Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have be...
Saved in:
| Published in: | Cancers Vol. 11; no. 1; p. 60 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
09.01.2019
MDPI |
| Subjects: | |
| ISSN: | 2072-6694, 2072-6694 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39–45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination. |
|---|---|
| AbstractList | Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39–45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination. Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination. Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination. |
| Author | Elming, Pernille Oei, Arlene Franken, Nicolaas Sørensen, Brita Crezee, Johannes Overgaard, Jens Horsman, Michael |
| AuthorAffiliation | 1 Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; pernille.elming@oncology.au.dk (P.B.E.); bsin@oncology.au.dk (B.S.S.); jens@oncology.au.dk (J.O.) 2 Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; a.l.oei@amc.uva.nl (A.L.O.); n.a.franken@amc.uva.nl (N.A.P.F.); h.crezee@amc.uva.nl (J.C.) |
| AuthorAffiliation_xml | – name: 2 Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; a.l.oei@amc.uva.nl (A.L.O.); n.a.franken@amc.uva.nl (N.A.P.F.); h.crezee@amc.uva.nl (J.C.) – name: 1 Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; pernille.elming@oncology.au.dk (P.B.E.); bsin@oncology.au.dk (B.S.S.); jens@oncology.au.dk (J.O.) |
| Author_xml | – sequence: 1 givenname: Pernille surname: Elming fullname: Elming, Pernille – sequence: 2 givenname: Brita orcidid: 0000-0002-3955-4735 surname: Sørensen fullname: Sørensen, Brita – sequence: 3 givenname: Arlene surname: Oei fullname: Oei, Arlene – sequence: 4 givenname: Nicolaas orcidid: 0000-0002-5522-9406 surname: Franken fullname: Franken, Nicolaas – sequence: 5 givenname: Johannes orcidid: 0000-0002-7474-0533 surname: Crezee fullname: Crezee, Johannes – sequence: 6 givenname: Jens orcidid: 0000-0002-0814-8179 surname: Overgaard fullname: Overgaard, Jens – sequence: 7 givenname: Michael surname: Horsman fullname: Horsman, Michael |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30634444$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUFLAzEQhYNUtFbP3mTBi5e1ySZNGg-CiFpRKEg9hzQ7a1N2NzVJi_57o62iBeeSwLz3-GbmAHVa1wJCxwSfUypx3-jWgA-EYIIxxzuoW2BR5JxL1vn130dHIcxxKkqJ4GIP7VPMKUvVRQ-j9wX4OAPfWH2RTWaQjRfRNrrOJh50bKCNWXTZeAXeuAayJ11aHa1rsycINkSd-inDvVl9iHYrXQc42rw99Hx7M7ke5Y_ju_vrq8fcsKGIOTW0FFNgXHNSlGVBZEWlwUwXnFUVHxpgEmuGpZwKaoyUpWGagxgaLEpcSNpDl-vcxXLaQGkSote1WviE7d-V01b97bR2pl7cSnE64FLgFHC2CfDudQkhqsYGA3WtW3DLoAoiJBWMEJ6kp1vSuVv6No2nigETiVQIkVQnv4l-UL73nASDtcB4F4KHShkbv9aYAG2tCFafJ1VbJ02-_pbvO_o_xwcWYaT0 |
| CitedBy_id | crossref_primary_10_3389_fonc_2020_00528 crossref_primary_10_1002_adom_202202720 crossref_primary_10_1016_j_ejca_2021_01_039 crossref_primary_10_1002_mp_15220 crossref_primary_10_3390_nano11123402 crossref_primary_10_3390_nano10101919 crossref_primary_10_3389_fonc_2023_1275222 crossref_primary_10_3390_cancers16233916 crossref_primary_10_1016_j_actbio_2020_05_035 crossref_primary_10_3390_metabo12100943 crossref_primary_10_1140_epjp_s13360_021_02066_8 crossref_primary_10_1002_adhm_202302028 crossref_primary_10_3390_cancers12051082 crossref_primary_10_1016_j_ijrobp_2023_09_048 crossref_primary_10_1136_ijgc_2021_002473 crossref_primary_10_1021_acsnano_5c10591 crossref_primary_10_1371_journal_pone_0312343 crossref_primary_10_3390_cancers11030338 crossref_primary_10_3390_nano14121059 crossref_primary_10_1016_j_omtn_2025_102500 crossref_primary_10_1080_02656736_2022_2136411 crossref_primary_10_1007_s00066_024_02312_9 crossref_primary_10_1088_1361_6560_ada680 crossref_primary_10_1136_ijgc_2021_002806 crossref_primary_10_1113_EP091556 crossref_primary_10_1080_0284186X_2022_2033315 crossref_primary_10_2147_IJN_S266247 crossref_primary_10_1016_j_clon_2021_08_014 crossref_primary_10_3390_ijms21176270 crossref_primary_10_3389_fgene_2021_738230 crossref_primary_10_1007_s10876_024_02598_w crossref_primary_10_3390_cancers13061243 crossref_primary_10_3390_cancers16081604 crossref_primary_10_1063_5_0032843 crossref_primary_10_3390_cancers13102315 crossref_primary_10_1007_s43939_024_00076_8 crossref_primary_10_1007_s40778_022_00215_y crossref_primary_10_1109_TUFFC_2023_3235453 crossref_primary_10_3390_cancers13061240 crossref_primary_10_1016_j_tranon_2020_100822 crossref_primary_10_1016_j_taap_2022_116041 crossref_primary_10_3390_ijms25010423 crossref_primary_10_1016_j_jconrel_2022_04_045 crossref_primary_10_1016_j_nantod_2023_101767 crossref_primary_10_1088_1361_6560_abd41a crossref_primary_10_3389_fonc_2019_00412 crossref_primary_10_1016_j_bspc_2024_106826 crossref_primary_10_3389_fbioe_2023_1191327 crossref_primary_10_3390_ijms24054883 crossref_primary_10_1016_j_cej_2020_125032 crossref_primary_10_1016_j_mehy_2021_110720 crossref_primary_10_1038_s41598_020_69619_2 crossref_primary_10_3390_pharmaceutics13081147 crossref_primary_10_1080_15368378_2024_2389068 crossref_primary_10_3390_cells9071651 crossref_primary_10_1515_ntrev_2024_0134 crossref_primary_10_1002_adtp_202000267 crossref_primary_10_1080_0284186X_2023_2246641 crossref_primary_10_1016_j_radonc_2019_05_002 crossref_primary_10_1038_s41467_020_20860_3 crossref_primary_10_15212_bioi_2024_0012 crossref_primary_10_3390_cancers14071701 crossref_primary_10_1155_2019_4606219 crossref_primary_10_1016_j_colsurfa_2025_136411 crossref_primary_10_4103_jcrt_JCRT_1087_21 crossref_primary_10_1016_j_biomaterials_2020_120235 crossref_primary_10_3390_antiox12040924 crossref_primary_10_1080_02656736_2025_2545400 crossref_primary_10_1016_j_ejmp_2019_07_006 crossref_primary_10_1016_j_jconrel_2025_113721 crossref_primary_10_3390_cancers15030742 crossref_primary_10_3390_s22103894 crossref_primary_10_1007_s00066_021_01774_5 crossref_primary_10_4049_jimmunol_1901430 crossref_primary_10_3389_fonc_2024_1428065 crossref_primary_10_1080_0284186X_2023_2238550 crossref_primary_10_1016_j_phro_2025_100812 crossref_primary_10_3389_fonc_2020_00164 crossref_primary_10_1016_j_jddst_2020_102295 crossref_primary_10_1016_j_biomaterials_2020_120229 crossref_primary_10_1016_j_radonc_2021_12_036 crossref_primary_10_3390_cancers15051447 crossref_primary_10_1016_j_compbiomed_2023_107363 crossref_primary_10_1016_j_jtherbio_2025_104258 crossref_primary_10_1016_j_bbcan_2023_189069 crossref_primary_10_3390_cancers14092050 crossref_primary_10_1038_s41598_021_94323_0 crossref_primary_10_1002_adma_202308286 crossref_primary_10_3389_fimmu_2025_1487296 crossref_primary_10_3390_cancers13061332 crossref_primary_10_1186_s12951_021_01083_0 crossref_primary_10_1016_j_jphotochem_2023_114902 crossref_primary_10_3390_cancers12082061 crossref_primary_10_1177_15347354231198089 crossref_primary_10_1016_j_ctro_2024_100898 crossref_primary_10_1038_s41598_021_84620_z crossref_primary_10_2174_0109298673287448240311112523 crossref_primary_10_1080_02656736_2022_2067596 crossref_primary_10_3390_cancers13092092 crossref_primary_10_1038_s41571_022_00717_y crossref_primary_10_1016_j_apm_2022_05_029 crossref_primary_10_2340_1651_226X_2025_43995 crossref_primary_10_1016_j_bbamem_2023_184216 crossref_primary_10_1667_RADE_20_00186_1 crossref_primary_10_1002_smll_202305426 crossref_primary_10_1016_j_addr_2020_10_016 crossref_primary_10_3389_fonc_2022_978276 crossref_primary_10_1109_TNB_2020_3028562 crossref_primary_10_3390_cancers12030606 crossref_primary_10_1016_j_ijrobp_2025_02_040 crossref_primary_10_1016_j_freeradbiomed_2022_11_005 crossref_primary_10_1016_j_addr_2020_01_003 crossref_primary_10_1016_j_addr_2020_06_025 crossref_primary_10_1116_6_0002110 crossref_primary_10_3390_bioengineering7030094 crossref_primary_10_1016_j_ijthermalsci_2023_108821 crossref_primary_10_1007_s10238_023_01066_5 crossref_primary_10_1038_s41467_023_42286_3 crossref_primary_10_1109_JERM_2023_3304547 crossref_primary_10_1002_adhm_202502416 crossref_primary_10_1016_j_ccr_2024_216207 crossref_primary_10_3390_cancers14061425 crossref_primary_10_3389_fonc_2020_00819 crossref_primary_10_3390_cancers14040901 crossref_primary_10_3390_cells9122595 crossref_primary_10_3389_fchem_2022_918715 crossref_primary_10_1021_jacs_1c06652 crossref_primary_10_3390_cancers13215402 crossref_primary_10_1016_j_jconrel_2024_06_055 crossref_primary_10_1080_02656736_2024_2447952 crossref_primary_10_1080_09553002_2020_1838657 crossref_primary_10_1002_INMD_20220012 crossref_primary_10_3390_cancers14030705 crossref_primary_10_3390_ijms26062706 crossref_primary_10_1016_j_radonc_2024_110313 crossref_primary_10_3892_or_2025_8891 crossref_primary_10_1016_j_addr_2020_03_004 crossref_primary_10_1016_j_biomaterials_2023_122278 crossref_primary_10_3390_cancers17121980 crossref_primary_10_2147_IJN_S436268 crossref_primary_10_3390_biom12060821 crossref_primary_10_1016_j_icheatmasstransfer_2025_108895 crossref_primary_10_1016_j_addr_2020_03_006 crossref_primary_10_1016_j_jtherbio_2022_103371 crossref_primary_10_3390_biom11111604 crossref_primary_10_3390_cells8091105 |
| Cites_doi | 10.1016/S1053-4296(96)80032-4 10.1038/nature05236 10.1088/1361-6560/aa9102 10.1016/S0140-6736(00)02059-6 10.1101/cshperspect.a012740 10.1080/02656730701829710 10.1158/0008-5472.CAN-10-4482 10.2307/3573702 10.1038/nrc2419 10.1186/s13014-017-0813-0 10.1080/02656730902744171 10.1038/nrc1628 10.3389/fonc.2017.00132 10.3109/02656736.2014.963703 10.2307/3570768 10.1158/1078-0432.CCR-04-0133 10.1242/jcs.104.1.11 10.1016/j.ijrobp.2018.10.041 10.1080/02656730010001333 10.1007/s10585-013-9590-9 10.3389/fonc.2016.00066 10.1073/pnas.131009198 10.1016/0360-3016(78)90069-X 10.1016/S0360-3016(98)00516-1 10.2174/156652409788167113 10.1667/RR13904.1 10.1158/0008-5472.CAN-06-1854 10.1016/S0140-6736(95)90463-8 10.1088/0031-9155/56/11/006 10.2307/3578435 10.3109/02656736.2010.510495 10.1016/j.radonc.2007.04.020 10.1016/S1470-2045(02)00818-5 10.3109/02656736.2012.677933 10.1667/0033-7587(2001)155[0515:IOTOBM]2.0.CO;2 10.3109/02656736.2015.1024289 10.1126/scitranslmed.aaa1260 10.1080/02656730110091919 10.1379/1466-1268(1998)003<0245:NMAATF>2.3.CO;2 10.1093/carcin/23.5.687 10.1101/gad.1922610 10.1016/j.radonc.2018.05.019 10.1186/s13014-017-0849-1 10.1038/nrclinonc.2012.171 10.3109/02656738709140426 10.1038/nature07733 10.1158/2326-6066.CIR-13-0118 10.1038/nm0901-987 10.1016/S0305-7372(79)80043-2 10.1117/12.2256062 10.1016/j.semradonc.2008.12.002 10.3109/02656736.2015.1110757 10.1016/S0360-3016(00)00467-3 10.3109/02656736.2015.1106011 10.1016/j.canlet.2015.12.012 10.1148/123.2.463 10.1080/02656730310001619514 10.1093/jrr/rrw007 10.4103/0973-1482.77101 10.1016/0360-3016(89)90353-2 10.1016/0360-3016(96)00154-X 10.3109/02656739009140970 10.1016/j.clon.2007.03.015 10.1038/nrc2246 10.1016/0360-3016(79)90602-3 10.3109/02656739709012378 10.1080/0265673031000065042 10.1080/02656730600689066 10.3389/fonc.2016.00087 10.2307/3575886 10.1007/s00066-012-0176-2 10.1097/00000421-199104000-00008 10.1158/0008-5472.CAN-06-3126 10.1016/j.ijrobp.2015.07.2279 10.1016/j.radonc.2008.03.002 10.3109/02656736.2014.887793 10.1002/jcp.25048 10.1369/0022155415581689 10.1093/emboj/17.18.5497 10.1080/2162402X.2015.1101206 10.1038/srep01770 10.3109/02656736.2015.1040471 10.1080/09553000110066095 10.3109/02656738709140375 10.3109/02656736.2015.1091093 10.1158/1078-0432.CCR-13-1787 10.1002/mc.20124 10.1093/nar/29.9.1960 10.1016/0360-3016(91)90018-Y 10.1007/978-94-009-3597-6 10.1148/123.2.511 10.1080/07357907.2017.1364745 10.1259/0007-1285-51-611-927 10.2307/3578026 10.1016/j.ijrobp.2014.12.046 10.1016/0360-3016(94)90154-6 10.1073/pnas.1101053108 10.1016/j.ijrobp.2007.07.2348 10.1016/S0360-3016(97)00943-7 10.1016/j.radonc.2015.08.014 10.3109/02656739509022467 10.1259/0007-1285-54-639-245 10.1080/09553009314550101 10.1016/j.ijrobp.2013.09.041 10.1242/jcs.00952 10.1080/09553009014552221 10.1038/bjc.1980.2 10.1080/02656730701666112 10.3109/02656736.2014.968640 10.1016/j.radonc.2018.05.018 10.1007/s10147-006-0647-5 10.1016/j.radonc.2016.02.010 10.3109/02656736.2015.1037800 10.1200/JCO.2005.05.520 10.3892/ol.2015.3732 10.2174/156652412803306666 10.1667/RR13855.1 10.1016/j.dnarep.2008.01.010 10.1016/S0360-3016(99)00494-0 10.1016/j.pharmthera.2015.06.006 10.3109/02656739009140944 10.1016/j.semcancer.2015.08.010 10.1080/02656736.2017.1324642 10.3892/ol.2014.1803 10.1080/02656736.2016.1277791 10.14338/IJPT-18-00018.1 10.1080/02656736.2017.1279757 10.1016/j.canlet.2012.11.019 10.1158/0008-5472.CAN-14-2598 10.1158/0008-5472.CAN-06-2848 10.3109/02656731003596259 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.3390/cancers11010060 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2072-6694 |
| ExternalDocumentID | PMC6356970 30634444 10_3390_cancers11010060 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Sundhed og Sygdom, Det Frie Forskningsråd grantid: DFF-4004-00362 – fundername: Kræftens Bekæmpelse grantid: R40-A2022-11-S2 |
| GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM TUS NPM 3V. 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c487t-3c3d7be46a612dd219f39c04a264ff68ce490a4099b73cc99dc4a6e78c07d0293 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457233300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-6694 |
| IngestDate | Tue Nov 04 01:37:15 EST 2025 Sun Nov 09 13:47:49 EST 2025 Fri Jul 25 11:59:02 EDT 2025 Mon Jul 21 05:50:55 EDT 2025 Sat Nov 29 07:17:11 EST 2025 Tue Nov 18 22:29:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | hypoxia hyperthermia radiation therapy |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-3c3d7be46a612dd219f39c04a264ff68ce490a4099b73cc99dc4a6e78c07d0293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3955-4735 0000-0002-7474-0533 0000-0002-5522-9406 0000-0002-0814-8179 |
| OpenAccessLink | https://www.proquest.com/docview/2547490777?pq-origsite=%requestingapplication% |
| PMID | 30634444 |
| PQID | 2547490777 |
| PQPubID | 2032421 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6356970 proquest_miscellaneous_2179374116 proquest_journals_2547490777 pubmed_primary_30634444 crossref_citationtrail_10_3390_cancers11010060 crossref_primary_10_3390_cancers11010060 |
| PublicationCentury | 2000 |
| PublicationDate | 20190109 |
| PublicationDateYYYYMMDD | 2019-01-09 |
| PublicationDate_xml | – month: 1 year: 2019 text: 20190109 day: 9 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Cancers |
| PublicationTitleAlternate | Cancers (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_93 Jones (ref_47) 2004; 10 Hira (ref_153) 2015; 63 Baumann (ref_144) 2008; 8 Overgaard (ref_71) 1981; 54 ref_90 (ref_120) 2002; 18 Vernon (ref_123) 1996; 35 Gerelchuluun (ref_108) 2015; 183 Chang (ref_112) 1992; 129 Bao (ref_149) 2006; 444 Zannella (ref_41) 2013; 19 Dikomey (ref_60) 2001; 29 ref_130 ref_10 Karger (ref_96) 2018; 63 Field (ref_21) 1979; 6 Wang (ref_141) 2014; 7 Verbovsek (ref_152) 2015; 35 ref_19 ref_18 Huilgol (ref_116) 2010; 6 Clarke (ref_143) 2006; 66 Hendry (ref_23) 1979; 5 Takahashi (ref_115) 2001; 77 Maeda (ref_111) 2015; 10 Ansiaux (ref_40) 2006; 66 Diehn (ref_150) 2009; 458 Horsman (ref_84) 2006; 66 Gerner (ref_95) 1977; 31 Sudhan (ref_155) 2013; 30 Kavanagh (ref_106) 2013; 3 Wenzl (ref_92) 2011; 56 Horsman (ref_15) 2007; 19 Gilbertson (ref_64) 2007; 7 Chaudhary (ref_104) 2016; 95 Iwata (ref_30) 1996; 74 Stone (ref_26) 1978; 37 Ray (ref_99) 2018; 5 Vaupel (ref_1) 1989; 49 Overgaard (ref_27) 1980; 41 Mitsumori (ref_124) 2007; 12 Siemann (ref_5) 2015; 153 Overgaard (ref_69) 1977; 123 Willers (ref_100) 2018; 128 Durand (ref_39) 1978; 4 Oei (ref_61) 2018; 34 Jackson (ref_55) 2002; 23 Folkman (ref_3) 1986; 46 Wust (ref_14) 2002; 3 Crezee (ref_12) 2016; 32 Harima (ref_119) 2001; 17 Takahashi (ref_114) 2000; 47 Gerweck (ref_70) 1979; 39 Tozer (ref_86) 2005; 5 Yaromina (ref_148) 2007; 83 Lohse (ref_146) 2013; 341 Hatfield (ref_140) 2015; 7 Horsman (ref_97) 2015; 31 Suetens (ref_101) 2016; 6 Song (ref_38) 1987; 3 Horsman (ref_4) 2012; 9 Ling (ref_89) 2000; 47 Horsman (ref_31) 1997; 13 (ref_122) 2000; 355 Harmon (ref_77) 1990; 58 Berdov (ref_127) 1990; 6 Repasky (ref_134) 2013; 1 Crezee (ref_11) 2017; 33 Brizel (ref_46) 1996; 56 Davis (ref_57) 2013; 2 Vaupel (ref_32) 2010; 26 Grosse (ref_103) 2014; 88 Porschen (ref_25) 1978; 37 Sen (ref_33) 2011; 71 Horsman (ref_85) 2008; 24 Oleson (ref_29) 1995; 11 Streffer (ref_65) 1993; 63 Pawelke (ref_98) 2018; 128 ref_142 Horsman (ref_28) 1990; 50 ref_88 Field (ref_72) 1982; 61 Fontana (ref_109) 2015; 116 Horsman (ref_7) 2016; 57 Dewey (ref_66) 1977; 123 Hill (ref_145) 2009; 19 Song (ref_44) 2009; 25 Overgaard (ref_125) 1995; 345 Krawczyk (ref_63) 2011; 108 Hendry (ref_22) 1978; 51 Franckena (ref_121) 2008; 70 Liu (ref_110) 2015; 91 Oei (ref_20) 2017; 12 Horsman (ref_2) 2016; 6 Kim (ref_151) 2009; 9 Multhoff (ref_136) 2012; 12 Antonelli (ref_102) 2015; 183 Barendsen (ref_91) 1968; 4 Jones (ref_126) 2005; 23 Vujaskovic (ref_45) 2004; 20 Vertrees (ref_80) 2005; 44 Frey (ref_133) 2012; 28 Datta (ref_117) 1990; 6 Wang (ref_107) 2008; 7 Siemann (ref_87) 2017; 35 Hetzel (ref_48) 1992; 131 Fleck (ref_56) 2004; 117 Kuzminov (ref_53) 2001; 98 Jasin (ref_58) 2013; 5 Wang (ref_154) 2016; 371 Ihara (ref_62) 2014; 30 Xu (ref_36) 2007; 23 Winslow (ref_34) 2015; 31 Moore (ref_49) 1958; 9 Egawa (ref_128) 1989; 1 Kampinga (ref_79) 1998; 3 Song (ref_35) 1984; 44 Song (ref_43) 2001; 155 Hill (ref_147) 1989; 16 Lindegaard (ref_73) 1987; 3 Hojo (ref_105) 2017; 12 Michael (ref_50) 1973; 54 Dings (ref_74) 2011; 27 Takata (ref_54) 1998; 17 Perez (ref_129) 1991; 14 Cannan (ref_51) 2016; 231 Lutgens (ref_131) 2016; 120 Heacock (ref_82) 1982; 61 Peeken (ref_17) 2017; 7 Dewhirst (ref_132) 2016; 32 Kampinga (ref_78) 1993; 104 Fiering (ref_135) 2014; 30 Shakil (ref_42) 1999; 43 Valdagni (ref_118) 1994; 28 Datta (ref_94) 2014; 30 Kinashi (ref_113) 1998; 40 Lydeard (ref_52) 2010; 24 Griffin (ref_37) 1996; 56 Kuo (ref_59) 2008; 22 Jain (ref_75) 2001; 7 Finkel (ref_137) 2012; 5 Lepock (ref_81) 2003; 19 Murata (ref_24) 2008; 87 Bruggmoser (ref_13) 2012; 188 Pirro (ref_68) 1991; 20 Winkler (ref_76) 2004; 6 ref_9 ref_8 Oei (ref_156) 2017; 33 Cihoric (ref_16) 2015; 31 Barsoum (ref_139) 2014; 74 Nielsen (ref_67) 1982; 91 Overgaard (ref_6) 1996; 6 Horsman (ref_83) 2006; 22 Frey (ref_138) 2016; 32 |
| References_xml | – volume: 6 start-page: 10 year: 1996 ident: ref_6 article-title: Modification of hypoxia induced radioresistance in tumours by the use of oxygen and sensitizers publication-title: Semin. Radiat. Oncol. doi: 10.1016/S1053-4296(96)80032-4 – ident: ref_9 – volume: 444 start-page: 756 year: 2006 ident: ref_149 article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response publication-title: Nature doi: 10.1038/nature05236 – volume: 63 start-page: 01TR02 year: 2018 ident: ref_96 article-title: RBE and related modelling in carbon-ion therapy publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa9102 – volume: 355 start-page: 1119 year: 2000 ident: ref_122 article-title: Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial publication-title: Lancet doi: 10.1016/S0140-6736(00)02059-6 – volume: 5 start-page: a012740 year: 2013 ident: ref_58 article-title: Repair of strand breaks by homologous recombination publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012740 – volume: 24 start-page: 57 year: 2008 ident: ref_85 article-title: Angiogenesis and vascular targeting: Relevance for hyperthermia publication-title: Int. J. Hyperth. doi: 10.1080/02656730701829710 – volume: 71 start-page: 3872 year: 2011 ident: ref_33 article-title: Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4482 – ident: ref_88 – volume: 54 start-page: 239 year: 1973 ident: ref_50 article-title: A post-effect of oxygen in irradiated bacteria: A submillisecond fast mixing study publication-title: Radiat. Res. doi: 10.2307/3573702 – volume: 8 start-page: 545 year: 2008 ident: ref_144 article-title: Exploring the role of cancer stem cells in radioresistance publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2419 – volume: 12 start-page: 75 year: 2017 ident: ref_20 article-title: A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer publication-title: Radiat. Oncol. doi: 10.1186/s13014-017-0813-0 – volume: 25 start-page: 91 year: 2009 ident: ref_44 article-title: Tumour oxygenation is increased by hyperthermia at mild temperatures publication-title: Int. J. Hyperth. doi: 10.1080/02656730902744171 – volume: 5 start-page: 423 year: 2005 ident: ref_86 article-title: Disrupting tumour blood vessels publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1628 – volume: 7 start-page: 132 year: 2017 ident: ref_17 article-title: Integrating hyperthermia into modern radiation oncology: What evidence is necessary? publication-title: Front. Oncol. doi: 10.3389/fonc.2017.00132 – volume: 30 start-page: 524 year: 2014 ident: ref_94 article-title: Could hyperthermia with proton therapy mimic carbon ion therapy? Exploring a thermo-radiobiological rationale publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2014.963703 – volume: 49 start-page: 6449 year: 1989 ident: ref_1 article-title: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review publication-title: Cancer Res. – volume: 9 start-page: 422 year: 1958 ident: ref_49 article-title: The time interval after pulsed irradiation within which injury in bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.002 seconds after pulsed irradiation publication-title: Radiat. Res. doi: 10.2307/3570768 – volume: 50 start-page: 7430 year: 1990 ident: ref_28 article-title: Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumour cells publication-title: Cancer Res. – volume: 10 start-page: 4287 year: 2004 ident: ref_47 article-title: Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-04-0133 – volume: 104 start-page: 11 year: 1993 ident: ref_78 article-title: Thermotolerance in mammalian cells: Protein denaturation and aggregation, and stress proteins publication-title: J. Cell Sci. doi: 10.1242/jcs.104.1.11 – ident: ref_90 doi: 10.1016/j.ijrobp.2018.10.041 – volume: 17 start-page: 97 year: 2001 ident: ref_119 article-title: A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma publication-title: Int. J. Hyperth. doi: 10.1080/02656730010001333 – volume: 30 start-page: 891 year: 2013 ident: ref_155 article-title: Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-013-9590-9 – volume: 6 start-page: 66 year: 2016 ident: ref_2 article-title: Pathophysiological basis for the formation of the tumor microenvironment publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00066 – volume: 98 start-page: 8241 year: 2001 ident: ref_53 article-title: Single-strand interruptions in replicating chromosomes cause double-strand breaks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.131009198 – ident: ref_10 – volume: 4 start-page: 401 year: 1978 ident: ref_39 article-title: Potentiation of radiation lethality by hyperthermia in a tumor model: Effects of sequence, degree, and duration of heating publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/0360-3016(78)90069-X – volume: 43 start-page: 859 year: 1999 ident: ref_42 article-title: Changes in oxygenation status and blood flow in a rat tumor model by mild temperature hyperthermia publication-title: Int. J. Radiat. Oncol. doi: 10.1016/S0360-3016(98)00516-1 – volume: 22 start-page: 305 year: 2008 ident: ref_59 article-title: Gamma-H2AX—A novel biomarker for DNA double-strand breaks publication-title: In Vivo – volume: 9 start-page: 425 year: 2009 ident: ref_151 article-title: Hypoxic tumor microenvironment and cancer cell differentiation publication-title: Curr. Mol. Med. doi: 10.2174/156652409788167113 – volume: 183 start-page: 345 year: 2015 ident: ref_108 article-title: The Major DNA Repair Pathway after Both Proton and Carbon-Ion Radiation is NHEJ, but the HR Pathway is More Relevant in Carbon Ions publication-title: Radiat. Res. doi: 10.1667/RR13904.1 – volume: 44 start-page: 4721 year: 1984 ident: ref_35 article-title: Effect of local hyperthermia on blood flow and microenvironment: A review publication-title: Cancer Res. – volume: 66 start-page: 9698 year: 2006 ident: ref_40 article-title: Mechanism of reoxygenation after antiangiogenic therapy using SU5416 and its importance for guiding combined antitumor therapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-1854 – volume: 345 start-page: 540 year: 1995 ident: ref_125 article-title: Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma publication-title: Lancet doi: 10.1016/S0140-6736(95)90463-8 – volume: 46 start-page: 467 year: 1986 ident: ref_3 article-title: How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture publication-title: Cancer Res. – volume: 56 start-page: 3251 year: 2011 ident: ref_92 article-title: Modelling of the oxygen enhancement ratio for ion beam radiation therapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/11/006 – volume: 131 start-page: 152 year: 1992 ident: ref_48 article-title: Variations in pO2 and pH response to hyperthermia: Dependence on transplant site and duration of treatment publication-title: Radiat. Res. doi: 10.2307/3578435 – volume: 27 start-page: 42 year: 2011 ident: ref_74 article-title: Tumour thermotolerance, a physiological phenomenon involving vessel normalization publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2010.510495 – volume: 83 start-page: 304 year: 2007 ident: ref_148 article-title: Pre-treatment number of clonogenic tumour cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2007.04.020 – volume: 3 start-page: 487 year: 2002 ident: ref_14 article-title: Hyperthermia in combined treatment of cancer publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(02)00818-5 – volume: 28 start-page: 528 year: 2012 ident: ref_133 article-title: Old and new facts about hyperthermia-induced modulations of the immune system publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2012.677933 – volume: 155 start-page: 515 year: 2001 ident: ref_43 article-title: Improvement of tumor oxygenation by mild hyperthermia publication-title: Radiat. Res. doi: 10.1667/0033-7587(2001)155[0515:IOTOBM]2.0.CO;2 – volume: 31 start-page: 453 year: 2015 ident: ref_97 article-title: The therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2015.1024289 – volume: 2 start-page: 130 year: 2013 ident: ref_57 article-title: DNA double strand break repair via non-homologous end-joining publication-title: Transl. Cancer Res. – volume: 7 start-page: 277ra30 year: 2015 ident: ref_140 article-title: Immunological mechanisms of the antitumor effects of supplemental oxygenation publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa1260 – volume: 18 start-page: 1 year: 2002 ident: ref_120 article-title: The Dutch Deep Hyperthermia Trial: Results in cervical cancer publication-title: Int. J. Hyperth doi: 10.1080/02656730110091919 – volume: 3 start-page: 245 year: 1998 ident: ref_79 article-title: Nuclear matrix as a target for hyperthermic killing of cancer cells publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(1998)003<0245:NMAATF>2.3.CO;2 – volume: 56 start-page: 5590 year: 1996 ident: ref_37 article-title: Mild temperature hyperthermia combined with carbogen breathing increases tumor partial pressure of oxygen (pO2) and radiosensitivity publication-title: Cancer Res. – volume: 23 start-page: 687 year: 2002 ident: ref_55 article-title: Sensing and repairing DNA double-strand breaks publication-title: Carcinogenesis doi: 10.1093/carcin/23.5.687 – volume: 61 start-page: 193 year: 1982 ident: ref_72 article-title: Thermotolerance: A review of observations and possible mechanisms publication-title: Natl. Cancer Inst. Monogr. – volume: 74 start-page: S217 year: 1996 ident: ref_30 article-title: Tumour pO2 can be increased markedly by mild hyperthermia publication-title: Br. J. Cancer – volume: 24 start-page: 1133 year: 2010 ident: ref_52 article-title: Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly publication-title: Genes Dev. doi: 10.1101/gad.1922610 – volume: 128 start-page: 68 year: 2018 ident: ref_100 article-title: Toward A variable RBE for proton beam therapy publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2018.05.019 – volume: 12 start-page: 111 year: 2017 ident: ref_105 article-title: Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak publication-title: Radiat. Oncol. doi: 10.1186/s13014-017-0849-1 – volume: 9 start-page: 674 year: 2012 ident: ref_4 article-title: Imaging hypoxia to improve radiotherapy outcome publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2012.171 – volume: 3 start-page: 535 year: 1987 ident: ref_38 article-title: Effect of multiple heatings on the blood flow in RIF-1 tumours, skin and muscle of C3H mice publication-title: Int. J. Hyperth. doi: 10.3109/02656738709140426 – volume: 458 start-page: 780 year: 2009 ident: ref_150 article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells publication-title: Nature doi: 10.1038/nature07733 – volume: 1 start-page: 210 year: 2013 ident: ref_134 article-title: Temperature matters! And why it should matter to tumor immunologists publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0118 – volume: 7 start-page: 987 year: 2001 ident: ref_75 article-title: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy publication-title: Nat. Med. doi: 10.1038/nm0901-987 – volume: 6 start-page: 63 year: 1979 ident: ref_21 article-title: Hyperthermia in treatment of cancer publication-title: Cancer Treat. Rev. doi: 10.1016/S0305-7372(79)80043-2 – ident: ref_142 doi: 10.1117/12.2256062 – volume: 19 start-page: 106 year: 2009 ident: ref_145 article-title: Cancer stem cells, hypoxia and metastasis publication-title: Semin. Radiat. Oncol. doi: 10.1016/j.semradonc.2008.12.002 – volume: 32 start-page: 41 year: 2016 ident: ref_12 article-title: Thermoradiotherapy planning: Integration in routine clinical practice publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2015.1110757 – volume: 47 start-page: 551 year: 2000 ident: ref_89 article-title: Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(00)00467-3 – volume: 32 start-page: 23 year: 2016 ident: ref_138 article-title: Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2015.1106011 – volume: 371 start-page: 274 year: 2016 ident: ref_154 article-title: Knockdown of cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.12.012 – volume: 123 start-page: 463 year: 1977 ident: ref_66 article-title: Cellular responses to combinations of hyperthermia and radiation publication-title: Radiology doi: 10.1148/123.2.463 – volume: 20 start-page: 163 year: 2004 ident: ref_45 article-title: Physiological mechanisms underlying heat-induced radiosensitization publication-title: Int. J. Hyperth. doi: 10.1080/02656730310001619514 – volume: 57 start-page: 90 year: 2016 ident: ref_7 article-title: The impact of hypoxia and its modification of the outcome of radiotherapy publication-title: J. Radiat. Res. doi: 10.1093/jrr/rrw007 – volume: 6 start-page: 492 year: 2010 ident: ref_116 article-title: Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: A report of randomized trial publication-title: J. Cancer Res. Ther. doi: 10.4103/0973-1482.77101 – volume: 16 start-page: 513 year: 1989 ident: ref_147 article-title: The proportion of stem cells in murine tumors publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/0360-3016(89)90353-2 – volume: 35 start-page: 731 year: 1996 ident: ref_123 article-title: Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. International Collaborative Hyperthermia Group publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/0360-3016(96)00154-X – volume: 6 start-page: 881 year: 1990 ident: ref_127 article-title: Thermoradiotherapy of patients with locally advanced carcinoma of the rectum publication-title: Int. J. Hyperth. doi: 10.3109/02656739009140970 – volume: 19 start-page: 418 year: 2007 ident: ref_15 article-title: Hyperthermia: A Potent Enhancer of Radiotherapy publication-title: Clin. Oncol. doi: 10.1016/j.clon.2007.03.015 – volume: 56 start-page: 5347 year: 1996 ident: ref_46 article-title: Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas publication-title: Cancer Res. – volume: 7 start-page: 733 year: 2007 ident: ref_64 article-title: Making a tumour’s bed: Glioblastoma stem cells and the vascular niche publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2246 – volume: 5 start-page: 971 year: 1979 ident: ref_23 article-title: Quantitation of the radiotherapeutic importance of naturally-hypoxic normal tissues from collated experiments with rodents using single doses publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/0360-3016(79)90602-3 – volume: 13 start-page: 141 year: 1997 ident: ref_31 article-title: Can mild hyperthermia improve tumour oxygenation? publication-title: Int. J. Hyperth. doi: 10.3109/02656739709012378 – volume: 19 start-page: 252 year: 2003 ident: ref_81 article-title: Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage publication-title: Int. J. Hyperth. doi: 10.1080/0265673031000065042 – volume: 22 start-page: 197 year: 2006 ident: ref_83 article-title: Tissue physiology and the response to heat publication-title: Int. J. Hyperth. doi: 10.1080/02656730600689066 – volume: 6 start-page: 87 year: 2016 ident: ref_101 article-title: Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00087 – volume: 91 start-page: 468 year: 1982 ident: ref_67 article-title: Arrhenius analysis of survival curves from thermotolerant and step-down heated L1A2 cells in vitro publication-title: Radiat. Res. doi: 10.2307/3575886 – volume: 188 start-page: 198 year: 2012 ident: ref_13 article-title: Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia publication-title: Strahlenther. Onkol. doi: 10.1007/s00066-012-0176-2 – volume: 37 start-page: 178 year: 1978 ident: ref_26 article-title: Enhancement of local tumour control by misonidazole and hyperthermia publication-title: Br. J. Cancer – volume: 14 start-page: 133 year: 1991 ident: ref_129 article-title: Randomized phase III study comparing irradiation and hyperthermia with radiation alone in superficial measureable tumors publication-title: Am. J. Clin. Oncol. doi: 10.1097/00000421-199104000-00008 – volume: 66 start-page: 9339 year: 2006 ident: ref_143 article-title: Cancer stem cells—Perspectives on current status and future directions: AACR workshop on cancer stem cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-3126 – volume: 95 start-page: 86 year: 2016 ident: ref_104 article-title: Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2015.07.2279 – volume: 39 start-page: 966 year: 1979 ident: ref_70 article-title: Response of cells to hyperthermia under acute and chronic hypoxic conditions publication-title: Cancer Res. – volume: 87 start-page: 331 year: 2008 ident: ref_24 article-title: Enhanced local tumour control after single or fractionated radiation treatment using the hypoxic cell radiosensitizer doranidazole publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2008.03.002 – volume: 30 start-page: 102 year: 2014 ident: ref_62 article-title: Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2014.887793 – volume: 31 start-page: 283 year: 1977 ident: ref_95 article-title: Interaction of hyperthermia with radiations of different linear energy transfer publication-title: Int. J. Radiat. Biol. – volume: 231 start-page: 3 year: 2016 ident: ref_51 article-title: Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25048 – volume: 63 start-page: 481 year: 2015 ident: ref_153 article-title: CD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155415581689 – volume: 17 start-page: 5497 year: 1998 ident: ref_54 article-title: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells publication-title: EMBO J. doi: 10.1093/emboj/17.18.5497 – volume: 5 start-page: e1101206 year: 2012 ident: ref_137 article-title: The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1101206 – volume: 3 start-page: 1770 year: 2013 ident: ref_106 article-title: Antiproton induced DNA damage: Proton like in flight, carbon-ion like near rest publication-title: Sci. Rep. doi: 10.1038/srep01770 – volume: 31 start-page: 609 year: 2015 ident: ref_16 article-title: Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2015.1040471 – volume: 1 start-page: 135 year: 1989 ident: ref_128 article-title: A randomized clinical trial of hyperthermia and radiation versus radiation alone for superficially located cancers publication-title: J. Jpn. Soc. Ther. Radiol. Oncol. – ident: ref_8 – volume: 77 start-page: 1043 year: 2001 ident: ref_115 article-title: p53-dependent thermal enhancement of cellular sensitivity in human squamous cell carcinomas in relation to LET publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553000110066095 – volume: 3 start-page: 79 year: 1987 ident: ref_73 article-title: Factors of importance for the development of the step-down heating effect in a C3H mammary carcinoma in vivo publication-title: Int. J. Hyperth. doi: 10.3109/02656738709140375 – volume: 32 start-page: 4 year: 2016 ident: ref_132 article-title: The future of biology in driving the field of hyperthermia publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2015.1091093 – volume: 19 start-page: 6741 year: 2013 ident: ref_41 article-title: Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-1787 – volume: 37 start-page: 194 year: 1978 ident: ref_25 article-title: In vivo assay of the radiation sesnitivity of hypoxic tumour cells; influence of γ-rays, cyclotron neutrons, misonidazole, hyperthermia and mixed modalities publication-title: Br. J. Cancer – volume: 44 start-page: 111 year: 2005 ident: ref_80 article-title: A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells publication-title: Mol. Carcinog. doi: 10.1002/mc.20124 – volume: 29 start-page: 1960 year: 2001 ident: ref_60 article-title: Heat effects on DNA repair after ionising radiation: Hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangements publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.9.1960 – volume: 20 start-page: 751 year: 1991 ident: ref_68 article-title: The response of human and rodent cells to hyperthermia publication-title: Int. J. Radiat. Oncol. doi: 10.1016/0360-3016(91)90018-Y – ident: ref_19 doi: 10.1007/978-94-009-3597-6 – volume: 123 start-page: 511 year: 1977 ident: ref_69 article-title: The Influence of Hypoxia and Acidity on the Hyperthermic Response of Malignant Cells In Vitro publication-title: Radiology doi: 10.1148/123.2.511 – volume: 35 start-page: 519 year: 2017 ident: ref_87 article-title: Realizing the potential of vascular targeted therapy: The rationale for combining vascular disrupting agents and anti-angiogenic agents to treat cancer publication-title: Cancer Investig. doi: 10.1080/07357907.2017.1364745 – volume: 51 start-page: 927 year: 1978 ident: ref_22 article-title: Care with radiosensitizers publication-title: Br. J. Radiol. doi: 10.1259/0007-1285-51-611-927 – volume: 129 start-page: 272 year: 1992 ident: ref_112 article-title: Protein synthesis modulates the biological effectiveness of the combined action of hyperthermia and high-LET radiation publication-title: Radiat. Res. doi: 10.2307/3578026 – volume: 91 start-page: 1081 year: 2015 ident: ref_110 article-title: Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation publication-title: Int. J. Radiat. Oncol. doi: 10.1016/j.ijrobp.2014.12.046 – volume: 28 start-page: 163 year: 1994 ident: ref_118 article-title: Report of Long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymphnodes in stage IV head and neck patients publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/0360-3016(94)90154-6 – volume: 108 start-page: 9851 year: 2011 ident: ref_63 article-title: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1101053108 – volume: 70 start-page: 1176 year: 2008 ident: ref_121 article-title: Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: An update of the Dutch Deep Hyperthermia Trial publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2007.07.2348 – ident: ref_93 – volume: 40 start-page: 1185 year: 1998 ident: ref_113 article-title: Hyperthermia enhances thermal-neutron-induced cell death of human glioblastoma cell lines at low concentrations of 10B publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(97)00943-7 – volume: 116 start-page: 374 year: 2015 ident: ref_109 article-title: Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2015.08.014 – volume: 11 start-page: 315 year: 1995 ident: ref_29 article-title: Eugene Robertson Special Lecture: Hyperthermia from the clinic to the laboratory: A hypothesis publication-title: Int. J. Hyperth. doi: 10.3109/02656739509022467 – volume: 54 start-page: 245 year: 1981 ident: ref_71 article-title: Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo publication-title: Br. J. Radiol. doi: 10.1259/0007-1285-54-639-245 – volume: 63 start-page: 77 year: 1993 ident: ref_65 article-title: Induction of quiescent S-phase cells by irradiation and/or hyperthermia. II. Correlation with colony forming ability publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553009314550101 – volume: 88 start-page: 175 year: 2014 ident: ref_103 article-title: Deficiency in homologous recombination renders mammalian cells more sensitive to proton versus photon irradiation publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2013.09.041 – volume: 117 start-page: 515 year: 2004 ident: ref_56 article-title: DNA repair publication-title: J. Cell Sci. doi: 10.1242/jcs.00952 – ident: ref_18 doi: 10.1007/978-94-009-3597-6 – volume: 58 start-page: 845 year: 1990 ident: ref_77 article-title: Cell death induced in a murine mastocytoma by 42–47 °C heating in vitro: Evidence that the form of death changes from apoptosis to necrosis above a critical heat load publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553009014552221 – volume: 4 start-page: 293 year: 1968 ident: ref_91 article-title: Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer publication-title: Curr. Top. Radiat. Res. Q. – volume: 41 start-page: 10 year: 1980 ident: ref_27 article-title: Effect of misonidazole and hyperthermia on the radiosensitivity of a C3H mouse mammary carcinoma and its surrounding normal tissues publication-title: Br. J. Cancer doi: 10.1038/bjc.1980.2 – volume: 23 start-page: 513 year: 2007 ident: ref_36 article-title: Fever-range whole body hyperthermia increases the number of perfused tumor blood vessels and therapeutic efficacy of liposomally encapsulated doxorubicin publication-title: Int. J. Hyperth. doi: 10.1080/02656730701666112 – volume: 30 start-page: 531 year: 2014 ident: ref_135 article-title: Local tumour hyperthermia as immunotherapy for metastatic cancer publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2014.968640 – volume: 128 start-page: 56 year: 2018 ident: ref_98 article-title: “Radiobiology of Proton Therapy”: Results of an international expert workshop publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2018.05.018 – volume: 12 start-page: 192 year: 2007 ident: ref_124 article-title: Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: A multi-institutional prospective randomized trial of the International Atomic Energy Agency publication-title: Int. J. Clin. Oncol. doi: 10.1007/s10147-006-0647-5 – ident: ref_130 – volume: 120 start-page: 378 year: 2016 ident: ref_131 article-title: Radiation therapy combined with hyperthermia versus cisplatin for locally advanced cervical cancer: Results of the randomized RADCHOC trial publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2016.02.010 – volume: 31 start-page: 693 year: 2015 ident: ref_34 article-title: A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2015.1037800 – volume: 23 start-page: 3079 year: 2005 ident: ref_126 article-title: Randomized Trial of Hyperthermia and Radiation for Superficial Tumors publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2005.05.520 – volume: 10 start-page: 2828 year: 2015 ident: ref_111 article-title: Hyperthermia-induced radiosensitization in CHO wild-type, NHEJ repair mutant and HR repair mutant following proton and carbon-ion exposure publication-title: Oncol. Letts. doi: 10.3892/ol.2015.3732 – volume: 12 start-page: 1174 year: 2012 ident: ref_136 article-title: Dual role of heat shock proteins (HSPs) in anti-tumor immunity publication-title: Curr. Mol. Med. doi: 10.2174/156652412803306666 – volume: 183 start-page: 417 year: 2015 ident: ref_102 article-title: Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death publication-title: Radiat. Res. doi: 10.1667/RR13855.1 – volume: 7 start-page: 725 year: 2008 ident: ref_107 article-title: The Ku-dependent non-homologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation publication-title: DNA Repair doi: 10.1016/j.dnarep.2008.01.010 – volume: 47 start-page: 489 year: 2000 ident: ref_114 article-title: The dependence of p53 on the radiation enhancement of thermosensitivity at different let publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(99)00494-0 – volume: 153 start-page: 107 year: 2015 ident: ref_5 article-title: Modulation of the tumor vasculature and oxygenation to improve therapy publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2015.06.006 – volume: 6 start-page: 553 year: 2004 ident: ref_76 article-title: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases publication-title: Cancer Cell – volume: 6 start-page: 479 year: 1990 ident: ref_117 article-title: Head and neck cancers: Results of thermoradiotherapy versus radiotherapy publication-title: Int. J. Hyperth. doi: 10.3109/02656739009140944 – volume: 35 start-page: 71 year: 2015 ident: ref_152 article-title: Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2015.08.010 – volume: 34 start-page: 39 year: 2018 ident: ref_61 article-title: Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation publication-title: Int. J. Hyperth. doi: 10.1080/02656736.2017.1324642 – volume: 7 start-page: 764 year: 2014 ident: ref_141 article-title: Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats publication-title: Oncol. Lett. doi: 10.3892/ol.2014.1803 – volume: 33 start-page: 471 year: 2017 ident: ref_11 article-title: Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements publication-title: Int. J. Hyperth. doi: 10.1080/02656736.2016.1277791 – volume: 5 start-page: 15 year: 2018 ident: ref_99 article-title: Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers publication-title: Int. J. Part. Ther. doi: 10.14338/IJPT-18-00018.1 – volume: 33 start-page: 419 year: 2017 ident: ref_156 article-title: Targeting therapy-resistant cancer stem cells by hyperthermia publication-title: Int. J. Hyperth. doi: 10.1080/02656736.2017.1279757 – volume: 341 start-page: 63 year: 2013 ident: ref_146 article-title: Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.11.019 – volume: 74 start-page: 7185 year: 2014 ident: ref_139 article-title: Mechanisms of hypoxia-mediated immune escape in cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-2598 – volume: 61 start-page: 73 year: 1982 ident: ref_82 article-title: In vitro inactivation of actin by heat publication-title: Natl. Cancer Inst. Monogr. – volume: 66 start-page: 11520 year: 2006 ident: ref_84 article-title: Pathophysiological effects of vascular targeting agents and the implications for combination with conventional therapies publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2848 – volume: 26 start-page: 211 year: 2010 ident: ref_32 article-title: Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: Heterogeneity is the key issue publication-title: Int. J. Hyperth. doi: 10.3109/02656731003596259 |
| SSID | ssj0000331767 |
| Score | 2.5540135 |
| SecondaryResourceType | review_article |
| Snippet | Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 60 |
| SubjectTerms | Blood flow Clinical trials DNA repair Fever Heat Heat treatments Hyperthermia Hypoxia Oxygen Oxygenation Radiation therapy Review Solid tumors Tumors |
| Title | Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30634444 https://www.proquest.com/docview/2547490777 https://www.proquest.com/docview/2179374116 https://pubmed.ncbi.nlm.nih.gov/PMC6356970 |
| Volume | 11 |
| WOSCitedRecordID | wos000457233300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content (ProQuest) customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUsWlQB80PFap1AOXQLI2ccwFAQKB6O5GK6iWU-TYjrpSSehmQfx8ZrLZwILopbklfsYznvnGtj4D_PAjYREYGM9EjHvcBKmn0kB5iqeoHkYEuto9__VTdLvRYCDjesGtrI9VTm1iZahNoWmNfA8DGcExkhPi8O6vR7dG0e5qfYXGPCwSSwKrju7FzRqLz9A7hmLC6MMwut_TNJSjEn1eQEwks87oDcJ8fVDyhec5W_nfPq_CxxpzukcTJVmDOZt_gg-delf9M1yeYzA6IiR4O1QHLmqO20NLcotlrqbn0N1x4fZQ7bFh6_aJ0IAk6vZtSQAU07GO4nGovsD12enVyblXX7LgaYxVxh7TzIjU8lAh1jEGDVjGpPa5QqSUZWGkLf6BwihQpoJpLaXRXIVWRNoXxkew8BUW8iK338AN9zPDTGZluy05oXaT7qcIEDULLVZqHNidjnaiawZyugjjT4KRCIkneSUeB3aaAncT8o33s25NRZDUs7BMnsffge9NMs4f2hRRuS3uMQ9ZKIRVQejA-kTaTVsYTjGOjwNiRg-aDMTNPZuSD39XHN1E-yeFv_Hvbm3CMgIwWS3pyC1YGI_u7TYs6YfxsBy1YF4MohYsHp924z6-ddq9VqXg-C2-6MQ3T8thBjs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQEX3o9AoUYCiUtoErtxXKmqKqDaarfbqlpQb8GxHbESTcpmy-NP9Td2Ji_YonLrgVzt2Enm9Y09-QzwKkikQ2BgfZtw4QsbZr7OQu1rkaF6WBmaevf800iOx8nRkTpYgrPuXxgqq-x8Yu2obWlojXwNExkpMJOTcuvkm0-nRtHuaneERqMWQ_frB6Zs1ebue5Tv6yja-TB5N_DbUwV8g-B87nPDrcyciDUGd2vRYnOuTCA0QoM8jxPjcBqNaY_KJDdGKWuEjp1MTCBtEBH5Err8awgjoqQuFTzo13QCjtE4lg2DEOcqWDMkulmFMTYk5pPF4PcXor1YmPlHpNu58799o7twu8XUbLsxgnuw5Ir7cGOvrRp4AMMBJtszQrrHU73B0DLYPnrKY7xn0tXZs3nJ9tGs8UUdOyTCBtJYdugqAtjYjmOUP6f6IXy8kld5BMtFWbgnwOL13HKbOxVFSlBWYrP1DAGw4bHDQa0HbzvppqZlWKeDPr6mmGmROqQX1MGDN_0NJw25yOVdVzqRp62XqdLf8vbgZd-M_oE2fXThylPsQx4YYWMYe_C40a5-LkwXucDLA7mgd30H4h5fbCmmX2oOcqI1VDJ4-u_HWoWbg8neKB3tjofP4BaCTVUvX6kVWJ7PTt1zuG6-z6fV7EVtSAw-X7VWngMRFl30 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5Vpaq48H4EWjASSFzCJrEbx0ioQpRVqy3bVVVQb8GxHbESTcpmS8tf49cxk1fZovbWA3u1k2x2vpn5xp79DPAySKRDYmB9m3DhCxtmvs5C7WuRITysDE29e_5lV47HyeGhmizB7-6_MNRW2cXEOlDb0tAa-QALGSmwkpNykLdtEZOt4ebxD59OkKKd1u44jQYiI_frFMu36t3OFtr6VRQNPx582PbbEwZ8g0R97nPDrcyciDUmemvRe3OuTCA00oQ8jxPj8JEaSyCVSW6MUtYIHTuZmEDaICIhJgz_NySJltdtg5N-fSfgmJlj2agJca6CgSEzzirMtyGpoCwmwn_Y7cUmzb-y3vD2__x73YFbLddm7xvnuAtLrrgHq5_aboL7MNrGInxGDPhoqt8y9Bi2hxH0CK856Prv2bxke-ju-NKO7ZOQAyGZ7buKiDeO4z3Ks6l-AJ-v5VUewnJRFu4xsHgjt9zmTkWRElSt2GwjQ2JseOzwptaDN52lU9Mqr9MBIN9TrMAIGukFaHjwur_guBEduXzqWmf-tI0-VXpuew9e9MMYN2gzSBeuPME5FJmRToaxB48apPXPwjKSC_x4IBcw2E8gTfLFkWL6rdYmJ7lDJYMnV3-t57CKYEx3d8ajp3ATOaiqV7XUGizPZyduHVbMz_m0mj2rfYrB1-sG5R_oS2ax |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperthermia%3A+The+Optimal+Treatment+to+Overcome+Radiation+Resistant+Hypoxia&rft.jtitle=Cancers&rft.au=Elming%2C+Pernille+B&rft.au=S%C3%B8rensen%2C+Brita+S&rft.au=Oei%2C+Arlene+L&rft.au=Franken%2C+Nicolaas+A+P&rft.date=2019-01-09&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=11&rft.issue=1&rft_id=info:doi/10.3390%2Fcancers11010060&rft_id=info%3Apmid%2F30634444&rft.externalDocID=30634444 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |