A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity

Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these proper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:eLife Ročník 12
Hlavní autoři: Bravi, Barbara, Di Gioacchino, Andrea, Fernandez-de-Cossio-Diaz, Jorge, Walczak, Aleksandra M, Mora, Thierry, Cocco, Simona, Monasson, Rémi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge eLife Sciences Publications Ltd 08.09.2023
eLife Sciences Publication
eLife Sciences Publications, Ltd
Témata:
ISSN:2050-084X, 2050-084X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
These authors also contributed equally to this work.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.85126