Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia

Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have be...

Full description

Saved in:
Bibliographic Details
Published in:Cancers Vol. 11; no. 1; p. 60
Main Authors: Elming, Pernille, Sørensen, Brita, Oei, Arlene, Franken, Nicolaas, Crezee, Johannes, Overgaard, Jens, Horsman, Michael
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 09.01.2019
MDPI
Subjects:
ISSN:2072-6694, 2072-6694
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39–45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
AbstractList Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39–45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Author Elming, Pernille
Oei, Arlene
Franken, Nicolaas
Sørensen, Brita
Crezee, Johannes
Overgaard, Jens
Horsman, Michael
AuthorAffiliation 1 Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; pernille.elming@oncology.au.dk (P.B.E.); bsin@oncology.au.dk (B.S.S.); jens@oncology.au.dk (J.O.)
2 Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; a.l.oei@amc.uva.nl (A.L.O.); n.a.franken@amc.uva.nl (N.A.P.F.); h.crezee@amc.uva.nl (J.C.)
AuthorAffiliation_xml – name: 2 Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; a.l.oei@amc.uva.nl (A.L.O.); n.a.franken@amc.uva.nl (N.A.P.F.); h.crezee@amc.uva.nl (J.C.)
– name: 1 Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; pernille.elming@oncology.au.dk (P.B.E.); bsin@oncology.au.dk (B.S.S.); jens@oncology.au.dk (J.O.)
Author_xml – sequence: 1
  givenname: Pernille
  surname: Elming
  fullname: Elming, Pernille
– sequence: 2
  givenname: Brita
  orcidid: 0000-0002-3955-4735
  surname: Sørensen
  fullname: Sørensen, Brita
– sequence: 3
  givenname: Arlene
  surname: Oei
  fullname: Oei, Arlene
– sequence: 4
  givenname: Nicolaas
  orcidid: 0000-0002-5522-9406
  surname: Franken
  fullname: Franken, Nicolaas
– sequence: 5
  givenname: Johannes
  orcidid: 0000-0002-7474-0533
  surname: Crezee
  fullname: Crezee, Johannes
– sequence: 6
  givenname: Jens
  orcidid: 0000-0002-0814-8179
  surname: Overgaard
  fullname: Overgaard, Jens
– sequence: 7
  givenname: Michael
  surname: Horsman
  fullname: Horsman, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30634444$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFLAzEQhYNUtFbP3mTBi5e1ySZNGg-CiFpRKEg9hzQ7a1N2NzVJi_57o62iBeeSwLz3-GbmAHVa1wJCxwSfUypx3-jWgA-EYIIxxzuoW2BR5JxL1vn130dHIcxxKkqJ4GIP7VPMKUvVRQ-j9wX4OAPfWH2RTWaQjRfRNrrOJh50bKCNWXTZeAXeuAayJ11aHa1rsycINkSd-inDvVl9iHYrXQc42rw99Hx7M7ke5Y_ju_vrq8fcsKGIOTW0FFNgXHNSlGVBZEWlwUwXnFUVHxpgEmuGpZwKaoyUpWGagxgaLEpcSNpDl-vcxXLaQGkSote1WviE7d-V01b97bR2pl7cSnE64FLgFHC2CfDudQkhqsYGA3WtW3DLoAoiJBWMEJ6kp1vSuVv6No2nigETiVQIkVQnv4l-UL73nASDtcB4F4KHShkbv9aYAG2tCFafJ1VbJ02-_pbvO_o_xwcWYaT0
CitedBy_id crossref_primary_10_3389_fonc_2020_00528
crossref_primary_10_1002_adom_202202720
crossref_primary_10_1016_j_ejca_2021_01_039
crossref_primary_10_1002_mp_15220
crossref_primary_10_3390_nano11123402
crossref_primary_10_3390_nano10101919
crossref_primary_10_3389_fonc_2023_1275222
crossref_primary_10_3390_cancers16233916
crossref_primary_10_1016_j_actbio_2020_05_035
crossref_primary_10_3390_metabo12100943
crossref_primary_10_1140_epjp_s13360_021_02066_8
crossref_primary_10_1002_adhm_202302028
crossref_primary_10_3390_cancers12051082
crossref_primary_10_1016_j_ijrobp_2023_09_048
crossref_primary_10_1136_ijgc_2021_002473
crossref_primary_10_1021_acsnano_5c10591
crossref_primary_10_1371_journal_pone_0312343
crossref_primary_10_3390_cancers11030338
crossref_primary_10_3390_nano14121059
crossref_primary_10_1016_j_omtn_2025_102500
crossref_primary_10_1080_02656736_2022_2136411
crossref_primary_10_1007_s00066_024_02312_9
crossref_primary_10_1088_1361_6560_ada680
crossref_primary_10_1136_ijgc_2021_002806
crossref_primary_10_1113_EP091556
crossref_primary_10_1080_0284186X_2022_2033315
crossref_primary_10_2147_IJN_S266247
crossref_primary_10_1016_j_clon_2021_08_014
crossref_primary_10_3390_ijms21176270
crossref_primary_10_3389_fgene_2021_738230
crossref_primary_10_1007_s10876_024_02598_w
crossref_primary_10_3390_cancers13061243
crossref_primary_10_3390_cancers16081604
crossref_primary_10_1063_5_0032843
crossref_primary_10_3390_cancers13102315
crossref_primary_10_1007_s43939_024_00076_8
crossref_primary_10_1007_s40778_022_00215_y
crossref_primary_10_1109_TUFFC_2023_3235453
crossref_primary_10_3390_cancers13061240
crossref_primary_10_1016_j_tranon_2020_100822
crossref_primary_10_1016_j_taap_2022_116041
crossref_primary_10_3390_ijms25010423
crossref_primary_10_1016_j_jconrel_2022_04_045
crossref_primary_10_1016_j_nantod_2023_101767
crossref_primary_10_1088_1361_6560_abd41a
crossref_primary_10_3389_fonc_2019_00412
crossref_primary_10_1016_j_bspc_2024_106826
crossref_primary_10_3389_fbioe_2023_1191327
crossref_primary_10_3390_ijms24054883
crossref_primary_10_1016_j_cej_2020_125032
crossref_primary_10_1016_j_mehy_2021_110720
crossref_primary_10_1038_s41598_020_69619_2
crossref_primary_10_3390_pharmaceutics13081147
crossref_primary_10_1080_15368378_2024_2389068
crossref_primary_10_3390_cells9071651
crossref_primary_10_1515_ntrev_2024_0134
crossref_primary_10_1002_adtp_202000267
crossref_primary_10_1080_0284186X_2023_2246641
crossref_primary_10_1016_j_radonc_2019_05_002
crossref_primary_10_1038_s41467_020_20860_3
crossref_primary_10_15212_bioi_2024_0012
crossref_primary_10_3390_cancers14071701
crossref_primary_10_1155_2019_4606219
crossref_primary_10_1016_j_colsurfa_2025_136411
crossref_primary_10_4103_jcrt_JCRT_1087_21
crossref_primary_10_1016_j_biomaterials_2020_120235
crossref_primary_10_3390_antiox12040924
crossref_primary_10_1080_02656736_2025_2545400
crossref_primary_10_1016_j_ejmp_2019_07_006
crossref_primary_10_1016_j_jconrel_2025_113721
crossref_primary_10_3390_cancers15030742
crossref_primary_10_3390_s22103894
crossref_primary_10_1007_s00066_021_01774_5
crossref_primary_10_4049_jimmunol_1901430
crossref_primary_10_3389_fonc_2024_1428065
crossref_primary_10_1080_0284186X_2023_2238550
crossref_primary_10_1016_j_phro_2025_100812
crossref_primary_10_3389_fonc_2020_00164
crossref_primary_10_1016_j_jddst_2020_102295
crossref_primary_10_1016_j_biomaterials_2020_120229
crossref_primary_10_1016_j_radonc_2021_12_036
crossref_primary_10_3390_cancers15051447
crossref_primary_10_1016_j_compbiomed_2023_107363
crossref_primary_10_1016_j_jtherbio_2025_104258
crossref_primary_10_1016_j_bbcan_2023_189069
crossref_primary_10_3390_cancers14092050
crossref_primary_10_1038_s41598_021_94323_0
crossref_primary_10_1002_adma_202308286
crossref_primary_10_3389_fimmu_2025_1487296
crossref_primary_10_3390_cancers13061332
crossref_primary_10_1186_s12951_021_01083_0
crossref_primary_10_1016_j_jphotochem_2023_114902
crossref_primary_10_3390_cancers12082061
crossref_primary_10_1177_15347354231198089
crossref_primary_10_1016_j_ctro_2024_100898
crossref_primary_10_1038_s41598_021_84620_z
crossref_primary_10_2174_0109298673287448240311112523
crossref_primary_10_1080_02656736_2022_2067596
crossref_primary_10_3390_cancers13092092
crossref_primary_10_1038_s41571_022_00717_y
crossref_primary_10_1016_j_apm_2022_05_029
crossref_primary_10_2340_1651_226X_2025_43995
crossref_primary_10_1016_j_bbamem_2023_184216
crossref_primary_10_1667_RADE_20_00186_1
crossref_primary_10_1002_smll_202305426
crossref_primary_10_1016_j_addr_2020_10_016
crossref_primary_10_3389_fonc_2022_978276
crossref_primary_10_1109_TNB_2020_3028562
crossref_primary_10_3390_cancers12030606
crossref_primary_10_1016_j_ijrobp_2025_02_040
crossref_primary_10_1016_j_freeradbiomed_2022_11_005
crossref_primary_10_1016_j_addr_2020_01_003
crossref_primary_10_1016_j_addr_2020_06_025
crossref_primary_10_1116_6_0002110
crossref_primary_10_3390_bioengineering7030094
crossref_primary_10_1016_j_ijthermalsci_2023_108821
crossref_primary_10_1007_s10238_023_01066_5
crossref_primary_10_1038_s41467_023_42286_3
crossref_primary_10_1109_JERM_2023_3304547
crossref_primary_10_1002_adhm_202502416
crossref_primary_10_1016_j_ccr_2024_216207
crossref_primary_10_3390_cancers14061425
crossref_primary_10_3389_fonc_2020_00819
crossref_primary_10_3390_cancers14040901
crossref_primary_10_3390_cells9122595
crossref_primary_10_3389_fchem_2022_918715
crossref_primary_10_1021_jacs_1c06652
crossref_primary_10_3390_cancers13215402
crossref_primary_10_1016_j_jconrel_2024_06_055
crossref_primary_10_1080_02656736_2024_2447952
crossref_primary_10_1080_09553002_2020_1838657
crossref_primary_10_1002_INMD_20220012
crossref_primary_10_3390_cancers14030705
crossref_primary_10_3390_ijms26062706
crossref_primary_10_1016_j_radonc_2024_110313
crossref_primary_10_3892_or_2025_8891
crossref_primary_10_1016_j_addr_2020_03_004
crossref_primary_10_1016_j_biomaterials_2023_122278
crossref_primary_10_3390_cancers17121980
crossref_primary_10_2147_IJN_S436268
crossref_primary_10_3390_biom12060821
crossref_primary_10_1016_j_icheatmasstransfer_2025_108895
crossref_primary_10_1016_j_addr_2020_03_006
crossref_primary_10_1016_j_jtherbio_2022_103371
crossref_primary_10_3390_biom11111604
crossref_primary_10_3390_cells8091105
Cites_doi 10.1016/S1053-4296(96)80032-4
10.1038/nature05236
10.1088/1361-6560/aa9102
10.1016/S0140-6736(00)02059-6
10.1101/cshperspect.a012740
10.1080/02656730701829710
10.1158/0008-5472.CAN-10-4482
10.2307/3573702
10.1038/nrc2419
10.1186/s13014-017-0813-0
10.1080/02656730902744171
10.1038/nrc1628
10.3389/fonc.2017.00132
10.3109/02656736.2014.963703
10.2307/3570768
10.1158/1078-0432.CCR-04-0133
10.1242/jcs.104.1.11
10.1016/j.ijrobp.2018.10.041
10.1080/02656730010001333
10.1007/s10585-013-9590-9
10.3389/fonc.2016.00066
10.1073/pnas.131009198
10.1016/0360-3016(78)90069-X
10.1016/S0360-3016(98)00516-1
10.2174/156652409788167113
10.1667/RR13904.1
10.1158/0008-5472.CAN-06-1854
10.1016/S0140-6736(95)90463-8
10.1088/0031-9155/56/11/006
10.2307/3578435
10.3109/02656736.2010.510495
10.1016/j.radonc.2007.04.020
10.1016/S1470-2045(02)00818-5
10.3109/02656736.2012.677933
10.1667/0033-7587(2001)155[0515:IOTOBM]2.0.CO;2
10.3109/02656736.2015.1024289
10.1126/scitranslmed.aaa1260
10.1080/02656730110091919
10.1379/1466-1268(1998)003<0245:NMAATF>2.3.CO;2
10.1093/carcin/23.5.687
10.1101/gad.1922610
10.1016/j.radonc.2018.05.019
10.1186/s13014-017-0849-1
10.1038/nrclinonc.2012.171
10.3109/02656738709140426
10.1038/nature07733
10.1158/2326-6066.CIR-13-0118
10.1038/nm0901-987
10.1016/S0305-7372(79)80043-2
10.1117/12.2256062
10.1016/j.semradonc.2008.12.002
10.3109/02656736.2015.1110757
10.1016/S0360-3016(00)00467-3
10.3109/02656736.2015.1106011
10.1016/j.canlet.2015.12.012
10.1148/123.2.463
10.1080/02656730310001619514
10.1093/jrr/rrw007
10.4103/0973-1482.77101
10.1016/0360-3016(89)90353-2
10.1016/0360-3016(96)00154-X
10.3109/02656739009140970
10.1016/j.clon.2007.03.015
10.1038/nrc2246
10.1016/0360-3016(79)90602-3
10.3109/02656739709012378
10.1080/0265673031000065042
10.1080/02656730600689066
10.3389/fonc.2016.00087
10.2307/3575886
10.1007/s00066-012-0176-2
10.1097/00000421-199104000-00008
10.1158/0008-5472.CAN-06-3126
10.1016/j.ijrobp.2015.07.2279
10.1016/j.radonc.2008.03.002
10.3109/02656736.2014.887793
10.1002/jcp.25048
10.1369/0022155415581689
10.1093/emboj/17.18.5497
10.1080/2162402X.2015.1101206
10.1038/srep01770
10.3109/02656736.2015.1040471
10.1080/09553000110066095
10.3109/02656738709140375
10.3109/02656736.2015.1091093
10.1158/1078-0432.CCR-13-1787
10.1002/mc.20124
10.1093/nar/29.9.1960
10.1016/0360-3016(91)90018-Y
10.1007/978-94-009-3597-6
10.1148/123.2.511
10.1080/07357907.2017.1364745
10.1259/0007-1285-51-611-927
10.2307/3578026
10.1016/j.ijrobp.2014.12.046
10.1016/0360-3016(94)90154-6
10.1073/pnas.1101053108
10.1016/j.ijrobp.2007.07.2348
10.1016/S0360-3016(97)00943-7
10.1016/j.radonc.2015.08.014
10.3109/02656739509022467
10.1259/0007-1285-54-639-245
10.1080/09553009314550101
10.1016/j.ijrobp.2013.09.041
10.1242/jcs.00952
10.1080/09553009014552221
10.1038/bjc.1980.2
10.1080/02656730701666112
10.3109/02656736.2014.968640
10.1016/j.radonc.2018.05.018
10.1007/s10147-006-0647-5
10.1016/j.radonc.2016.02.010
10.3109/02656736.2015.1037800
10.1200/JCO.2005.05.520
10.3892/ol.2015.3732
10.2174/156652412803306666
10.1667/RR13855.1
10.1016/j.dnarep.2008.01.010
10.1016/S0360-3016(99)00494-0
10.1016/j.pharmthera.2015.06.006
10.3109/02656739009140944
10.1016/j.semcancer.2015.08.010
10.1080/02656736.2017.1324642
10.3892/ol.2014.1803
10.1080/02656736.2016.1277791
10.14338/IJPT-18-00018.1
10.1080/02656736.2017.1279757
10.1016/j.canlet.2012.11.019
10.1158/0008-5472.CAN-14-2598
10.1158/0008-5472.CAN-06-2848
10.3109/02656731003596259
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/cancers11010060
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID PMC6356970
30634444
10_3390_cancers11010060
Genre Journal Article
Review
GrantInformation_xml – fundername: Sundhed og Sygdom, Det Frie Forskningsråd
  grantid: DFF-4004-00362
– fundername: Kræftens Bekæmpelse
  grantid: R40-A2022-11-S2
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
TUS
NPM
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c487t-3c3d7be46a612dd219f39c04a264ff68ce490a4099b73cc99dc4a6e78c07d0293
IEDL.DBID M7P
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457233300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-6694
IngestDate Tue Nov 04 01:37:15 EST 2025
Sun Nov 09 13:47:49 EST 2025
Fri Jul 25 11:59:02 EDT 2025
Mon Jul 21 05:50:55 EDT 2025
Sat Nov 29 07:17:11 EST 2025
Tue Nov 18 22:29:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hypoxia
hyperthermia
radiation therapy
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-3c3d7be46a612dd219f39c04a264ff68ce490a4099b73cc99dc4a6e78c07d0293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3955-4735
0000-0002-7474-0533
0000-0002-5522-9406
0000-0002-0814-8179
OpenAccessLink https://www.proquest.com/docview/2547490777?pq-origsite=%requestingapplication%
PMID 30634444
PQID 2547490777
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6356970
proquest_miscellaneous_2179374116
proquest_journals_2547490777
pubmed_primary_30634444
crossref_citationtrail_10_3390_cancers11010060
crossref_primary_10_3390_cancers11010060
PublicationCentury 2000
PublicationDate 20190109
PublicationDateYYYYMMDD 2019-01-09
PublicationDate_xml – month: 1
  year: 2019
  text: 20190109
  day: 9
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_93
Jones (ref_47) 2004; 10
Hira (ref_153) 2015; 63
Baumann (ref_144) 2008; 8
Overgaard (ref_71) 1981; 54
ref_90
(ref_120) 2002; 18
Vernon (ref_123) 1996; 35
Gerelchuluun (ref_108) 2015; 183
Chang (ref_112) 1992; 129
Bao (ref_149) 2006; 444
Zannella (ref_41) 2013; 19
Dikomey (ref_60) 2001; 29
ref_130
ref_10
Karger (ref_96) 2018; 63
Field (ref_21) 1979; 6
Wang (ref_141) 2014; 7
Verbovsek (ref_152) 2015; 35
ref_19
ref_18
Huilgol (ref_116) 2010; 6
Clarke (ref_143) 2006; 66
Hendry (ref_23) 1979; 5
Takahashi (ref_115) 2001; 77
Maeda (ref_111) 2015; 10
Ansiaux (ref_40) 2006; 66
Diehn (ref_150) 2009; 458
Horsman (ref_84) 2006; 66
Gerner (ref_95) 1977; 31
Sudhan (ref_155) 2013; 30
Kavanagh (ref_106) 2013; 3
Wenzl (ref_92) 2011; 56
Horsman (ref_15) 2007; 19
Gilbertson (ref_64) 2007; 7
Chaudhary (ref_104) 2016; 95
Iwata (ref_30) 1996; 74
Stone (ref_26) 1978; 37
Ray (ref_99) 2018; 5
Vaupel (ref_1) 1989; 49
Overgaard (ref_27) 1980; 41
Mitsumori (ref_124) 2007; 12
Siemann (ref_5) 2015; 153
Overgaard (ref_69) 1977; 123
Willers (ref_100) 2018; 128
Durand (ref_39) 1978; 4
Oei (ref_61) 2018; 34
Jackson (ref_55) 2002; 23
Folkman (ref_3) 1986; 46
Wust (ref_14) 2002; 3
Crezee (ref_12) 2016; 32
Harima (ref_119) 2001; 17
Takahashi (ref_114) 2000; 47
Gerweck (ref_70) 1979; 39
Tozer (ref_86) 2005; 5
Yaromina (ref_148) 2007; 83
Lohse (ref_146) 2013; 341
Hatfield (ref_140) 2015; 7
Horsman (ref_97) 2015; 31
Suetens (ref_101) 2016; 6
Song (ref_38) 1987; 3
Horsman (ref_4) 2012; 9
Ling (ref_89) 2000; 47
Horsman (ref_31) 1997; 13
(ref_122) 2000; 355
Harmon (ref_77) 1990; 58
Berdov (ref_127) 1990; 6
Repasky (ref_134) 2013; 1
Crezee (ref_11) 2017; 33
Brizel (ref_46) 1996; 56
Davis (ref_57) 2013; 2
Vaupel (ref_32) 2010; 26
Grosse (ref_103) 2014; 88
Porschen (ref_25) 1978; 37
Sen (ref_33) 2011; 71
Horsman (ref_85) 2008; 24
Oleson (ref_29) 1995; 11
Streffer (ref_65) 1993; 63
Pawelke (ref_98) 2018; 128
ref_142
Horsman (ref_28) 1990; 50
ref_88
Field (ref_72) 1982; 61
Fontana (ref_109) 2015; 116
Horsman (ref_7) 2016; 57
Dewey (ref_66) 1977; 123
Hill (ref_145) 2009; 19
Song (ref_44) 2009; 25
Overgaard (ref_125) 1995; 345
Krawczyk (ref_63) 2011; 108
Hendry (ref_22) 1978; 51
Franckena (ref_121) 2008; 70
Liu (ref_110) 2015; 91
Oei (ref_20) 2017; 12
Horsman (ref_2) 2016; 6
Kim (ref_151) 2009; 9
Multhoff (ref_136) 2012; 12
Antonelli (ref_102) 2015; 183
Barendsen (ref_91) 1968; 4
Jones (ref_126) 2005; 23
Vujaskovic (ref_45) 2004; 20
Vertrees (ref_80) 2005; 44
Frey (ref_133) 2012; 28
Datta (ref_117) 1990; 6
Wang (ref_107) 2008; 7
Siemann (ref_87) 2017; 35
Hetzel (ref_48) 1992; 131
Fleck (ref_56) 2004; 117
Kuzminov (ref_53) 2001; 98
Jasin (ref_58) 2013; 5
Wang (ref_154) 2016; 371
Ihara (ref_62) 2014; 30
Xu (ref_36) 2007; 23
Winslow (ref_34) 2015; 31
Moore (ref_49) 1958; 9
Egawa (ref_128) 1989; 1
Kampinga (ref_79) 1998; 3
Song (ref_35) 1984; 44
Song (ref_43) 2001; 155
Hill (ref_147) 1989; 16
Lindegaard (ref_73) 1987; 3
Hojo (ref_105) 2017; 12
Michael (ref_50) 1973; 54
Dings (ref_74) 2011; 27
Takata (ref_54) 1998; 17
Perez (ref_129) 1991; 14
Cannan (ref_51) 2016; 231
Lutgens (ref_131) 2016; 120
Heacock (ref_82) 1982; 61
Peeken (ref_17) 2017; 7
Dewhirst (ref_132) 2016; 32
Kampinga (ref_78) 1993; 104
Fiering (ref_135) 2014; 30
Shakil (ref_42) 1999; 43
Valdagni (ref_118) 1994; 28
Datta (ref_94) 2014; 30
Kinashi (ref_113) 1998; 40
Lydeard (ref_52) 2010; 24
Griffin (ref_37) 1996; 56
Kuo (ref_59) 2008; 22
Jain (ref_75) 2001; 7
Finkel (ref_137) 2012; 5
Lepock (ref_81) 2003; 19
Murata (ref_24) 2008; 87
Bruggmoser (ref_13) 2012; 188
Pirro (ref_68) 1991; 20
Winkler (ref_76) 2004; 6
ref_9
ref_8
Oei (ref_156) 2017; 33
Cihoric (ref_16) 2015; 31
Barsoum (ref_139) 2014; 74
Nielsen (ref_67) 1982; 91
Overgaard (ref_6) 1996; 6
Horsman (ref_83) 2006; 22
Frey (ref_138) 2016; 32
References_xml – volume: 6
  start-page: 10
  year: 1996
  ident: ref_6
  article-title: Modification of hypoxia induced radioresistance in tumours by the use of oxygen and sensitizers
  publication-title: Semin. Radiat. Oncol.
  doi: 10.1016/S1053-4296(96)80032-4
– ident: ref_9
– volume: 444
  start-page: 756
  year: 2006
  ident: ref_149
  article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response
  publication-title: Nature
  doi: 10.1038/nature05236
– volume: 63
  start-page: 01TR02
  year: 2018
  ident: ref_96
  article-title: RBE and related modelling in carbon-ion therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa9102
– volume: 355
  start-page: 1119
  year: 2000
  ident: ref_122
  article-title: Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02059-6
– volume: 5
  start-page: a012740
  year: 2013
  ident: ref_58
  article-title: Repair of strand breaks by homologous recombination
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012740
– volume: 24
  start-page: 57
  year: 2008
  ident: ref_85
  article-title: Angiogenesis and vascular targeting: Relevance for hyperthermia
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730701829710
– volume: 71
  start-page: 3872
  year: 2011
  ident: ref_33
  article-title: Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4482
– ident: ref_88
– volume: 54
  start-page: 239
  year: 1973
  ident: ref_50
  article-title: A post-effect of oxygen in irradiated bacteria: A submillisecond fast mixing study
  publication-title: Radiat. Res.
  doi: 10.2307/3573702
– volume: 8
  start-page: 545
  year: 2008
  ident: ref_144
  article-title: Exploring the role of cancer stem cells in radioresistance
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2419
– volume: 12
  start-page: 75
  year: 2017
  ident: ref_20
  article-title: A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-017-0813-0
– volume: 25
  start-page: 91
  year: 2009
  ident: ref_44
  article-title: Tumour oxygenation is increased by hyperthermia at mild temperatures
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730902744171
– volume: 5
  start-page: 423
  year: 2005
  ident: ref_86
  article-title: Disrupting tumour blood vessels
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1628
– volume: 7
  start-page: 132
  year: 2017
  ident: ref_17
  article-title: Integrating hyperthermia into modern radiation oncology: What evidence is necessary?
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2017.00132
– volume: 30
  start-page: 524
  year: 2014
  ident: ref_94
  article-title: Could hyperthermia with proton therapy mimic carbon ion therapy? Exploring a thermo-radiobiological rationale
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2014.963703
– volume: 49
  start-page: 6449
  year: 1989
  ident: ref_1
  article-title: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review
  publication-title: Cancer Res.
– volume: 9
  start-page: 422
  year: 1958
  ident: ref_49
  article-title: The time interval after pulsed irradiation within which injury in bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.002 seconds after pulsed irradiation
  publication-title: Radiat. Res.
  doi: 10.2307/3570768
– volume: 50
  start-page: 7430
  year: 1990
  ident: ref_28
  article-title: Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumour cells
  publication-title: Cancer Res.
– volume: 10
  start-page: 4287
  year: 2004
  ident: ref_47
  article-title: Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-04-0133
– volume: 104
  start-page: 11
  year: 1993
  ident: ref_78
  article-title: Thermotolerance in mammalian cells: Protein denaturation and aggregation, and stress proteins
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.104.1.11
– ident: ref_90
  doi: 10.1016/j.ijrobp.2018.10.041
– volume: 17
  start-page: 97
  year: 2001
  ident: ref_119
  article-title: A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730010001333
– volume: 30
  start-page: 891
  year: 2013
  ident: ref_155
  article-title: Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-013-9590-9
– volume: 6
  start-page: 66
  year: 2016
  ident: ref_2
  article-title: Pathophysiological basis for the formation of the tumor microenvironment
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2016.00066
– volume: 98
  start-page: 8241
  year: 2001
  ident: ref_53
  article-title: Single-strand interruptions in replicating chromosomes cause double-strand breaks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.131009198
– ident: ref_10
– volume: 4
  start-page: 401
  year: 1978
  ident: ref_39
  article-title: Potentiation of radiation lethality by hyperthermia in a tumor model: Effects of sequence, degree, and duration of heating
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(78)90069-X
– volume: 43
  start-page: 859
  year: 1999
  ident: ref_42
  article-title: Changes in oxygenation status and blood flow in a rat tumor model by mild temperature hyperthermia
  publication-title: Int. J. Radiat. Oncol.
  doi: 10.1016/S0360-3016(98)00516-1
– volume: 22
  start-page: 305
  year: 2008
  ident: ref_59
  article-title: Gamma-H2AX—A novel biomarker for DNA double-strand breaks
  publication-title: In Vivo
– volume: 9
  start-page: 425
  year: 2009
  ident: ref_151
  article-title: Hypoxic tumor microenvironment and cancer cell differentiation
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652409788167113
– volume: 183
  start-page: 345
  year: 2015
  ident: ref_108
  article-title: The Major DNA Repair Pathway after Both Proton and Carbon-Ion Radiation is NHEJ, but the HR Pathway is More Relevant in Carbon Ions
  publication-title: Radiat. Res.
  doi: 10.1667/RR13904.1
– volume: 44
  start-page: 4721
  year: 1984
  ident: ref_35
  article-title: Effect of local hyperthermia on blood flow and microenvironment: A review
  publication-title: Cancer Res.
– volume: 66
  start-page: 9698
  year: 2006
  ident: ref_40
  article-title: Mechanism of reoxygenation after antiangiogenic therapy using SU5416 and its importance for guiding combined antitumor therapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-1854
– volume: 345
  start-page: 540
  year: 1995
  ident: ref_125
  article-title: Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)90463-8
– volume: 46
  start-page: 467
  year: 1986
  ident: ref_3
  article-title: How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture
  publication-title: Cancer Res.
– volume: 56
  start-page: 3251
  year: 2011
  ident: ref_92
  article-title: Modelling of the oxygen enhancement ratio for ion beam radiation therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/11/006
– volume: 131
  start-page: 152
  year: 1992
  ident: ref_48
  article-title: Variations in pO2 and pH response to hyperthermia: Dependence on transplant site and duration of treatment
  publication-title: Radiat. Res.
  doi: 10.2307/3578435
– volume: 27
  start-page: 42
  year: 2011
  ident: ref_74
  article-title: Tumour thermotolerance, a physiological phenomenon involving vessel normalization
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2010.510495
– volume: 83
  start-page: 304
  year: 2007
  ident: ref_148
  article-title: Pre-treatment number of clonogenic tumour cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2007.04.020
– volume: 3
  start-page: 487
  year: 2002
  ident: ref_14
  article-title: Hyperthermia in combined treatment of cancer
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(02)00818-5
– volume: 28
  start-page: 528
  year: 2012
  ident: ref_133
  article-title: Old and new facts about hyperthermia-induced modulations of the immune system
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2012.677933
– volume: 155
  start-page: 515
  year: 2001
  ident: ref_43
  article-title: Improvement of tumor oxygenation by mild hyperthermia
  publication-title: Radiat. Res.
  doi: 10.1667/0033-7587(2001)155[0515:IOTOBM]2.0.CO;2
– volume: 31
  start-page: 453
  year: 2015
  ident: ref_97
  article-title: The therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2015.1024289
– volume: 2
  start-page: 130
  year: 2013
  ident: ref_57
  article-title: DNA double strand break repair via non-homologous end-joining
  publication-title: Transl. Cancer Res.
– volume: 7
  start-page: 277ra30
  year: 2015
  ident: ref_140
  article-title: Immunological mechanisms of the antitumor effects of supplemental oxygenation
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa1260
– volume: 18
  start-page: 1
  year: 2002
  ident: ref_120
  article-title: The Dutch Deep Hyperthermia Trial: Results in cervical cancer
  publication-title: Int. J. Hyperth
  doi: 10.1080/02656730110091919
– volume: 3
  start-page: 245
  year: 1998
  ident: ref_79
  article-title: Nuclear matrix as a target for hyperthermic killing of cancer cells
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(1998)003<0245:NMAATF>2.3.CO;2
– volume: 56
  start-page: 5590
  year: 1996
  ident: ref_37
  article-title: Mild temperature hyperthermia combined with carbogen breathing increases tumor partial pressure of oxygen (pO2) and radiosensitivity
  publication-title: Cancer Res.
– volume: 23
  start-page: 687
  year: 2002
  ident: ref_55
  article-title: Sensing and repairing DNA double-strand breaks
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/23.5.687
– volume: 61
  start-page: 193
  year: 1982
  ident: ref_72
  article-title: Thermotolerance: A review of observations and possible mechanisms
  publication-title: Natl. Cancer Inst. Monogr.
– volume: 74
  start-page: S217
  year: 1996
  ident: ref_30
  article-title: Tumour pO2 can be increased markedly by mild hyperthermia
  publication-title: Br. J. Cancer
– volume: 24
  start-page: 1133
  year: 2010
  ident: ref_52
  article-title: Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly
  publication-title: Genes Dev.
  doi: 10.1101/gad.1922610
– volume: 128
  start-page: 68
  year: 2018
  ident: ref_100
  article-title: Toward A variable RBE for proton beam therapy
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2018.05.019
– volume: 12
  start-page: 111
  year: 2017
  ident: ref_105
  article-title: Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-017-0849-1
– volume: 9
  start-page: 674
  year: 2012
  ident: ref_4
  article-title: Imaging hypoxia to improve radiotherapy outcome
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2012.171
– volume: 3
  start-page: 535
  year: 1987
  ident: ref_38
  article-title: Effect of multiple heatings on the blood flow in RIF-1 tumours, skin and muscle of C3H mice
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656738709140426
– volume: 458
  start-page: 780
  year: 2009
  ident: ref_150
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
  doi: 10.1038/nature07733
– volume: 1
  start-page: 210
  year: 2013
  ident: ref_134
  article-title: Temperature matters! And why it should matter to tumor immunologists
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0118
– volume: 7
  start-page: 987
  year: 2001
  ident: ref_75
  article-title: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy
  publication-title: Nat. Med.
  doi: 10.1038/nm0901-987
– volume: 6
  start-page: 63
  year: 1979
  ident: ref_21
  article-title: Hyperthermia in treatment of cancer
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/S0305-7372(79)80043-2
– ident: ref_142
  doi: 10.1117/12.2256062
– volume: 19
  start-page: 106
  year: 2009
  ident: ref_145
  article-title: Cancer stem cells, hypoxia and metastasis
  publication-title: Semin. Radiat. Oncol.
  doi: 10.1016/j.semradonc.2008.12.002
– volume: 32
  start-page: 41
  year: 2016
  ident: ref_12
  article-title: Thermoradiotherapy planning: Integration in routine clinical practice
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2015.1110757
– volume: 47
  start-page: 551
  year: 2000
  ident: ref_89
  article-title: Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(00)00467-3
– volume: 32
  start-page: 23
  year: 2016
  ident: ref_138
  article-title: Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2015.1106011
– volume: 371
  start-page: 274
  year: 2016
  ident: ref_154
  article-title: Knockdown of cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.12.012
– volume: 123
  start-page: 463
  year: 1977
  ident: ref_66
  article-title: Cellular responses to combinations of hyperthermia and radiation
  publication-title: Radiology
  doi: 10.1148/123.2.463
– volume: 20
  start-page: 163
  year: 2004
  ident: ref_45
  article-title: Physiological mechanisms underlying heat-induced radiosensitization
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730310001619514
– volume: 57
  start-page: 90
  year: 2016
  ident: ref_7
  article-title: The impact of hypoxia and its modification of the outcome of radiotherapy
  publication-title: J. Radiat. Res.
  doi: 10.1093/jrr/rrw007
– volume: 6
  start-page: 492
  year: 2010
  ident: ref_116
  article-title: Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: A report of randomized trial
  publication-title: J. Cancer Res. Ther.
  doi: 10.4103/0973-1482.77101
– volume: 16
  start-page: 513
  year: 1989
  ident: ref_147
  article-title: The proportion of stem cells in murine tumors
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(89)90353-2
– volume: 35
  start-page: 731
  year: 1996
  ident: ref_123
  article-title: Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. International Collaborative Hyperthermia Group
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(96)00154-X
– volume: 6
  start-page: 881
  year: 1990
  ident: ref_127
  article-title: Thermoradiotherapy of patients with locally advanced carcinoma of the rectum
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656739009140970
– volume: 19
  start-page: 418
  year: 2007
  ident: ref_15
  article-title: Hyperthermia: A Potent Enhancer of Radiotherapy
  publication-title: Clin. Oncol.
  doi: 10.1016/j.clon.2007.03.015
– volume: 56
  start-page: 5347
  year: 1996
  ident: ref_46
  article-title: Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas
  publication-title: Cancer Res.
– volume: 7
  start-page: 733
  year: 2007
  ident: ref_64
  article-title: Making a tumour’s bed: Glioblastoma stem cells and the vascular niche
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2246
– volume: 5
  start-page: 971
  year: 1979
  ident: ref_23
  article-title: Quantitation of the radiotherapeutic importance of naturally-hypoxic normal tissues from collated experiments with rodents using single doses
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(79)90602-3
– volume: 13
  start-page: 141
  year: 1997
  ident: ref_31
  article-title: Can mild hyperthermia improve tumour oxygenation?
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656739709012378
– volume: 19
  start-page: 252
  year: 2003
  ident: ref_81
  article-title: Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage
  publication-title: Int. J. Hyperth.
  doi: 10.1080/0265673031000065042
– volume: 22
  start-page: 197
  year: 2006
  ident: ref_83
  article-title: Tissue physiology and the response to heat
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730600689066
– volume: 6
  start-page: 87
  year: 2016
  ident: ref_101
  article-title: Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2016.00087
– volume: 91
  start-page: 468
  year: 1982
  ident: ref_67
  article-title: Arrhenius analysis of survival curves from thermotolerant and step-down heated L1A2 cells in vitro
  publication-title: Radiat. Res.
  doi: 10.2307/3575886
– volume: 188
  start-page: 198
  year: 2012
  ident: ref_13
  article-title: Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia
  publication-title: Strahlenther. Onkol.
  doi: 10.1007/s00066-012-0176-2
– volume: 37
  start-page: 178
  year: 1978
  ident: ref_26
  article-title: Enhancement of local tumour control by misonidazole and hyperthermia
  publication-title: Br. J. Cancer
– volume: 14
  start-page: 133
  year: 1991
  ident: ref_129
  article-title: Randomized phase III study comparing irradiation and hyperthermia with radiation alone in superficial measureable tumors
  publication-title: Am. J. Clin. Oncol.
  doi: 10.1097/00000421-199104000-00008
– volume: 66
  start-page: 9339
  year: 2006
  ident: ref_143
  article-title: Cancer stem cells—Perspectives on current status and future directions: AACR workshop on cancer stem cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-3126
– volume: 95
  start-page: 86
  year: 2016
  ident: ref_104
  article-title: Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2015.07.2279
– volume: 39
  start-page: 966
  year: 1979
  ident: ref_70
  article-title: Response of cells to hyperthermia under acute and chronic hypoxic conditions
  publication-title: Cancer Res.
– volume: 87
  start-page: 331
  year: 2008
  ident: ref_24
  article-title: Enhanced local tumour control after single or fractionated radiation treatment using the hypoxic cell radiosensitizer doranidazole
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2008.03.002
– volume: 30
  start-page: 102
  year: 2014
  ident: ref_62
  article-title: Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2014.887793
– volume: 31
  start-page: 283
  year: 1977
  ident: ref_95
  article-title: Interaction of hyperthermia with radiations of different linear energy transfer
  publication-title: Int. J. Radiat. Biol.
– volume: 231
  start-page: 3
  year: 2016
  ident: ref_51
  article-title: Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25048
– volume: 63
  start-page: 481
  year: 2015
  ident: ref_153
  article-title: CD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/0022155415581689
– volume: 17
  start-page: 5497
  year: 1998
  ident: ref_54
  article-title: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.18.5497
– volume: 5
  start-page: e1101206
  year: 2012
  ident: ref_137
  article-title: The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1101206
– volume: 3
  start-page: 1770
  year: 2013
  ident: ref_106
  article-title: Antiproton induced DNA damage: Proton like in flight, carbon-ion like near rest
  publication-title: Sci. Rep.
  doi: 10.1038/srep01770
– volume: 31
  start-page: 609
  year: 2015
  ident: ref_16
  article-title: Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2015.1040471
– volume: 1
  start-page: 135
  year: 1989
  ident: ref_128
  article-title: A randomized clinical trial of hyperthermia and radiation versus radiation alone for superficially located cancers
  publication-title: J. Jpn. Soc. Ther. Radiol. Oncol.
– ident: ref_8
– volume: 77
  start-page: 1043
  year: 2001
  ident: ref_115
  article-title: p53-dependent thermal enhancement of cellular sensitivity in human squamous cell carcinomas in relation to LET
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/09553000110066095
– volume: 3
  start-page: 79
  year: 1987
  ident: ref_73
  article-title: Factors of importance for the development of the step-down heating effect in a C3H mammary carcinoma in vivo
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656738709140375
– volume: 32
  start-page: 4
  year: 2016
  ident: ref_132
  article-title: The future of biology in driving the field of hyperthermia
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2015.1091093
– volume: 19
  start-page: 6741
  year: 2013
  ident: ref_41
  article-title: Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-1787
– volume: 37
  start-page: 194
  year: 1978
  ident: ref_25
  article-title: In vivo assay of the radiation sesnitivity of hypoxic tumour cells; influence of γ-rays, cyclotron neutrons, misonidazole, hyperthermia and mixed modalities
  publication-title: Br. J. Cancer
– volume: 44
  start-page: 111
  year: 2005
  ident: ref_80
  article-title: A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.20124
– volume: 29
  start-page: 1960
  year: 2001
  ident: ref_60
  article-title: Heat effects on DNA repair after ionising radiation: Hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangements
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.9.1960
– volume: 20
  start-page: 751
  year: 1991
  ident: ref_68
  article-title: The response of human and rodent cells to hyperthermia
  publication-title: Int. J. Radiat. Oncol.
  doi: 10.1016/0360-3016(91)90018-Y
– ident: ref_19
  doi: 10.1007/978-94-009-3597-6
– volume: 123
  start-page: 511
  year: 1977
  ident: ref_69
  article-title: The Influence of Hypoxia and Acidity on the Hyperthermic Response of Malignant Cells In Vitro
  publication-title: Radiology
  doi: 10.1148/123.2.511
– volume: 35
  start-page: 519
  year: 2017
  ident: ref_87
  article-title: Realizing the potential of vascular targeted therapy: The rationale for combining vascular disrupting agents and anti-angiogenic agents to treat cancer
  publication-title: Cancer Investig.
  doi: 10.1080/07357907.2017.1364745
– volume: 51
  start-page: 927
  year: 1978
  ident: ref_22
  article-title: Care with radiosensitizers
  publication-title: Br. J. Radiol.
  doi: 10.1259/0007-1285-51-611-927
– volume: 129
  start-page: 272
  year: 1992
  ident: ref_112
  article-title: Protein synthesis modulates the biological effectiveness of the combined action of hyperthermia and high-LET radiation
  publication-title: Radiat. Res.
  doi: 10.2307/3578026
– volume: 91
  start-page: 1081
  year: 2015
  ident: ref_110
  article-title: Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation
  publication-title: Int. J. Radiat. Oncol.
  doi: 10.1016/j.ijrobp.2014.12.046
– volume: 28
  start-page: 163
  year: 1994
  ident: ref_118
  article-title: Report of Long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymphnodes in stage IV head and neck patients
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(94)90154-6
– volume: 108
  start-page: 9851
  year: 2011
  ident: ref_63
  article-title: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1101053108
– volume: 70
  start-page: 1176
  year: 2008
  ident: ref_121
  article-title: Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: An update of the Dutch Deep Hyperthermia Trial
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2007.07.2348
– ident: ref_93
– volume: 40
  start-page: 1185
  year: 1998
  ident: ref_113
  article-title: Hyperthermia enhances thermal-neutron-induced cell death of human glioblastoma cell lines at low concentrations of 10B
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(97)00943-7
– volume: 116
  start-page: 374
  year: 2015
  ident: ref_109
  article-title: Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2015.08.014
– volume: 11
  start-page: 315
  year: 1995
  ident: ref_29
  article-title: Eugene Robertson Special Lecture: Hyperthermia from the clinic to the laboratory: A hypothesis
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656739509022467
– volume: 54
  start-page: 245
  year: 1981
  ident: ref_71
  article-title: Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo
  publication-title: Br. J. Radiol.
  doi: 10.1259/0007-1285-54-639-245
– volume: 63
  start-page: 77
  year: 1993
  ident: ref_65
  article-title: Induction of quiescent S-phase cells by irradiation and/or hyperthermia. II. Correlation with colony forming ability
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/09553009314550101
– volume: 88
  start-page: 175
  year: 2014
  ident: ref_103
  article-title: Deficiency in homologous recombination renders mammalian cells more sensitive to proton versus photon irradiation
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2013.09.041
– volume: 117
  start-page: 515
  year: 2004
  ident: ref_56
  article-title: DNA repair
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00952
– ident: ref_18
  doi: 10.1007/978-94-009-3597-6
– volume: 58
  start-page: 845
  year: 1990
  ident: ref_77
  article-title: Cell death induced in a murine mastocytoma by 42–47 °C heating in vitro: Evidence that the form of death changes from apoptosis to necrosis above a critical heat load
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/09553009014552221
– volume: 4
  start-page: 293
  year: 1968
  ident: ref_91
  article-title: Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer
  publication-title: Curr. Top. Radiat. Res. Q.
– volume: 41
  start-page: 10
  year: 1980
  ident: ref_27
  article-title: Effect of misonidazole and hyperthermia on the radiosensitivity of a C3H mouse mammary carcinoma and its surrounding normal tissues
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1980.2
– volume: 23
  start-page: 513
  year: 2007
  ident: ref_36
  article-title: Fever-range whole body hyperthermia increases the number of perfused tumor blood vessels and therapeutic efficacy of liposomally encapsulated doxorubicin
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730701666112
– volume: 30
  start-page: 531
  year: 2014
  ident: ref_135
  article-title: Local tumour hyperthermia as immunotherapy for metastatic cancer
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2014.968640
– volume: 128
  start-page: 56
  year: 2018
  ident: ref_98
  article-title: “Radiobiology of Proton Therapy”: Results of an international expert workshop
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2018.05.018
– volume: 12
  start-page: 192
  year: 2007
  ident: ref_124
  article-title: Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: A multi-institutional prospective randomized trial of the International Atomic Energy Agency
  publication-title: Int. J. Clin. Oncol.
  doi: 10.1007/s10147-006-0647-5
– ident: ref_130
– volume: 120
  start-page: 378
  year: 2016
  ident: ref_131
  article-title: Radiation therapy combined with hyperthermia versus cisplatin for locally advanced cervical cancer: Results of the randomized RADCHOC trial
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2016.02.010
– volume: 31
  start-page: 693
  year: 2015
  ident: ref_34
  article-title: A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2015.1037800
– volume: 23
  start-page: 3079
  year: 2005
  ident: ref_126
  article-title: Randomized Trial of Hyperthermia and Radiation for Superficial Tumors
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2005.05.520
– volume: 10
  start-page: 2828
  year: 2015
  ident: ref_111
  article-title: Hyperthermia-induced radiosensitization in CHO wild-type, NHEJ repair mutant and HR repair mutant following proton and carbon-ion exposure
  publication-title: Oncol. Letts.
  doi: 10.3892/ol.2015.3732
– volume: 12
  start-page: 1174
  year: 2012
  ident: ref_136
  article-title: Dual role of heat shock proteins (HSPs) in anti-tumor immunity
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652412803306666
– volume: 183
  start-page: 417
  year: 2015
  ident: ref_102
  article-title: Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death
  publication-title: Radiat. Res.
  doi: 10.1667/RR13855.1
– volume: 7
  start-page: 725
  year: 2008
  ident: ref_107
  article-title: The Ku-dependent non-homologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2008.01.010
– volume: 47
  start-page: 489
  year: 2000
  ident: ref_114
  article-title: The dependence of p53 on the radiation enhancement of thermosensitivity at different let
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(99)00494-0
– volume: 153
  start-page: 107
  year: 2015
  ident: ref_5
  article-title: Modulation of the tumor vasculature and oxygenation to improve therapy
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2015.06.006
– volume: 6
  start-page: 553
  year: 2004
  ident: ref_76
  article-title: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases
  publication-title: Cancer Cell
– volume: 6
  start-page: 479
  year: 1990
  ident: ref_117
  article-title: Head and neck cancers: Results of thermoradiotherapy versus radiotherapy
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656739009140944
– volume: 35
  start-page: 71
  year: 2015
  ident: ref_152
  article-title: Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2015.08.010
– volume: 34
  start-page: 39
  year: 2018
  ident: ref_61
  article-title: Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656736.2017.1324642
– volume: 7
  start-page: 764
  year: 2014
  ident: ref_141
  article-title: Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2014.1803
– volume: 33
  start-page: 471
  year: 2017
  ident: ref_11
  article-title: Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656736.2016.1277791
– volume: 5
  start-page: 15
  year: 2018
  ident: ref_99
  article-title: Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers
  publication-title: Int. J. Part. Ther.
  doi: 10.14338/IJPT-18-00018.1
– volume: 33
  start-page: 419
  year: 2017
  ident: ref_156
  article-title: Targeting therapy-resistant cancer stem cells by hyperthermia
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656736.2017.1279757
– volume: 341
  start-page: 63
  year: 2013
  ident: ref_146
  article-title: Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2012.11.019
– volume: 74
  start-page: 7185
  year: 2014
  ident: ref_139
  article-title: Mechanisms of hypoxia-mediated immune escape in cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-2598
– volume: 61
  start-page: 73
  year: 1982
  ident: ref_82
  article-title: In vitro inactivation of actin by heat
  publication-title: Natl. Cancer Inst. Monogr.
– volume: 66
  start-page: 11520
  year: 2006
  ident: ref_84
  article-title: Pathophysiological effects of vascular targeting agents and the implications for combination with conventional therapies
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2848
– volume: 26
  start-page: 211
  year: 2010
  ident: ref_32
  article-title: Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: Heterogeneity is the key issue
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656731003596259
SSID ssj0000331767
Score 2.5540135
SecondaryResourceType review_article
Snippet Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 60
SubjectTerms Blood flow
Clinical trials
DNA repair
Fever
Heat
Heat treatments
Hyperthermia
Hypoxia
Oxygen
Oxygenation
Radiation therapy
Review
Solid tumors
Tumors
Title Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia
URI https://www.ncbi.nlm.nih.gov/pubmed/30634444
https://www.proquest.com/docview/2547490777
https://www.proquest.com/docview/2179374116
https://pubmed.ncbi.nlm.nih.gov/PMC6356970
Volume 11
WOSCitedRecordID wos000457233300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content (ProQuest)
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUsWlQB80PFap1AOXQLI2ccwFAQKB6O5GK6iWU-TYjrpSSehmQfx8ZrLZwILopbklfsYznvnGtj4D_PAjYREYGM9EjHvcBKmn0kB5iqeoHkYEuto9__VTdLvRYCDjesGtrI9VTm1iZahNoWmNfA8DGcExkhPi8O6vR7dG0e5qfYXGPCwSSwKrju7FzRqLz9A7hmLC6MMwut_TNJSjEn1eQEwks87oDcJ8fVDyhec5W_nfPq_CxxpzukcTJVmDOZt_gg-delf9M1yeYzA6IiR4O1QHLmqO20NLcotlrqbn0N1x4fZQ7bFh6_aJ0IAk6vZtSQAU07GO4nGovsD12enVyblXX7LgaYxVxh7TzIjU8lAh1jEGDVjGpPa5QqSUZWGkLf6BwihQpoJpLaXRXIVWRNoXxkew8BUW8iK338AN9zPDTGZluy05oXaT7qcIEDULLVZqHNidjnaiawZyugjjT4KRCIkneSUeB3aaAncT8o33s25NRZDUs7BMnsffge9NMs4f2hRRuS3uMQ9ZKIRVQejA-kTaTVsYTjGOjwNiRg-aDMTNPZuSD39XHN1E-yeFv_Hvbm3CMgIwWS3pyC1YGI_u7TYs6YfxsBy1YF4MohYsHp924z6-ddq9VqXg-C2-6MQ3T8thBjs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQEX3o9AoUYCiUtoErtxXKmqKqDaarfbqlpQb8GxHbESTcpmy-NP9Td2Ji_YonLrgVzt2Enm9Y09-QzwKkikQ2BgfZtw4QsbZr7OQu1rkaF6WBmaevf800iOx8nRkTpYgrPuXxgqq-x8Yu2obWlojXwNExkpMJOTcuvkm0-nRtHuaneERqMWQ_frB6Zs1ebue5Tv6yja-TB5N_DbUwV8g-B87nPDrcyciDUGd2vRYnOuTCA0QoM8jxPjcBqNaY_KJDdGKWuEjp1MTCBtEBH5Err8awgjoqQuFTzo13QCjtE4lg2DEOcqWDMkulmFMTYk5pPF4PcXor1YmPlHpNu58799o7twu8XUbLsxgnuw5Ir7cGOvrRp4AMMBJtszQrrHU73B0DLYPnrKY7xn0tXZs3nJ9tGs8UUdOyTCBtJYdugqAtjYjmOUP6f6IXy8kld5BMtFWbgnwOL13HKbOxVFSlBWYrP1DAGw4bHDQa0HbzvppqZlWKeDPr6mmGmROqQX1MGDN_0NJw25yOVdVzqRp62XqdLf8vbgZd-M_oE2fXThylPsQx4YYWMYe_C40a5-LkwXucDLA7mgd30H4h5fbCmmX2oOcqI1VDJ4-u_HWoWbg8neKB3tjofP4BaCTVUvX6kVWJ7PTt1zuG6-z6fV7EVtSAw-X7VWngMRFl30
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5Vpaq48H4EWjASSFzCJrEbx0ioQpRVqy3bVVVQb8GxHbESTcpmS8tf49cxk1fZovbWA3u1k2x2vpn5xp79DPAySKRDYmB9m3DhCxtmvs5C7WuRITysDE29e_5lV47HyeGhmizB7-6_MNRW2cXEOlDb0tAa-QALGSmwkpNykLdtEZOt4ebxD59OkKKd1u44jQYiI_frFMu36t3OFtr6VRQNPx582PbbEwZ8g0R97nPDrcyciDUmemvRe3OuTCA00oQ8jxPj8JEaSyCVSW6MUtYIHTuZmEDaICIhJgz_NySJltdtg5N-fSfgmJlj2agJca6CgSEzzirMtyGpoCwmwn_Y7cUmzb-y3vD2__x73YFbLddm7xvnuAtLrrgHq5_aboL7MNrGInxGDPhoqt8y9Bi2hxH0CK856Prv2bxke-ju-NKO7ZOQAyGZ7buKiDeO4z3Ks6l-AJ-v5VUewnJRFu4xsHgjt9zmTkWRElSt2GwjQ2JseOzwptaDN52lU9Mqr9MBIN9TrMAIGukFaHjwur_guBEduXzqWmf-tI0-VXpuew9e9MMYN2gzSBeuPME5FJmRToaxB48apPXPwjKSC_x4IBcw2E8gTfLFkWL6rdYmJ7lDJYMnV3-t57CKYEx3d8ajp3ATOaiqV7XUGizPZyduHVbMz_m0mj2rfYrB1-sG5R_oS2ax
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperthermia%3A+The+Optimal+Treatment+to+Overcome+Radiation+Resistant+Hypoxia&rft.jtitle=Cancers&rft.au=Elming%2C+Pernille+B&rft.au=S%C3%B8rensen%2C+Brita+S&rft.au=Oei%2C+Arlene+L&rft.au=Franken%2C+Nicolaas+A+P&rft.date=2019-01-09&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=11&rft.issue=1&rft_id=info:doi/10.3390%2Fcancers11010060&rft_id=info%3Apmid%2F30634444&rft.externalDocID=30634444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon