crossref_primary_10_1111_rsp3_12415 crossref_primary_10_1038_d41586_018_06215_5 crossref_primary_10_1155_2017_7653706 crossref_primary_10_1038_s41467_020_16185_w crossref_primary_10_3390_ijgi7070259 crossref_primary_10_1186_s12966_021_01238_0 crossref_primary_10_1371_journal_pone_0244317 crossref_primary_10_1080_1369118X_2019_1594334 crossref_primary_10_1088_2632_072X_ac2072 crossref_primary_10_1007_s10109_022_00388_4 crossref_primary_10_1093_erae_jbz033 crossref_primary_10_1002_aepp_13214 crossref_primary_10_1016_j_cose_2022_102942 crossref_primary_10_1016_j_tele_2021_101622 crossref_primary_10_1038_nature23018 crossref_primary_10_2139_ssrn_5374618 crossref_primary_10_1016_j_jdeveco_2025_103462 crossref_primary_10_1146_annurev_economics_080218_030333 crossref_primary_10_1140_epjds_s13688_018_0151_y crossref_primary_10_1080_13658816_2018_1434888 crossref_primary_10_1088_1748_9326_aafa8f crossref_primary_10_1093_jssam_smab033 crossref_primary_10_1016_j_rsase_2024_101304 crossref_primary_10_1162_rest_a_01085 crossref_primary_10_1109_ACCESS_2023_3321831 crossref_primary_10_3390_su11030809 crossref_primary_10_1007_s11943_016_0190_4 crossref_primary_10_1093_wber_lhae044 crossref_primary_10_1017_dap_2024_83 crossref_primary_10_1016_j_ject_2025_05_002 crossref_primary_10_1108_AAAJ_02_2022_5666 crossref_primary_10_1016_j_jdeveco_2025_103555 crossref_primary_10_1038_s41598_025_17218_4 crossref_primary_10_1073_pnas_1903064116 crossref_primary_10_1007_s13524_018_0715_2 crossref_primary_10_1038_s41598_025_16663_5 crossref_primary_10_1038_s41467_021_27714_6 crossref_primary_10_3390_info12110468 crossref_primary_10_1007_s43546_022_00328_w crossref_primary_10_1007_s11442_021_1890_4 crossref_primary_10_1016_j_compenvurbsys_2019_101368 crossref_primary_10_1093_oxrep_grz015 crossref_primary_10_1016_j_tele_2019_01_001 crossref_primary_10_1007_s40847_022_00194_0 crossref_primary_10_1515_teb_2025_0001 crossref_primary_10_1257_pandp_20251118 crossref_primary_10_3233_JCM_230023 crossref_primary_10_1007_s10708_024_11122_6 crossref_primary_10_1016_j_spasta_2020_100461 crossref_primary_10_1287_mnsc_2022_4436 crossref_primary_10_1038_s41586_022_04484_9 crossref_primary_10_1016_j_physa_2017_11_084 crossref_primary_10_1177_00811750221125799 crossref_primary_10_3390_rs15020381 crossref_primary_10_1126_science_aaf7894 crossref_primary_10_1007_s00181_022_02199_4 crossref_primary_10_1016_j_jrurstud_2019_01_008 crossref_primary_10_1038_s41598_021_85185_7 crossref_primary_10_1111_obes_12491 crossref_primary_10_1016_j_scs_2024_105670 crossref_primary_10_1038_s41598_020_77091_1 crossref_primary_10_2196_12171 crossref_primary_10_1111_tgis_12860 crossref_primary_10_1016_j_worlddev_2024_106702 crossref_primary_10_1007_s11442_020_1725_8 crossref_primary_10_1007_s43621_022_00109_3 crossref_primary_10_1038_s41467_022_30099_9 crossref_primary_10_1038_s41586_025_09321_3 crossref_primary_10_1371_journal_pone_0318482 crossref_primary_10_1016_j_physrep_2018_05_002 crossref_primary_10_1016_j_physrep_2019_05_002 crossref_primary_10_1038_s41597_020_00792_9 crossref_primary_10_3390_e22121421 crossref_primary_10_1016_j_jdeveco_2020_102559 crossref_primary_10_1016_j_spasta_2022_100631 crossref_primary_10_1038_s41598_024_52752_7 crossref_primary_10_1007_s41060_020_00224_2 crossref_primary_10_1016_j_cosust_2017_02_010 crossref_primary_10_1111_dpr_12477 crossref_primary_10_1177_0308518X16651445 crossref_primary_10_1177_26349825231224029 crossref_primary_10_1016_j_techfore_2022_122016 crossref_primary_10_1016_j_jdeveco_2024_103377 crossref_primary_10_1002_pra2_2018_14505501015 crossref_primary_10_1016_j_foodpol_2019_03_001 crossref_primary_10_1111_tgis_13189 crossref_primary_10_3390_socsci12050296 crossref_primary_10_1111_roiw_12438 crossref_primary_10_1007_s11205_022_02883_z crossref_primary_10_1140_epjds_s13688_020_00245_8 crossref_primary_10_1016_j_worlddev_2021_105422 crossref_primary_10_1073_pnas_2005241118 crossref_primary_10_3390_a16060271 crossref_primary_10_1038_mp_2016_224 crossref_primary_10_1177_0094306119853802a crossref_primary_10_1371_journal_pone_0219058 crossref_primary_10_2196_16309 crossref_primary_10_1073_pnas_1815928115 crossref_primary_10_3390_e22030368 crossref_primary_10_1038_d41586_025_00565_7 crossref_primary_10_3390_ijgi10050328 crossref_primary_10_1109_ACCESS_2022_3161574 crossref_primary_10_1016_j_jdeveco_2021_102704 crossref_primary_10_1088_1748_9326_ab443e crossref_primary_10_1007_s10660_020_09424_1 crossref_primary_10_1111_dech_12857 crossref_primary_10_1007_s11356_022_23839_3 crossref_primary_10_1016_j_jag_2021_102466 crossref_primary_10_1016_j_jdeveco_2020_102564 crossref_primary_10_1080_1369118X_2018_1563206 crossref_primary_10_1016_j_ins_2016_10_048 crossref_primary_10_1016_j_jretconser_2024_104194 crossref_primary_10_25300_MISQ_2023_17330 crossref_primary_10_1080_13504509_2022_2032461 crossref_primary_10_1073_pnas_1700319114 crossref_primary_10_1140_epjds_s13688_021_00294_7 crossref_primary_10_1145_3447739 crossref_primary_10_1007_s11135_020_01037_y crossref_primary_10_1140_epjds_s13688_020_00235_w crossref_primary_10_1109_JSTARS_2020_2968468 crossref_primary_10_1111_jpim_12406 crossref_primary_10_2308_TAR_2024_0046 crossref_primary_10_1007_s11442_022_2054_x crossref_primary_10_1016_j_worlddev_2022_105838 crossref_primary_10_1016_j_scs_2020_102014 crossref_primary_10_1257_jel_20241646 crossref_primary_10_1080_01972243_2024_2382802 crossref_primary_10_1016_j_isprsjprs_2025_01_038 crossref_primary_10_1016_j_jdeveco_2024_103352 crossref_primary_10_1080_02681102_2020_1811945 crossref_primary_10_1016_j_cities_2020_102625 crossref_primary_10_1016_j_trc_2016_04_005 crossref_primary_10_1177_0022002720939304 crossref_primary_10_4054_DemRes_2020_43_27 crossref_primary_10_1007_s40304_019_00177_4 crossref_primary_10_1016_j_cities_2020_102984 crossref_primary_10_1109_ACCESS_2019_2933247 crossref_primary_10_1257_aer_20200187 crossref_primary_10_1186_s40537_022_00681_5 crossref_primary_10_1257_jep_31_2_87 crossref_primary_10_3390_e23060780 crossref_primary_10_1007_s13194_022_00484_8 crossref_primary_10_1073_pnas_2120025119 crossref_primary_10_1109_JSTARS_2019_2915646 crossref_primary_10_1002_aepp_13515 crossref_primary_10_1155_2021_5574093 crossref_primary_10_1002_isd2_12063 crossref_primary_10_1017_dap_2024_49 crossref_primary_10_1038_d41586_020_01747_1 crossref_primary_10_1145_3675160 crossref_primary_10_1371_journal_pone_0241981 crossref_primary_10_1080_17538947_2024_2353160 crossref_primary_10_1177_14614448221146174 crossref_primary_10_3390_rs9080802 crossref_primary_10_3390_buildings12060757 crossref_primary_10_4018_IJSSTA_319720 crossref_primary_10_1016_j_envdev_2024_100966 crossref_primary_10_1016_j_iref_2019_07_002 crossref_primary_10_1016_j_worlddev_2019_06_008 crossref_primary_10_1257_aer_20221650 crossref_primary_10_1016_j_techsoc_2020_101516 crossref_primary_10_1080_15230406_2018_1524314 crossref_primary_10_1140_epjds_s13688_018_0152_x crossref_primary_10_1016_j_geosus_2020_03_006 crossref_primary_10_1145_3134730 crossref_primary_10_1371_journal_pone_0240407 crossref_primary_10_1038_s41586_025_09465_2 crossref_primary_10_1002_cjas_1755 crossref_primary_10_1126_science_aah5309 crossref_primary_10_1098_rsif_2016_0690 crossref_primary_10_1007_s10823_016_9291_3 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015, American Association for the Advancement of Science. |
| Copyright_xml | – notice: Copyright © 2015, American Association for the Advancement of Science. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1126/science.aac4420 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| EISSN | 1095-9203 |
| ExternalDocumentID | 26612950 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CGR CS3 CUY CVF DB2 DCCCD DU5 EBS ECM EIF EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB NPM O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7X8 |
| ID | FETCH-LOGICAL-c487t-6674187c6dd39422967b9581d9eedc426b2bcb62d917281a50eb030e9c69cf802 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 412 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366422600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1095-9203 |
| IngestDate | Sun Sep 28 01:23:35 EDT 2025 Mon Jul 21 06:00:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6264 |
| Language | English |
| License | Copyright © 2015, American Association for the Advancement of Science. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-6674187c6dd39422967b9581d9eedc426b2bcb62d917281a50eb030e9c69cf802 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://escholarship.org/uc/item/3k9724q8 |
| PMID | 26612950 |
| PQID | 1737476303 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1737476303 pubmed_primary_26612950 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Nov-27 20151127 |
| PublicationDateYYYYMMDD | 2015-11-27 |
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-Nov-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Science (American Association for the Advancement of Science) |
| PublicationTitleAlternate | Science |
| PublicationYear | 2015 |
| SSID | ssj0009593 |
| Score | 2.6566973 |
| Snippet | Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1073 |
| SubjectTerms | Cell Phone - statistics & numerical data Censuses Developing Countries - statistics & numerical data Family Characteristics Humans Poverty - statistics & numerical data Rwanda Social Class |
| Title | Predicting poverty and wealth from mobile phone metadata |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26612950 https://www.proquest.com/docview/1737476303 |
| Volume | 350 |
| WOSCitedRecordID | wos000366422600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnhRW1_1xQoe9BDdbJLd7ElELB609KDQW9ndbMBD09pEpf_emWSLIgiCl5wSEoZ5fJn95htCzkweaR5LBoGErZtE6kCnKgtCl6jYRJrlphZxfZD9fjocqoFvuJWeVrnIiXWiziYWe-RXoYwA-QrIuNfT1wC3RuHpql-hsUxaEUAZ9Go5TH-K7oYM9xFyFnlpn29DM5da2zjm7Hd8WdeZ3uZ_v3CLbHiESW8al2iTJVd0yFqzc3LeIW0fzSU995LTF9skHczwwAYp0HSKpM5qTnWR0Y-aHUZxBoWOJwYyCEUuu6NjV2kkl-6Q597d0-194HcqBBZ-TapACJSrkVZkWaRizpWQRiUAWhUUSwvl2nBjjeCZwsVVoU6YM5AHnLJC2TxlfJesFPCefUJVBtDR4ix9nkJVY1rolIca7o1s4kTWJacLO43AZ_EgQhdu8laOvizVJXuNsUfTRlxjhICBq4Qd_OHpQ7IO-CXB0UAuj0grh4h1x2TVvlcv5eykdga49gePn0RRvYs |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+poverty+and+wealth+from+mobile+phone+metadata&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Blumenstock%2C+Joshua&rft.au=Cadamuro%2C+Gabriel&rft.au=On%2C+Robert&rft.date=2015-11-27&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=350&rft.issue=6264&rft.spage=1073&rft_id=info:doi/10.1126%2Fscience.aac4420&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon |