Three-dimensional intact-tissue sequencing of single-cell transcriptional states

Retrieving high-content gene-expression information while retaining three-dimensional (3D) positional anatomy at cellular resolution has been difficult, limiting integrative understanding of structure and function in complex biological tissues. We developed and applied a technology for 3D intact-tis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) Jg. 361; H. 6400
Hauptverfasser: Wang, Xiao, Allen, William E, Wright, Matthew A, Sylwestrak, Emily L, Samusik, Nikolay, Vesuna, Sam, Evans, Kathryn, Liu, Cindy, Ramakrishnan, Charu, Liu, Jia, Nolan, Garry P, Bava, Felice-Alessio, Deisseroth, Karl
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 27.07.2018
Schlagworte:
ISSN:1095-9203, 1095-9203
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retrieving high-content gene-expression information while retaining three-dimensional (3D) positional anatomy at cellular resolution has been difficult, limiting integrative understanding of structure and function in complex biological tissues. We developed and applied a technology for 3D intact-tissue RNA sequencing, termed STARmap (spatially-resolved transcript amplicon readout mapping), which integrates hydrogel-tissue chemistry, targeted signal amplification, and in situ sequencing. The capabilities of STARmap were tested by mapping 160 to 1020 genes simultaneously in sections of mouse brain at single-cell resolution with high efficiency, accuracy, and reproducibility. Moving to thick tissue blocks, we observed a molecularly defined gradient distribution of excitatory-neuron subtypes across cubic millimeter-scale volumes (>30,000 cells) and a short-range 3D self-clustering in many inhibitory-neuron subtypes that could be identified and described with 3D STARmap.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:1095-9203
1095-9203
DOI:10.1126/science.aat5691