Solving Nonlinear Equality Constrained Multiobjective Optimization Problems Using Neural Networks
This paper develops a neural network architecture and a new processing method for solving in real time, the nonlinear equality constrained multiobjective optimization problem (NECMOP), where several nonlinear objective functions must be optimized in a conflicting situation. In this processing method...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 26; no. 10; pp. 2500 - 2520 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper develops a neural network architecture and a new processing method for solving in real time, the nonlinear equality constrained multiobjective optimization problem (NECMOP), where several nonlinear objective functions must be optimized in a conflicting situation. In this processing method, the NECMOP is converted to an equivalent scalar optimization problem (SOP). The SOP is then decomposed into several-separable subproblems processable in parallel and in a reasonable time by multiplexing switched capacitor circuits. The approach which we propose makes use of a decomposition-coordination principle that allows nonlinearity to be treated at a local level and where coordination is achieved through the use of Lagrange multipliers. The modularity and the regularity of the neural networks architecture herein proposed make it suitable for very large scale integration implementation. An application to the resolution of a physical problem is given to show that the approach used here possesses some advantages of the point of algorithmic view, and provides processes of resolution often simpler than the usual techniques. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2015.2388511 |