Experimental analysis of propagation regimes during the autoignition of a fully premixed methane–air mixture in the presence of temperature inhomogeneities
The present work is devoted to the study of the combustion processes of a homogeneous methane–air mixture subject to thermal stratification within a rapid compression machine (RCM). Temperature fields obtained in nonreactive conditions have been documented in a previous study and the present work ai...
Gespeichert in:
| Veröffentlicht in: | Combustion and flame Jg. 159; H. 11; S. 3323 - 3341 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Inc
01.11.2012
Elsevier |
| Schlagworte: | |
| ISSN: | 0010-2180, 1556-2921 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The present work is devoted to the study of the combustion processes of a homogeneous methane–air mixture subject to thermal stratification within a rapid compression machine (RCM). Temperature fields obtained in nonreactive conditions have been documented in a previous study and the present work aims at correlating these data with the combustion process. The analysis of chemiluminescence images enables the delineation of two propagation regimes, namely spontaneous ignition fronts and deflagrations. The first is observed for short ignition delays, as the fluid features a fairly large and homogeneous hot core zone. The second dominates the combustion process for longer ignition delays. Indeed, despite global homogenization of the temperature fields, the hottest zones are fairly narrow and surrounded by non-negligible thermal gradients, which favors the formation of deflagration. The results thus clearly show a strong correlation between the preignition temperature field and the subsequent combustion process. They are commented on in the light of recent literature. In a second part, quantitative predictions of the occurrence of autoignition fronts and deflagrations are performed by employing a criterion derived from the analysis of direct numerical simulation data (Sankaran et al., 2005). The results are in good agreement with others previously obtained through chemiluminescence imaging for early and intermediate stages of combustion. It is more difficult to reach definitive conclusions for later instants. The present work highlights the relevance but also suggests some limitations of the corresponding criterion for the analysis of homogeneous charge compression ignition (HCCI) combustion processes at the cylinder scale. Furthermore, the quantitative data gathered within the RCM demonstrate the relevance of this device for further investigation of these fundamental issues. |
|---|---|
| AbstractList | The present work is devoted to the study of the combustion processes of a homogeneous methane–air mixture subject to thermal stratification within a rapid compression machine (RCM). Temperature fields obtained in nonreactive conditions have been documented in a previous study and the present work aims at correlating these data with the combustion process. The analysis of chemiluminescence images enables the delineation of two propagation regimes, namely spontaneous ignition fronts and deflagrations. The first is observed for short ignition delays, as the fluid features a fairly large and homogeneous hot core zone. The second dominates the combustion process for longer ignition delays. Indeed, despite global homogenization of the temperature fields, the hottest zones are fairly narrow and surrounded by non-negligible thermal gradients, which favors the formation of deflagration. The results thus clearly show a strong correlation between the preignition temperature field and the subsequent combustion process. They are commented on in the light of recent literature. In a second part, quantitative predictions of the occurrence of autoignition fronts and deflagrations are performed by employing a criterion derived from the analysis of direct numerical simulation data (Sankaran et al., 2005). The results are in good agreement with others previously obtained through chemiluminescence imaging for early and intermediate stages of combustion. It is more difficult to reach definitive conclusions for later instants. The present work highlights the relevance but also suggests some limitations of the corresponding criterion for the analysis of homogeneous charge compression ignition (HCCI) combustion processes at the cylinder scale. Furthermore, the quantitative data gathered within the RCM demonstrate the relevance of this device for further investigation of these fundamental issues. The present work is devoted to the study of the combustion processes of a homogeneous methane-air mixture subject to thermal stratifications within a Rapid Compression Machine (RCM). Temperature fields obtained in non-reactive conditions have been documented in a previous study and the present work aims at correlating these data with the combustion process. The analysis of chemiluminescence images enables the delineation of two propagation regimes, namely spontaneous ignition fronts and deflagrations. The first one is observed for short ignition delays as the fluid features a fairly large and homogeneous hot core zone. The second one dominates the combustion process for longer ignition delays. Indeed, despite a global homogenization of the temperature fields, the hottest zones are fairly narrow and surrounded by non negligible thermal gradients, which favors the formation of deflagrations. The results thus clearly show a strong correlation between the pre-ignition temperature field and the subsequent combustion process. They are commented in the light of recent literature. In a second part, quantitative predictions of the occurrence of autoignition fronts and deflagrations are performed by employing a criterion issued from the analysis of direct numerical simulation data (Sankaran et al., 2005). The results are in good agreement with others previously obtained through chemiluminescence imaging for early and intermediate stages of combustion. It is more difficult to conclude for later instants. The present work highlights the relevance but also suggests some limitations of the corresponding criterion for the analysis of Homogeneous Charge Compression Ignition (HCCI) combustion processes at the cylinder scale. Furthermore, the quantitative data gathered within the RCM demonstrates the relevance of this device for further investigations of these fundamental issues. |
| Author | Mura, Arnaud Strozzi, Camille Sotton, Julien Bellenoue, Marc |
| Author_xml | – sequence: 1 givenname: Camille surname: Strozzi fullname: Strozzi, Camille email: camille.strozzi@bourges.univ-orleans.fr organization: Laboratoire PRISME, EA 4229 de l’Université d’Orléans, 18020 Bourges, France – sequence: 2 givenname: Arnaud surname: Mura fullname: Mura, Arnaud organization: Institut PPRIME UPR 3346 CNRS, ENSMA, B.P. 40109, 86961 Futuroscope, France – sequence: 3 givenname: Julien surname: Sotton fullname: Sotton, Julien organization: Institut PPRIME UPR 3346 CNRS, ENSMA, B.P. 40109, 86961 Futuroscope, France – sequence: 4 givenname: Marc surname: Bellenoue fullname: Bellenoue, Marc organization: Institut PPRIME UPR 3346 CNRS, ENSMA, B.P. 40109, 86961 Futuroscope, France |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26446864$$DView record in Pascal Francis https://hal.science/hal-00772646$$DView record in HAL |
| BookMark | eNqNkc1q3DAUhU1JoZO07yAKhXYxU0n2yHZXDWnSFAa6yV5cy1ceDbI0leSQ2eUduu7L9Umi-SGUrrIS3PudI-mc8-LMeYdF8Z7RBaNMfN4slB-7KSZtYcQFp4wvqFhQxl4VM7ZcijlvOTsrZpQyOuesoW-K8xg3lNK6KstZ8ef6YYvBjOgSWAIO7C6aSLwm2-C3MEAy3pGAQ0Yi6adg3EDSGglMyZvBmcM-40D0ZO0uy3A0D9iTEdMaHP59_A0mkDxLU0Bi3EGdqYhO4V6ZcMxPgNN67Uc_oMNsjPFt8VqDjfjudF4UdzfXd1e389XP7z-uLldzVTV1mjMmQHQ950pXtFJVrcsWRdtojqgYLkXdIPQNVm3ZV1y1umNM6SV0Sw4d1eVF8elouwYrtzkNCDvpwcjby5Xcz3JaNReVuGeZ_Xhkcz6_JoxJjiYqtDb_1U9Rsrosc-6c0Yx-OKEQFVgdwCkTny_IhpVoRJW5L0dOBR9jQP2MMCr3NcuN_Ldmua9ZUiFzzVn89T-xMunQWgpg7Mssvh0tMEd8bzDIqMy-nd4EVEn23rzE5gmBedVl |
| CODEN | CBFMAO |
| CitedBy_id | crossref_primary_10_1016_j_compfluid_2020_104787 crossref_primary_10_1016_j_proci_2020_05_047 crossref_primary_10_1016_j_proci_2022_07_233 crossref_primary_10_1016_j_fuel_2016_03_016 crossref_primary_10_1016_j_proci_2016_06_192 crossref_primary_10_1080_00102202_2023_2182200 crossref_primary_10_1016_j_proci_2020_06_240 crossref_primary_10_1016_j_combustflame_2017_07_002 crossref_primary_10_1016_j_combustflame_2015_03_020 crossref_primary_10_1016_j_combustflame_2019_12_002 crossref_primary_10_1016_j_combustflame_2021_111621 crossref_primary_10_1016_j_pecs_2017_05_002 crossref_primary_10_1063_5_0212259 crossref_primary_10_3390_en16052118 crossref_primary_10_1177_14680874241272758 crossref_primary_10_1007_s10494_023_00465_8 crossref_primary_10_1016_j_apenergy_2024_122768 crossref_primary_10_1016_j_fuel_2016_11_061 crossref_primary_10_32604_EE_2020_012482 crossref_primary_10_1016_j_combustflame_2015_06_005 crossref_primary_10_1016_j_combustflame_2014_12_013 crossref_primary_10_1016_j_fuel_2019_04_030 crossref_primary_10_1016_j_proci_2020_05_038 crossref_primary_10_1080_13647830_2019_1591640 crossref_primary_10_1016_j_cja_2024_103393 crossref_primary_10_1016_j_combustflame_2019_07_017 crossref_primary_10_1016_j_proci_2018_08_059 crossref_primary_10_1016_j_combustflame_2019_01_002 crossref_primary_10_1016_j_fuel_2016_08_089 crossref_primary_10_1007_s10494_018_9980_9 crossref_primary_10_1016_j_combustflame_2019_01_004 crossref_primary_10_1016_j_proci_2018_09_019 crossref_primary_10_1016_j_combustflame_2019_10_001 crossref_primary_10_1016_j_pecs_2014_04_001 |
| Cites_doi | 10.1016/0010-2180(93)90133-N 10.1016/j.proci.2008.08.008 10.1016/0010-2180(93)90111-F 10.1016/j.combustflame.2011.03.019 10.1016/S0010-2180(02)00541-2 10.1080/00102209608935494 10.1017/CBO9780511975226.004 10.1016/j.combustflame.2007.06.010 10.1016/j.combustflame.2005.09.017 10.1016/j.combustflame.2005.01.011 10.1016/S0082-0784(06)80212-2 10.2172/5681118 10.1080/00102200802260656 10.1016/j.combustflame.2010.02.019 10.1016/j.ijhydene.2008.01.017 10.1016/S0010-2180(97)00327-1 10.1016/S0010-2180(97)00049-7 10.1016/S0016-2361(02)00134-5 10.1016/S0082-0784(00)80330-6 10.1016/S0010-2180(02)00538-2 10.1016/j.combustflame.2003.09.014 10.1007/s10494-009-9225-z 10.1016/j.enconman.2007.07.027 10.1016/0010-2180(78)90113-X 10.1017/S0022112070001234 10.1016/j.combustflame.2005.01.015 10.1016/S0010-2180(02)00417-0 10.1016/j.pecs.2009.05.001 10.1016/j.combustflame.2008.05.018 10.1016/0010-2180(80)90017-6 10.1016/j.fuel.2009.11.038 10.1039/b400997e 10.1016/j.proci.2004.08.176 10.1016/S0360-1285(99)00007-6 10.1016/j.combustflame.2011.01.025 10.1016/j.apenergy.2011.03.004 10.1016/j.proci.2006.07.252 10.1016/j.proci.2006.08.034 10.1016/0010-2180(77)90050-5 10.1016/j.combustflame.2005.09.018 10.1016/0360-1285(88)90006-8 10.1016/j.combustflame.2006.07.016 10.1243/14680874JER02006 10.1016/j.fuel.2008.09.002 10.1016/0010-2180(94)90009-4 10.1016/j.proci.2008.07.018 10.1016/j.combustflame.2005.10.019 |
| ContentType | Journal Article |
| Copyright | 2012 The Combustion Institute. 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2012 The Combustion Institute. – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION IQODW 7S9 L.6 1XC |
| DOI | 10.1016/j.combustflame.2012.06.011 |
| DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Applied Sciences |
| EISSN | 1556-2921 |
| EndPage | 3341 |
| ExternalDocumentID | oai:HAL:hal-00772646v1 26446864 10_1016_j_combustflame_2012_06_011 S0010218012001915 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c487t-116a6bd22cf404c47f39e698f2eec1e5678ead8e493d42c9fb11cf5ab52ab0f3 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309622900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-2180 |
| IngestDate | Tue Oct 14 20:51:55 EDT 2025 Sun Sep 28 14:15:06 EDT 2025 Mon Jul 21 09:15:08 EDT 2025 Tue Nov 18 22:36:44 EST 2025 Sat Nov 29 03:11:44 EST 2025 Fri Feb 23 02:27:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | HCCI Autoignition Thermal stratification Deflagration RCM Methane Homogeneous charge compression ignition Aluminium Chemiluminescence Flame propagation Numerical analysis Staged combustion Flame structure Numerical simulation Ignition delay deflagration thermal stratification autoignition |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c487t-116a6bd22cf404c47f39e698f2eec1e5678ead8e493d42c9fb11cf5ab52ab0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9983-5777 0000-0003-1575-5513 0000-0001-9625-9962 0000-0002-2872-8226 |
| PQID | 1733556210 |
| PQPubID | 24069 |
| PageCount | 19 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00772646v1 proquest_miscellaneous_1733556210 pascalfrancis_primary_26446864 crossref_primary_10_1016_j_combustflame_2012_06_011 crossref_citationtrail_10_1016_j_combustflame_2012_06_011 elsevier_sciencedirect_doi_10_1016_j_combustflame_2012_06_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-11-01 |
| PublicationDateYYYYMMDD | 2012-11-01 |
| PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Combustion and flame |
| PublicationYear | 2012 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Fiewieger, Blumenthal, Adomeit (b0070) 1997; 109 Guibert, Keromnes, Legros (b0155) 2010; 84 C. Strozzi, PhD Thesis, Université de Poitiers, 2008. S.M. Aceves, D.L. Flowers, J. Martinez-Frias, J.R. Smith, C. Westbrook, W. Pitz, R. Dibble, J. Wright, W.C. Akinyemi, R.P. Hessel, SAE Paper 2001–01-1027. F. Zhao, Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues, Society of Automotive Engineers Inc., ISBN-13:978–0768011234, 2003. Griffiths, Jiao, Kordylewski, Schreiber, Meyer, Knoche (b0145) 1993; 93 Walton, He, Zigler, Wooldridge, Atreya (b0150) 2007; 150 Yang, Wang, Wang, Shuai (b0025) 2011; 88 C. Strozzi, J. Sotton, M. Bellenoue, A. Mura, Proc. Third Eur. Combust. Meet., Chania, Greece, 2007. Minetti, Ribaucour, Carlier, Fittschen, Sochet (b0115) 1994; 96 Chen, Hawkes, Sankaran, Mason, Im (b0185) 2006; 145 Mittal, Sung (b0105) 2006; 145 Strozzi, Sotton, Mura, Bellenoue (b0205) 2009; 20 Dec (b0040) 2009; 32 R.J. Kee, J.F. Grcar, M.D. Smokke, J.A. Miller, A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Report No. SAND85-8240, UC-401, Sandia National Laboratories, 1985. Donovan, He, Zigler, Palmer, Walton, Wooldridge (b0320) 2005; 141 Kraft, Maigaard, Mauss, Christensen, Johansson (b0095) 2000; 28 Konnov (b0280) 2010; 89 MATLAB, The MathWorks, 2007. . Mittal, Raju, Sung (b0110) 2010; 157 Bansal, Im (b0325) 2011; 158 Yao, Zheng, Liu (b0015) 2009; 35 Rothamer, Snyder, Hanson, Steeper, Fitzgerald (b0030) 2009; 32 Gu, Emerson, Bradley (b0175) 2003; 133 Halstead, Kirsch, Quinn (b0270) 1977; 30 Garforth, Rallis (b0290) 1978; 31 A. Mura, F.X. Demoulin, in: S. Frolov, V. Frost, D. Roekaerts (Eds.), Micromixing in Turbulent Reactive Flows, Torus Press, Moscow, 2004, pp. 126–132. Cook, Pitsch, Chen, Hawkes (b0090) 2007; 31 Lee, Hochgreb (b0125) 1998; 114 Bisetti, Chen, Hawkes, Chen (b0085) 2008; 155 Sankaran, Im, Hawkes, Chen (b0180) 2005; 30 A. Lutz, R. Kee, J. Miller, Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Report No. SAND87-8248.UC-4, Sandia National Laboratories, 1987. Ren, Pope (b0310) 2004; 136 Würmel, Silke, Curran, Conaire, Simmie (b0210) 2007; 151 R.J. Kee, F.M. Rupley, J.A. Miller, CHEMKIN II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Report No. SAND89-8009BUC-706, Sandia National Laboratories, 1989. Zheng, Yao (b0035) 2009; 88 S.M. Aceves, D.L. Flowers, F. Espinosa-Loza, J. Martinez-Frias, R.W. Dibble, M. Christensen, B. Johansson, R.P. Hessel, SAE Tech. Papers, No. 2002-01-2869, 2002. D. Bradley, in: N. Swaminathan, K.N.C. Bray (Eds.), Turbulent Premixed Flames, Cambridge University Press, 2011, pp. 151–173. Koban, Koch, Hanson, Schulz (b0215) 2004; 6 Griffiths, Jiao, Schreiber, Meyer, Knoche, Kardylewski (b0255) 1993; 93 M. Sjöberg, SAE Tech. Papers, No. 2005-01-2125, 2005. Strozzi, Sotton, Mura, Bellenoue (b0130) 2008; 180 Hawkes, Sankaran, Pébay, Chen (b0190) 2006; 145 M. Sjöberg, J.E. Dec, N.P. Cernansky, SAE Tech. Papers, No. 2005-01-0113, 2005. Lee, Mastorakos (b0080) 2007; 8 Alkidas (b0010) 2007; 48 Zel’dovich (b0170) 1980; 39 Schlieβl, Maas (b0055) 2003; 133 Tabaczynski, Hoult, Keck (b0245) 1970; 42 Merzhanov, Khaikin (b0265) 1988; 30 N. Docquier, SAE Tech. Papers, No. 2003-01-3174, 2003. Gersen, Anikin, Mokhov, Levinsky (b0295) 2008; 33 Babkin, Kozachenko (b0275) 1966; 2 Yoo, Lu, Chen, Law (b0195) 2011; 158 Griffiths, Halford-Maw, Rose (b0220) 1993; 95 Griffiths, Whitaker (b0135) 2002; 131 Griffiths, MacNamara, Sheppard, Turton, Whitaker (b0140) 2002; 81 Desgroux, Minetti, Sochet (b0120) 1996; 113–114 A. Kakuho, M. Nagamine, Y. Amenomori, T. Urushihara, T. Itoh, SAE Tech. Papers, No. 2006-01-1202, 2006. J.E. Dec, W. Hwang, M. Sjöberg, SAE Papers, No. 2006-01-1518, 2006. Petersen, Kalitan, Simmons, Bourque, Curran, Simmie (b0235) 2007; 31 Würmel, Simmie (b0250) 2005; 141 Bartenev, Gelfand (b0160) 2000; 26 Griffiths, Jiao, Schreiber, Meyer, Knoche Proc (b0100) 1992; 24 Halstead (10.1016/j.combustflame.2012.06.011_b0270) 1977; 30 Fiewieger (10.1016/j.combustflame.2012.06.011_b0070) 1997; 109 Griffiths (10.1016/j.combustflame.2012.06.011_b0220) 1993; 95 Lee (10.1016/j.combustflame.2012.06.011_b0125) 1998; 114 Yoo (10.1016/j.combustflame.2012.06.011_b0195) 2011; 158 Alkidas (10.1016/j.combustflame.2012.06.011_b0010) 2007; 48 Griffiths (10.1016/j.combustflame.2012.06.011_b0135) 2002; 131 Merzhanov (10.1016/j.combustflame.2012.06.011_b0265) 1988; 30 Konnov (10.1016/j.combustflame.2012.06.011_b0280) 2010; 89 Cook (10.1016/j.combustflame.2012.06.011_b0090) 2007; 31 Ren (10.1016/j.combustflame.2012.06.011_b0310) 2004; 136 Strozzi (10.1016/j.combustflame.2012.06.011_b0205) 2009; 20 10.1016/j.combustflame.2012.06.011_b0050 Schlieβl (10.1016/j.combustflame.2012.06.011_b0055) 2003; 133 Lee (10.1016/j.combustflame.2012.06.011_b0080) 2007; 8 Strozzi (10.1016/j.combustflame.2012.06.011_b0130) 2008; 180 Gersen (10.1016/j.combustflame.2012.06.011_b0295) 2008; 33 Bisetti (10.1016/j.combustflame.2012.06.011_b0085) 2008; 155 Minetti (10.1016/j.combustflame.2012.06.011_b0115) 1994; 96 Desgroux (10.1016/j.combustflame.2012.06.011_b0120) 1996; 113–114 Sankaran (10.1016/j.combustflame.2012.06.011_b0180) 2005; 30 Würmel (10.1016/j.combustflame.2012.06.011_b0250) 2005; 141 Rothamer (10.1016/j.combustflame.2012.06.011_b0030) 2009; 32 Hawkes (10.1016/j.combustflame.2012.06.011_b0190) 2006; 145 10.1016/j.combustflame.2012.06.011_b0005 Mittal (10.1016/j.combustflame.2012.06.011_b0105) 2006; 145 Garforth (10.1016/j.combustflame.2012.06.011_b0290) 1978; 31 Zheng (10.1016/j.combustflame.2012.06.011_b0035) 2009; 88 10.1016/j.combustflame.2012.06.011_b0165 Gu (10.1016/j.combustflame.2012.06.011_b0175) 2003; 133 Petersen (10.1016/j.combustflame.2012.06.011_b0235) 2007; 31 10.1016/j.combustflame.2012.06.011_b0045 10.1016/j.combustflame.2012.06.011_b0240 Mittal (10.1016/j.combustflame.2012.06.011_b0110) 2010; 157 10.1016/j.combustflame.2012.06.011_b0285 Donovan (10.1016/j.combustflame.2012.06.011_b0320) 2005; 141 Guibert (10.1016/j.combustflame.2012.06.011_b0155) 2010; 84 10.1016/j.combustflame.2012.06.011_b0315 Chen (10.1016/j.combustflame.2012.06.011_b0185) 2006; 145 Dec (10.1016/j.combustflame.2012.06.011_b0040) 2009; 32 Koban (10.1016/j.combustflame.2012.06.011_b0215) 2004; 6 Kraft (10.1016/j.combustflame.2012.06.011_b0095) 2000; 28 Bansal (10.1016/j.combustflame.2012.06.011_b0325) 2011; 158 Yang (10.1016/j.combustflame.2012.06.011_b0025) 2011; 88 Yao (10.1016/j.combustflame.2012.06.011_b0015) 2009; 35 Walton (10.1016/j.combustflame.2012.06.011_b0150) 2007; 150 Griffiths (10.1016/j.combustflame.2012.06.011_b0140) 2002; 81 Griffiths (10.1016/j.combustflame.2012.06.011_b0145) 1993; 93 Zel’dovich (10.1016/j.combustflame.2012.06.011_b0170) 1980; 39 Tabaczynski (10.1016/j.combustflame.2012.06.011_b0245) 1970; 42 10.1016/j.combustflame.2012.06.011_b0075 10.1016/j.combustflame.2012.06.011_b0230 Würmel (10.1016/j.combustflame.2012.06.011_b0210) 2007; 151 Bartenev (10.1016/j.combustflame.2012.06.011_b0160) 2000; 26 10.1016/j.combustflame.2012.06.011_b0305 Griffiths (10.1016/j.combustflame.2012.06.011_b0100) 1992; 24 Griffiths (10.1016/j.combustflame.2012.06.011_b0255) 1993; 93 10.1016/j.combustflame.2012.06.011_b0260 10.1016/j.combustflame.2012.06.011_b0060 Babkin (10.1016/j.combustflame.2012.06.011_b0275) 1966; 2 10.1016/j.combustflame.2012.06.011_b0225 10.1016/j.combustflame.2012.06.011_b0300 10.1016/j.combustflame.2012.06.011_b0020 10.1016/j.combustflame.2012.06.011_b0065 |
| References_xml | – volume: 157 start-page: 1316 year: 2010 end-page: 1324 ident: b0110 publication-title: Combust. Flame – volume: 93 start-page: 303 year: 1993 end-page: 315 ident: b0255 publication-title: Combust. Flame – volume: 136 start-page: 208 year: 2004 end-page: 216 ident: b0310 publication-title: Combust. Flame – volume: 32 start-page: 2727 year: 2009 end-page: 2742 ident: b0040 publication-title: Proc. Combust. Inst. – reference: R.J. Kee, F.M. Rupley, J.A. Miller, CHEMKIN II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Report No. SAND89-8009BUC-706, Sandia National Laboratories, 1989. – volume: 84 start-page: 75 year: 2010 end-page: 79 ident: b0155 publication-title: Flow Turb. Combust. – volume: 150 start-page: 246 year: 2007 end-page: 262 ident: b0150 publication-title: Combust. Flame – volume: 158 start-page: 2105 year: 2011 end-page: 2112 ident: b0325 publication-title: Combust. Flame – volume: 131 start-page: 386 year: 2002 end-page: 399 ident: b0135 publication-title: Combust. Flame – volume: 133 start-page: 19 year: 2003 end-page: 27 ident: b0055 publication-title: Combust. Flame – volume: 48 start-page: 2751 year: 2007 end-page: 2771 ident: b0010 publication-title: Energy Convers. Manage. – reference: F. Zhao, Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues, Society of Automotive Engineers Inc., ISBN-13:978–0768011234, 2003. – volume: 114 start-page: 531 year: 1998 end-page: 545 ident: b0125 publication-title: Combust. Flame – volume: 32 start-page: 2869 year: 2009 end-page: 2876 ident: b0030 publication-title: Proc. Combust. Inst. – volume: 31 start-page: 2903 year: 2007 end-page: 2911 ident: b0090 publication-title: Proc. Combust. Inst. – reference: MATLAB, The MathWorks, 2007. < – reference: A. Lutz, R. Kee, J. Miller, Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Report No. SAND87-8248.UC-4, Sandia National Laboratories, 1987. – volume: 141 start-page: 417 year: 2005 end-page: 430 ident: b0250 publication-title: Combust. Flame – volume: 35 start-page: 398 year: 2009 end-page: 437 ident: b0015 publication-title: Prog. Energy Combust. Sci. – reference: J.E. Dec, W. Hwang, M. Sjöberg, SAE Papers, No. 2006-01-1518, 2006. – reference: R.J. Kee, J.F. Grcar, M.D. Smokke, J.A. Miller, A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Report No. SAND85-8240, UC-401, Sandia National Laboratories, 1985. – reference: D. Bradley, in: N. Swaminathan, K.N.C. Bray (Eds.), Turbulent Premixed Flames, Cambridge University Press, 2011, pp. 151–173. – volume: 88 start-page: 2949 year: 2011 end-page: 2954 ident: b0025 publication-title: Appl. Energy – reference: C. Strozzi, J. Sotton, M. Bellenoue, A. Mura, Proc. Third Eur. Combust. Meet., Chania, Greece, 2007. – volume: 30 start-page: 45 year: 1977 end-page: 60 ident: b0270 publication-title: Combust. Flame – volume: 2 start-page: 77 year: 1966 ident: b0275 publication-title: Fizika Goreniya I Vzryra – volume: 133 start-page: 63 year: 2003 end-page: 74 ident: b0175 publication-title: Combust. Flame – volume: 145 start-page: 128 year: 2006 end-page: 144 ident: b0185 publication-title: Combust. Flame – volume: 42 start-page: 249 year: 1970 ident: b0245 publication-title: J. Fluid Mech. – volume: 155 start-page: 571 year: 2008 end-page: 584 ident: b0085 publication-title: Combust. Flame – volume: 180 start-page: 1827 year: 2008 end-page: 1855 ident: b0130 publication-title: Combust. Sci. Technol. – volume: 81 start-page: 2219 year: 2002 end-page: 2225 ident: b0140 publication-title: Fuel – volume: 33 start-page: 1957 year: 2008 end-page: 1964 ident: b0295 publication-title: Int. J. Hydrogen Energy – reference: S.M. Aceves, D.L. Flowers, J. Martinez-Frias, J.R. Smith, C. Westbrook, W. Pitz, R. Dibble, J. Wright, W.C. Akinyemi, R.P. Hessel, SAE Paper 2001–01-1027. – volume: 96 start-page: 201 year: 1994 end-page: 211 ident: b0115 publication-title: Combust. Flame – volume: 95 start-page: 291 year: 1993 end-page: 306 ident: b0220 publication-title: Combust. Flame – volume: 8 start-page: 63 year: 2007 end-page: 78 ident: b0080 publication-title: Int. J. Eng. Res. – volume: 141 start-page: 360 year: 2005 end-page: 370 ident: b0320 publication-title: Combust. Flame – volume: 28 year: 2000 ident: b0095 publication-title: Proc. Combust. Inst. – reference: N. Docquier, SAE Tech. Papers, No. 2003-01-3174, 2003. – reference: S.M. Aceves, D.L. Flowers, F. Espinosa-Loza, J. Martinez-Frias, R.W. Dibble, M. Christensen, B. Johansson, R.P. Hessel, SAE Tech. Papers, No. 2002-01-2869, 2002. – volume: 31 start-page: 447 year: 2007 end-page: 454 ident: b0235 publication-title: Proc. Combust. Inst. – volume: 88 start-page: 354 year: 2009 end-page: 365 ident: b0035 publication-title: Fuel – reference: M. Sjöberg, J.E. Dec, N.P. Cernansky, SAE Tech. Papers, No. 2005-01-0113, 2005. – volume: 113–114 start-page: 193 year: 1996 end-page: 203 ident: b0120 publication-title: Combust. Sci. Technol. – volume: 145 start-page: 160 year: 2006 end-page: 180 ident: b0105 publication-title: Combust. Flame – reference: A. Kakuho, M. Nagamine, Y. Amenomori, T. Urushihara, T. Itoh, SAE Tech. Papers, No. 2006-01-1202, 2006. – reference: C. Strozzi, PhD Thesis, Université de Poitiers, 2008. – volume: 30 start-page: 1 year: 1988 end-page: 98 ident: b0265 publication-title: Prog. Energy Combust. Sci. – volume: 109 start-page: 599 year: 1997 end-page: 619 ident: b0070 publication-title: Combust. Flame – volume: 145 start-page: 145 year: 2006 end-page: 159 ident: b0190 publication-title: Combust. Flame – volume: 20 start-page: 1 year: 2009 end-page: 13 ident: b0205 publication-title: Measur. Sci. Technol. – reference: M. Sjöberg, SAE Tech. Papers, No. 2005-01-2125, 2005. – reference: >. – reference: A. Mura, F.X. Demoulin, in: S. Frolov, V. Frost, D. Roekaerts (Eds.), Micromixing in Turbulent Reactive Flows, Torus Press, Moscow, 2004, pp. 126–132. – volume: 26 start-page: 29 year: 2000 end-page: 55 ident: b0160 publication-title: Prog. Energy Combust. Sci. – volume: 31 start-page: 53 year: 1978 end-page: 68 ident: b0290 publication-title: Combust. Flame – volume: 93 start-page: 303 year: 1993 end-page: 315 ident: b0145 publication-title: Combust. Flame – volume: 151 start-page: 289 year: 2007 end-page: 302 ident: b0210 publication-title: Combust. Flame – volume: 24 start-page: 1809 year: 1992 end-page: 1815 ident: b0100 publication-title: Combust. Inst. – volume: 39 start-page: 211 year: 1980 end-page: 214 ident: b0170 publication-title: Combust. Flame – volume: 158 start-page: 1727 year: 2011 end-page: 1741 ident: b0195 publication-title: Combust. Flame – volume: 30 start-page: 875 year: 2005 end-page: 882 ident: b0180 publication-title: Proc. Combust. Inst. – volume: 6 start-page: 2940 year: 2004 end-page: 2945 ident: b0215 publication-title: Phys. Chem. Chem. Phys. – volume: 89 start-page: 2211 year: 2010 end-page: 2216 ident: b0280 publication-title: Fuel – volume: 95 start-page: 291 year: 1993 ident: 10.1016/j.combustflame.2012.06.011_b0220 publication-title: Combust. Flame doi: 10.1016/0010-2180(93)90133-N – ident: 10.1016/j.combustflame.2012.06.011_b0020 – volume: 32 start-page: 2727 year: 2009 ident: 10.1016/j.combustflame.2012.06.011_b0040 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.08.008 – volume: 93 start-page: 303 year: 1993 ident: 10.1016/j.combustflame.2012.06.011_b0145 publication-title: Combust. Flame doi: 10.1016/0010-2180(93)90111-F – volume: 158 start-page: 2105 year: 2011 ident: 10.1016/j.combustflame.2012.06.011_b0325 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.03.019 – volume: 133 start-page: 63 year: 2003 ident: 10.1016/j.combustflame.2012.06.011_b0175 publication-title: Combust. Flame doi: 10.1016/S0010-2180(02)00541-2 – volume: 113–114 start-page: 193 issue: 1996 year: 1996 ident: 10.1016/j.combustflame.2012.06.011_b0120 publication-title: Combust. Sci. Technol. doi: 10.1080/00102209608935494 – ident: 10.1016/j.combustflame.2012.06.011_b0165 doi: 10.1017/CBO9780511975226.004 – volume: 151 start-page: 289 year: 2007 ident: 10.1016/j.combustflame.2012.06.011_b0210 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2007.06.010 – volume: 145 start-page: 128 year: 2006 ident: 10.1016/j.combustflame.2012.06.011_b0185 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.09.017 – volume: 141 start-page: 360 year: 2005 ident: 10.1016/j.combustflame.2012.06.011_b0320 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.01.011 – volume: 24 start-page: 1809 year: 1992 ident: 10.1016/j.combustflame.2012.06.011_b0100 publication-title: Combust. Inst. doi: 10.1016/S0082-0784(06)80212-2 – ident: 10.1016/j.combustflame.2012.06.011_b0315 doi: 10.2172/5681118 – volume: 180 start-page: 1827 year: 2008 ident: 10.1016/j.combustflame.2012.06.011_b0130 publication-title: Combust. Sci. Technol. doi: 10.1080/00102200802260656 – ident: 10.1016/j.combustflame.2012.06.011_b0285 – volume: 157 start-page: 1316 year: 2010 ident: 10.1016/j.combustflame.2012.06.011_b0110 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2010.02.019 – ident: 10.1016/j.combustflame.2012.06.011_b0300 – volume: 2 start-page: 77 year: 1966 ident: 10.1016/j.combustflame.2012.06.011_b0275 publication-title: Fizika Goreniya I Vzryra – ident: 10.1016/j.combustflame.2012.06.011_b0225 – volume: 33 start-page: 1957 year: 2008 ident: 10.1016/j.combustflame.2012.06.011_b0295 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.017 – volume: 114 start-page: 531 year: 1998 ident: 10.1016/j.combustflame.2012.06.011_b0125 publication-title: Combust. Flame doi: 10.1016/S0010-2180(97)00327-1 – ident: 10.1016/j.combustflame.2012.06.011_b0260 – volume: 109 start-page: 599 year: 1997 ident: 10.1016/j.combustflame.2012.06.011_b0070 publication-title: Combust. Flame doi: 10.1016/S0010-2180(97)00049-7 – volume: 81 start-page: 2219 year: 2002 ident: 10.1016/j.combustflame.2012.06.011_b0140 publication-title: Fuel doi: 10.1016/S0016-2361(02)00134-5 – volume: 28 year: 2000 ident: 10.1016/j.combustflame.2012.06.011_b0095 publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80330-6 – volume: 133 start-page: 19 year: 2003 ident: 10.1016/j.combustflame.2012.06.011_b0055 publication-title: Combust. Flame doi: 10.1016/S0010-2180(02)00538-2 – volume: 136 start-page: 208 year: 2004 ident: 10.1016/j.combustflame.2012.06.011_b0310 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2003.09.014 – volume: 84 start-page: 75 year: 2010 ident: 10.1016/j.combustflame.2012.06.011_b0155 publication-title: Flow Turb. Combust. doi: 10.1007/s10494-009-9225-z – volume: 48 start-page: 2751 year: 2007 ident: 10.1016/j.combustflame.2012.06.011_b0010 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2007.07.027 – volume: 31 start-page: 53 year: 1978 ident: 10.1016/j.combustflame.2012.06.011_b0290 publication-title: Combust. Flame doi: 10.1016/0010-2180(78)90113-X – volume: 42 start-page: 249 year: 1970 ident: 10.1016/j.combustflame.2012.06.011_b0245 publication-title: J. Fluid Mech. doi: 10.1017/S0022112070001234 – volume: 141 start-page: 417 year: 2005 ident: 10.1016/j.combustflame.2012.06.011_b0250 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.01.015 – volume: 131 start-page: 386 year: 2002 ident: 10.1016/j.combustflame.2012.06.011_b0135 publication-title: Combust. Flame doi: 10.1016/S0010-2180(02)00417-0 – volume: 35 start-page: 398 year: 2009 ident: 10.1016/j.combustflame.2012.06.011_b0015 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.05.001 – ident: 10.1016/j.combustflame.2012.06.011_b0045 – ident: 10.1016/j.combustflame.2012.06.011_b0240 – volume: 155 start-page: 571 year: 2008 ident: 10.1016/j.combustflame.2012.06.011_b0085 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.05.018 – volume: 39 start-page: 211 year: 1980 ident: 10.1016/j.combustflame.2012.06.011_b0170 publication-title: Combust. Flame doi: 10.1016/0010-2180(80)90017-6 – volume: 89 start-page: 2211 year: 2010 ident: 10.1016/j.combustflame.2012.06.011_b0280 publication-title: Fuel doi: 10.1016/j.fuel.2009.11.038 – volume: 6 start-page: 2940 year: 2004 ident: 10.1016/j.combustflame.2012.06.011_b0215 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b400997e – volume: 30 start-page: 875 year: 2005 ident: 10.1016/j.combustflame.2012.06.011_b0180 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2004.08.176 – volume: 26 start-page: 29 year: 2000 ident: 10.1016/j.combustflame.2012.06.011_b0160 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/S0360-1285(99)00007-6 – volume: 158 start-page: 1727 year: 2011 ident: 10.1016/j.combustflame.2012.06.011_b0195 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.01.025 – volume: 88 start-page: 2949 year: 2011 ident: 10.1016/j.combustflame.2012.06.011_b0025 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.03.004 – volume: 20 start-page: 1 issue: 125403 year: 2009 ident: 10.1016/j.combustflame.2012.06.011_b0205 publication-title: Measur. Sci. Technol. – volume: 31 start-page: 2903 year: 2007 ident: 10.1016/j.combustflame.2012.06.011_b0090 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.07.252 – ident: 10.1016/j.combustflame.2012.06.011_b0065 – volume: 31 start-page: 447 year: 2007 ident: 10.1016/j.combustflame.2012.06.011_b0235 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.08.034 – ident: 10.1016/j.combustflame.2012.06.011_b0075 – volume: 30 start-page: 45 year: 1977 ident: 10.1016/j.combustflame.2012.06.011_b0270 publication-title: Combust. Flame doi: 10.1016/0010-2180(77)90050-5 – volume: 145 start-page: 145 year: 2006 ident: 10.1016/j.combustflame.2012.06.011_b0190 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.09.018 – volume: 30 start-page: 1 year: 1988 ident: 10.1016/j.combustflame.2012.06.011_b0265 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(88)90006-8 – volume: 150 start-page: 246 year: 2007 ident: 10.1016/j.combustflame.2012.06.011_b0150 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2006.07.016 – ident: 10.1016/j.combustflame.2012.06.011_b0305 – ident: 10.1016/j.combustflame.2012.06.011_b0005 – volume: 8 start-page: 63 year: 2007 ident: 10.1016/j.combustflame.2012.06.011_b0080 publication-title: Int. J. Eng. Res. doi: 10.1243/14680874JER02006 – volume: 88 start-page: 354 year: 2009 ident: 10.1016/j.combustflame.2012.06.011_b0035 publication-title: Fuel doi: 10.1016/j.fuel.2008.09.002 – ident: 10.1016/j.combustflame.2012.06.011_b0060 – volume: 96 start-page: 201 year: 1994 ident: 10.1016/j.combustflame.2012.06.011_b0115 publication-title: Combust. Flame doi: 10.1016/0010-2180(94)90009-4 – ident: 10.1016/j.combustflame.2012.06.011_b0050 – ident: 10.1016/j.combustflame.2012.06.011_b0230 – volume: 93 start-page: 303 year: 1993 ident: 10.1016/j.combustflame.2012.06.011_b0255 publication-title: Combust. Flame doi: 10.1016/0010-2180(93)90111-F – volume: 32 start-page: 2869 year: 2009 ident: 10.1016/j.combustflame.2012.06.011_b0030 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.07.018 – volume: 145 start-page: 160 year: 2006 ident: 10.1016/j.combustflame.2012.06.011_b0105 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.10.019 |
| SSID | ssj0007433 |
| Score | 2.248719 |
| Snippet | The present work is devoted to the study of the combustion processes of a homogeneous methane–air mixture subject to thermal stratification within a rapid... The present work is devoted to the study of the combustion processes of a homogeneous methane-air mixture subject to thermal stratifications within a Rapid... |
| SourceID | hal proquest pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3323 |
| SubjectTerms | Applied sciences Autoignition chemiluminescence combustion Combustion. Flame Deflagration Energy Energy. Thermal use of fuels Engineering Sciences Exact sciences and technology HCCI homogenization image analysis mathematical models prediction RCM Reactive fluid environment temperature profiles Theoretical studies. Data and constants. Metering Thermal stratification |
| Title | Experimental analysis of propagation regimes during the autoignition of a fully premixed methane–air mixture in the presence of temperature inhomogeneities |
| URI | https://dx.doi.org/10.1016/j.combustflame.2012.06.011 https://www.proquest.com/docview/1733556210 https://hal.science/hal-00772646 |
| Volume | 159 |
| WOSCitedRecordID | wos000309622900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1556-2921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007433 issn: 0010-2180 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO9jG2KXdWHYp2thbMVi--2EPWfFoR0hG50Loi5Ftiaa0dsiN7Lfsl-3f7OhiR2kpyx72YoIi2bHPl6NP8jnfQeiTRyNGbc6suOTU8njhW5TYkVXmQclt16Pcp7LYRDgYRKNR_L3T-d3kwiyvw6qKVqt48l9NDW1gbJE6-w_mbk8KDfAZjA5HMDsctzJ8Ymr2U0NzBHwleA9lcFGPQcg06SxFwT7pYl6PZSyRopD0SGzN_xQqAjfjFfBSUWyaVsyi4-kRtMhXDzpKciKTmAoVccCAiSulZvj6sr6p4acyKdxqMmFwRLmoJKajoTkgs8XYj_RseHFxqgJSRF2kdYDu-VlPujN4Douy7T9M0-GgSfdeJ7d9Sfr9ZDA8T3RWUmHucRBHJ_u1G2-aJZiOHKYPYCf2hiPX2uIascTwy66rspr1HO-6Sm3rzvyhtjKuhPnFM5D3LuL_HCnyqk-5Idp9azJtQxwF0QyiwNtBe07ox-Bw93qnyehbSxOAuqnwB30njSKuDD687_r3saedSxHG-2RCZ_DP5qokyx12ISlT-hw91Wsd3FMYfYE6rNpHz_S6B-tZZbaPHh43VQf30WNDIPMA_TLBjBsw45pjA8xYgxkrMGMAJDbBLLpTLMGMGzBjA8xYgxmPKzm2AbMYZ4AZ3wLzS5R-TdLjE0uXE7EKWJXPAVMBDfLScQru2V7hhdyNWRBH3GGsIMwH2gZuNWJe7JaeU8Q8J6QAV5X7Ds1t7r5Cu1VdsdcIl-D4bGh0yjz2iMNpEAdCpikmYUhK1--iuLFSVmipfVHx5TprYiqvMtPCmbBwJgJMCekitx07UYIzW4363IAh09RZUeIMkL3V-I-AoPaCQnP-pNfPRJsQ_AIwB0vodLgBsLZ7g_Uu-tAgLgPYiFePYMl6MctI6MLCJnCI_eZvJ3mLHq1dwDu0O58u2Hv0oFjOx7Ppof4X_QFSFhQX |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+analysis+of+propagation+regimes+during+the+autoignition+of+a+fully+premixed+methane-air+mixture+in+the+presence+of+temperature+inhomogeneities&rft.jtitle=Combustion+and+flame&rft.au=STROZZI%2C+Camille&rft.au=MURA%2C+Arnaud&rft.au=SOTTON%2C+Julien&rft.au=BELLENOUE%2C+Marc&rft.date=2012-11-01&rft.pub=Elsevier&rft.issn=0010-2180&rft.volume=159&rft.issue=11&rft.spage=3323&rft.epage=3341&rft_id=info:doi/10.1016%2Fj.combustflame.2012.06.011&rft.externalDBID=n%2Fa&rft.externalDocID=26446864 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |