Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos
Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which paternal-spec...
Saved in:
| Published in: | Developmental cell Vol. 15; no. 5; p. 668 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.11.2008
|
| Subjects: | |
| ISSN: | 1878-1551, 1878-1551 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which paternal-specific silencing depends on expression of the noncoding RNA Kcnq1ot1. We show that Kcnq1ot1 is expressed from the zygote stage onward and rapidly associates with chromatin marked by Polycomb group (PcG) proteins and repressive histone modifications, forming a discrete repressive nuclear compartment devoid of RNA polymerase II, a configuration also observed at the Igf2r imprinted cluster. In this compartment, the paternal Kcnq1 cluster exists in a three-dimensionally contracted state. In vivo the PcG proteins Ezh2 and Rnf2 are independently required for genomic contraction and imprinted silencing. We propose that the formation of a parental-specific higher-order chromatin organization renders imprint clusters competent for monoallelic silencing and assign a central role to PcG proteins in this process. |
|---|---|
| AbstractList | Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which paternal-specific silencing depends on expression of the noncoding RNA Kcnq1ot1. We show that Kcnq1ot1 is expressed from the zygote stage onward and rapidly associates with chromatin marked by Polycomb group (PcG) proteins and repressive histone modifications, forming a discrete repressive nuclear compartment devoid of RNA polymerase II, a configuration also observed at the Igf2r imprinted cluster. In this compartment, the paternal Kcnq1 cluster exists in a three-dimensionally contracted state. In vivo the PcG proteins Ezh2 and Rnf2 are independently required for genomic contraction and imprinted silencing. We propose that the formation of a parental-specific higher-order chromatin organization renders imprint clusters competent for monoallelic silencing and assign a central role to PcG proteins in this process. Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which paternal-specific silencing depends on expression of the noncoding RNA Kcnq1ot1. We show that Kcnq1ot1 is expressed from the zygote stage onward and rapidly associates with chromatin marked by Polycomb group (PcG) proteins and repressive histone modifications, forming a discrete repressive nuclear compartment devoid of RNA polymerase II, a configuration also observed at the Igf2r imprinted cluster. In this compartment, the paternal Kcnq1 cluster exists in a three-dimensionally contracted state. In vivo the PcG proteins Ezh2 and Rnf2 are independently required for genomic contraction and imprinted silencing. We propose that the formation of a parental-specific higher-order chromatin organization renders imprint clusters competent for monoallelic silencing and assign a central role to PcG proteins in this process.Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which paternal-specific silencing depends on expression of the noncoding RNA Kcnq1ot1. We show that Kcnq1ot1 is expressed from the zygote stage onward and rapidly associates with chromatin marked by Polycomb group (PcG) proteins and repressive histone modifications, forming a discrete repressive nuclear compartment devoid of RNA polymerase II, a configuration also observed at the Igf2r imprinted cluster. In this compartment, the paternal Kcnq1 cluster exists in a three-dimensionally contracted state. In vivo the PcG proteins Ezh2 and Rnf2 are independently required for genomic contraction and imprinted silencing. We propose that the formation of a parental-specific higher-order chromatin organization renders imprint clusters competent for monoallelic silencing and assign a central role to PcG proteins in this process. |
| Author | Otte, Arie P van Lohuizen, Maarten Stadler, Michael B Yokobayashi, Shihori Peters, Antoine H F M Orkin, Stuart H Terranova, Rémi |
| Author_xml | – sequence: 1 givenname: Rémi surname: Terranova fullname: Terranova, Rémi organization: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland – sequence: 2 givenname: Shihori surname: Yokobayashi fullname: Yokobayashi, Shihori – sequence: 3 givenname: Michael B surname: Stadler fullname: Stadler, Michael B – sequence: 4 givenname: Arie P surname: Otte fullname: Otte, Arie P – sequence: 5 givenname: Maarten surname: van Lohuizen fullname: van Lohuizen, Maarten – sequence: 6 givenname: Stuart H surname: Orkin fullname: Orkin, Stuart H – sequence: 7 givenname: Antoine H F M surname: Peters fullname: Peters, Antoine H F M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18848501$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkFtLxDAQhYOsuBf9ByJ58q01yTZN9lGW9QILiuhzSdPJmqVNatIK9dfb1RWEgRmYb4ZzzhxNnHeA0CUlKSU0v9mnFXxqqFNGiEwPRfkJmlEpZEI5p5N_8xTNY9yT8YxKcoamVMpMckJnqH329aB9U-Jd8H2L2-A7sC7izdc7w8pV-MUZhisbQHd4B843VmPtXReU7qx3P4xt2mBdBxUO0AaI8bCwDoMK9YAb30fA0JRh8PEcnRpVR7g49gV6u9u8rh-S7dP94_p2m-hMii7hlOlMM74E0MAZyUVlwChpTElXeqVAZ8IQqoVaclLKlZEVaFZmwGSZcy7ZAl3__h0dffQQu6KxcYyrVg5GPUW-ElJkmRjBqyPYlw1UxeikUWEo_jJi39h1b18 |
| CitedBy_id | crossref_primary_10_1016_j_biomed_2012_10_001 crossref_primary_10_1016_j_molcel_2025_02_014 crossref_primary_10_1083_jcb_201304152 crossref_primary_10_1186_s13578_015_0050_x crossref_primary_10_1007_s10577_013_9391_7 crossref_primary_10_1101_gad_318675_118 crossref_primary_10_1016_j_ceb_2016_09_006 crossref_primary_10_1182_blood_2010_05_267096 crossref_primary_10_1016_j_devcel_2010_09_002 crossref_primary_10_1016_j_tcb_2011_02_001 crossref_primary_10_1016_j_gde_2021_01_008 crossref_primary_10_1016_j_bbagen_2009_02_009 crossref_primary_10_1128_MCB_00961_10 crossref_primary_10_1016_j_rbmo_2012_01_012 crossref_primary_10_1016_j_ydbio_2009_09_023 crossref_primary_10_1016_j_semcdb_2011_02_020 crossref_primary_10_1038_nrc2736 crossref_primary_10_1186_1741_7007_11_59 crossref_primary_10_1111_acel_12870 crossref_primary_10_2217_epi_2016_0056 crossref_primary_10_1016_j_semcdb_2011_01_001 crossref_primary_10_7554_eLife_25125 crossref_primary_10_1101_gad_188094_112 crossref_primary_10_1093_nar_gku1324 crossref_primary_10_1016_j_mce_2018_02_008 crossref_primary_10_1016_j_gde_2010_01_009 crossref_primary_10_3109_10409238_2015_1064350 crossref_primary_10_1016_j_molcel_2019_05_028 crossref_primary_10_1186_1471_2148_11_102 crossref_primary_10_1371_journal_pone_0158936 crossref_primary_10_1007_s00335_009_9218_1 crossref_primary_10_1073_pnas_0914507107 crossref_primary_10_1534_genetics_115_185132 crossref_primary_10_1016_j_semcdb_2016_03_023 crossref_primary_10_1016_j_cell_2017_08_002 crossref_primary_10_1038_nrg3035 crossref_primary_10_1016_j_biocel_2015_04_004 crossref_primary_10_1371_journal_pone_0038983 crossref_primary_10_1038_s41576_021_00427_8 crossref_primary_10_1016_j_tig_2018_08_005 crossref_primary_10_3390_biom4010076 crossref_primary_10_1038_onc_2010_568 crossref_primary_10_1016_j_devcel_2014_08_009 crossref_primary_10_1371_journal_pgen_1003951 crossref_primary_10_1016_j_molcel_2010_02_032 crossref_primary_10_1038_jhg_2013_51 crossref_primary_10_1038_s41598_018_30649_6 crossref_primary_10_1016_j_ydbio_2015_04_010 crossref_primary_10_1261_rna_037598_112 crossref_primary_10_1101_gad_1841409 crossref_primary_10_1146_annurev_neuro_061010_113708 crossref_primary_10_1038_s41598_023_32747_6 crossref_primary_10_1155_2019_7159592 crossref_primary_10_1111_asj_13684 crossref_primary_10_1534_genetics_119_302661 crossref_primary_10_1093_hmg_ddq272 crossref_primary_10_1093_hmg_ddr488 crossref_primary_10_1007_s10577_013_9385_5 crossref_primary_10_1042_EBC20190034 crossref_primary_10_1002_ajmg_c_30267 crossref_primary_10_1371_journal_pone_0041374 crossref_primary_10_15252_embj_2019103697 crossref_primary_10_1038_nrm2763 crossref_primary_10_1155_2017_5135781 crossref_primary_10_1186_s13148_022_01369_6 crossref_primary_10_1210_er_2009_0039 crossref_primary_10_2217_epi_10_61 crossref_primary_10_3389_fimmu_2020_569524 crossref_primary_10_1017_S1462399410001717 crossref_primary_10_1038_ncomms13490 crossref_primary_10_1007_s00018_015_2086_9 crossref_primary_10_1139_O09_057 crossref_primary_10_1371_journal_pgen_1008268 crossref_primary_10_1002_bies_200900170 crossref_primary_10_1038_s41467_018_08072_2 crossref_primary_10_3389_fcell_2019_00336 crossref_primary_10_1016_j_bbagrm_2013_10_009 crossref_primary_10_1038_nsmb_2669 crossref_primary_10_1242_dev_031328 crossref_primary_10_1371_journal_pgen_1008709 crossref_primary_10_1016_j_pbi_2010_11_006 crossref_primary_10_1038_s41467_018_05208_2 crossref_primary_10_1155_2016_3152173 crossref_primary_10_1186_s13059_019_1833_x crossref_primary_10_1016_j_jmb_2014_09_013 crossref_primary_10_1002_wsbm_135 crossref_primary_10_1016_j_semcdb_2015_09_012 crossref_primary_10_1038_hdy_2010_23 crossref_primary_10_1371_journal_pgen_1008930 crossref_primary_10_1093_nar_gkae247 crossref_primary_10_1101_gad_350896_123 crossref_primary_10_1002_bies_201100084 crossref_primary_10_1073_pnas_0912087107 crossref_primary_10_1007_s00335_009_9225_2 crossref_primary_10_1016_j_mbs_2018_08_001 crossref_primary_10_1186_s13072_019_0253_1 crossref_primary_10_1007_s11427_013_4553_6 crossref_primary_10_1016_j_jmb_2011_03_001 crossref_primary_10_1038_s41580_023_00694_9 crossref_primary_10_1038_nrm3885 crossref_primary_10_1111_tpj_14502 crossref_primary_10_1002_wrna_5 crossref_primary_10_1093_carcin_bgz166 crossref_primary_10_4161_epi_24655 crossref_primary_10_1038_s41576_020_0245_9 crossref_primary_10_1146_annurev_genet_110711_155603 crossref_primary_10_1371_journal_pgen_1004039 crossref_primary_10_1186_1756_8935_3_2 crossref_primary_10_1016_j_tig_2012_03_013 crossref_primary_10_1016_j_virol_2010_12_007 crossref_primary_10_2217_epi_09_46 crossref_primary_10_1134_S1022795423040051 crossref_primary_10_1016_j_febslet_2011_04_062 crossref_primary_10_1016_j_tig_2022_12_003 crossref_primary_10_1093_humupd_dmq052 crossref_primary_10_1242_dev_048181 crossref_primary_10_3390_genes16030313 crossref_primary_10_1016_j_gde_2009_03_004 crossref_primary_10_1038_nature23262 crossref_primary_10_1016_j_tibs_2016_07_003 crossref_primary_10_7554_eLife_18591 crossref_primary_10_1002_ajmg_c_31363 crossref_primary_10_1016_j_cell_2009_02_017 crossref_primary_10_1242_jcs_054957 crossref_primary_10_1242_dev_127308 crossref_primary_10_1016_j_gene_2024_148590 crossref_primary_10_1038_nrg2904 crossref_primary_10_1101_gad_348422_121 crossref_primary_10_1016_j_diff_2010_07_003 crossref_primary_10_1534_g3_112_004226 crossref_primary_10_1371_journal_pgen_1000459 crossref_primary_10_1002_bies_080099 crossref_primary_10_1093_humupd_dmr047 crossref_primary_10_1038_emboj_2013_221 crossref_primary_10_1016_j_ceb_2013_02_012 crossref_primary_10_1016_j_cell_2009_02_006 crossref_primary_10_1242_dev_032060 crossref_primary_10_3389_fcell_2021_730014 crossref_primary_10_1016_j_devcel_2008_10_008 crossref_primary_10_1038_s41467_017_00668_4 crossref_primary_10_1073_pnas_1210371110 crossref_primary_10_1016_j_molcel_2008_11_004 crossref_primary_10_3109_19396368_2010_482726 crossref_primary_10_1042_BST20230336 crossref_primary_10_1093_molehr_gap098 crossref_primary_10_1016_j_ydbio_2011_02_017 crossref_primary_10_1038_s41586_022_04598_0 crossref_primary_10_1111_cpr_13032 crossref_primary_10_1007_s00335_009_9223_4 crossref_primary_10_3390_ijms241713647 crossref_primary_10_1371_journal_pgen_1001015 crossref_primary_10_1371_journal_pgen_1002465 crossref_primary_10_1007_s00441_017_2711_z crossref_primary_10_1038_gt_2011_26 crossref_primary_10_1038_embor_2009_136 crossref_primary_10_1016_j_cell_2013_02_016 crossref_primary_10_1016_j_cell_2024_10_024 crossref_primary_10_1042_BST20210758 crossref_primary_10_1002_mrd_22219 crossref_primary_10_1242_dev_057778 crossref_primary_10_1242_jcs_052555 crossref_primary_10_1016_j_tig_2011_02_002 crossref_primary_10_1016_j_tig_2019_12_004 crossref_primary_10_3389_fonc_2022_894585 crossref_primary_10_1128_MCB_01537_09 crossref_primary_10_1089_rej_2009_0957 crossref_primary_10_1016_j_gde_2012_02_005 crossref_primary_10_1002_wrna_1657 crossref_primary_10_1016_j_bbagrm_2013_12_002 crossref_primary_10_1016_j_ceb_2012_01_008 crossref_primary_10_1016_j_tig_2008_12_005 crossref_primary_10_1093_bib_bbw060 crossref_primary_10_1371_journal_pgen_1006375 crossref_primary_10_3389_fcell_2021_713878 crossref_primary_10_1016_j_gde_2020_02_023 crossref_primary_10_1007_s12265_013_9488_6 crossref_primary_10_1016_j_ceb_2010_03_003 crossref_primary_10_1038_ncomms6490 crossref_primary_10_1016_j_biochi_2011_07_028 crossref_primary_10_1371_journal_pgen_1001233 crossref_primary_10_1016_j_febslet_2011_05_001 crossref_primary_10_1016_j_stem_2011_07_007 crossref_primary_10_1016_j_tcb_2009_10_001 crossref_primary_10_1016_j_molcel_2024_01_026 crossref_primary_10_1111_cns_70136 crossref_primary_10_1016_j_devcel_2021_10_010 crossref_primary_10_1038_gene_2015_54 crossref_primary_10_1042_BST20230143 crossref_primary_10_2217_epi_14_51 crossref_primary_10_1161_CIRCRESAHA_116_303549 crossref_primary_10_7554_eLife_83364 crossref_primary_10_1242_dev_033902 crossref_primary_10_1016_j_tig_2011_06_008 crossref_primary_10_1007_s00018_013_1423_0 crossref_primary_10_1038_s41556_022_00933_9 crossref_primary_10_2217_epi_09_28 crossref_primary_10_1038_leu_2009_40 crossref_primary_10_1186_s12575_020_00122_8 crossref_primary_10_1371_journal_pgen_1004851 crossref_primary_10_1016_j_bbagrm_2015_05_006 crossref_primary_10_1242_dev_079566 crossref_primary_10_1186_1756_8935_2_8 crossref_primary_10_1093_nar_gkv960 crossref_primary_10_1002_wrna_1435 crossref_primary_10_3390_ijms12128661 crossref_primary_10_3389_fgene_2014_00164 crossref_primary_10_1007_s00412_009_0206_8 crossref_primary_10_1186_1471_213X_10_50 crossref_primary_10_1186_1756_8935_4_21 crossref_primary_10_1242_dev_030403 crossref_primary_10_3892_etm_2017_4807 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.devcel.2008.08.015 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1878-1551 |
| ExternalDocumentID | 18848501 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K 0R~ 1~5 29F 2WC 4.4 457 4G. 53G 5GY 5VS 62- 7-5 AAEDT AAEDW AAIKJ AAKRW AALRI AAMRU AAQFI AAQXK AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ABWVN ACGFO ACGFS ACNCT ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEFWE AENEX AETEA AEUPX AEXQZ AFFNX AFPUW AFTJW AGCQF AGHFR AGKMS AGQPQ AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF D0L DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FGOYB FIRID HVGLF HZ~ IHE IXB J1W JIG M3Z M41 NPM O-L O9- OK1 OZT P2P R2- RIG ROL RPZ SDG SES SSZ TR2 UHS 7X8 |
| ID | FETCH-LOGICAL-c487t-512c4c253eece52067dfefa8ffb19c9aec47f01c7a350b89f8dec2b4e28b65582 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 268 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260867000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1878-1551 |
| IngestDate | Sun Sep 28 02:48:00 EDT 2025 Mon Jul 21 06:06:10 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-512c4c253eece52067dfefa8ffb19c9aec47f01c7a350b89f8dec2b4e28b65582 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.devcel.2008.08.015 |
| PMID | 18848501 |
| PQID | 69787447 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_69787447 pubmed_primary_18848501 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-Nov |
| PublicationDateYYYYMMDD | 2008-11-01 |
| PublicationDate_xml | – month: 11 year: 2008 text: 2008-Nov |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Developmental cell |
| PublicationTitleAlternate | Dev Cell |
| PublicationYear | 2008 |
| References | 19000827 - Dev Cell. 2008 Nov;15(5):637-8 |
| References_xml | – reference: 19000827 - Dev Cell. 2008 Nov;15(5):637-8 |
| SSID | ssj0016180 |
| Score | 2.433965 |
| Snippet | Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 668 |
| SubjectTerms | Animals Cell Nucleus - genetics Cell Nucleus - metabolism Chromatin Assembly and Disassembly DNA-Binding Proteins - metabolism Embryo, Mammalian - metabolism Enhancer of Zeste Homolog 2 Protein Female Genomic Imprinting Histone-Lysine N-Methyltransferase - metabolism Male Mice Polycomb Repressive Complex 1 Polycomb Repressive Complex 2 Repressor Proteins - metabolism RNA, Long Noncoding RNA, Untranslated - metabolism Ubiquitin-Protein Ligases - metabolism |
| Title | Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/18848501 https://www.proquest.com/docview/69787447 |
| Volume | 15 |
| WOSCitedRecordID | wos000260867000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_TKXjx-2N-5uC12LRp-wqCiGx4cQxR2K20yQsWtnRuYzD_epO0xZN4EEpPbQnJ68vv5f3e-xFyy_OEI2DgyVj4nu2O4hUgwFOhiFUBATIundhEMhzCeJyOOuS-rYWxtMrWJzpHLSthz8jvYhPuJJwnD7NPz2pG2dxqI6CxQbqhATKW0JWMf3IIMXO6aQxsnGSAQVs459hdElcCJw2X0lws-h1iuq1msPe_Qe6T3QZi0sfaJg5IB_Uh2a5FJ9dHZDaqJmvzuYK6ig7qOjWUekH7Xx8BzbWkr1oFtN7rqO3hOi0FdZT2ugjCPVNO7Ymggat03nJpNS01RdswmdrzBKQ4LebranFM3gf9t6dnr9Fd8IQJX5aewQCCiyAKEQVGtr-7VKhyUKpgqUhzFDxRPhNJHkZ-AakCiSIoOAZQxFEEwQnZ1JXGM0JzkNy4DLP6THLwRQpM5VwakKIs_TTtkZt2IjNj1zZZkWs0Y8zaqeyR03otslndfiNjABwin53_-e4F2XH0Dlc6eEm6yvzReEW2xGpZLubXzlzMfTh6-Qb0d82R |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycomb+group+proteins+Ezh2+and+Rnf2+direct+genomic+contraction+and+imprinted+repression+in+early+mouse+embryos&rft.jtitle=Developmental+cell&rft.au=Terranova%2C+R%C3%A9mi&rft.au=Yokobayashi%2C+Shihori&rft.au=Stadler%2C+Michael+B&rft.au=Otte%2C+Arie+P&rft.date=2008-11-01&rft.eissn=1878-1551&rft.volume=15&rft.issue=5&rft.spage=668&rft_id=info:doi/10.1016%2Fj.devcel.2008.08.015&rft_id=info%3Apmid%2F18848501&rft_id=info%3Apmid%2F18848501&rft.externalDocID=18848501 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-1551&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-1551&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-1551&client=summon |