Explainable machine learning model based on EEG, ECG, and clinical features for predicting neurological outcomes in cardiac arrest patient
Early and accurate prediction of neurological outcomes in comatose patients following cardiac arrest is critical for informed clinical decision-making. Existing studies have predominantly focused on EEG for assessing brain injury, with some exploring ECG data. However, the integration of EEG, ECG, a...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 11498 - 11 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
03.04.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!