The Pathmox approach for PLS path modeling segmentation
Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variab...
Saved in:
| Published in: | Applied stochastic models in business and industry Vol. 32; no. 4; pp. 453 - 468 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
Blackwell Publishing Ltd
01.07.2016
|
| Subjects: | |
| ISSN: | 1524-1904, 1526-4025 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub‐populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look‐alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | This is the peer reviewed version of the following article: Giuseppe Lamberti, Aluja, T., Sanchez, G. The Pathmox approach for PLS path modeling segmentation. "Applied stochastic models in business and industry", Agost 2016, vol. 32, núm. 4, p. 453-468, which has been published in final form at DOI: 10.1002/asmb.2168. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub-populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look-alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd.
Peer Reviewed Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of 'one model fits all' is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub-populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look-alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub‐populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look‐alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd. Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub‐populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look‐alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd. |
| Author | Lamberti, Giuseppe Aluja, Tomas Banet Sanchez, Gaston |
| Author_xml | – sequence: 1 givenname: Giuseppe surname: Lamberti fullname: Lamberti, Giuseppe email: Correspondence to: Giuseppe Lamberti, Universitat Politècnica de Catalunya - Barcelona Tech, Department of Statistics and Operation, Research Campus Nord, C5204 c. Jordi Girona 1-3, Barcelona 08034, Spain., giuseppelamb@hotmail.com organization: Department of Statistics and Operation Research, Universitat Politècnica de Catalunya - Barcelona Tech, Campus Nord, C5204 c. Jordi Girona 1-3, 08034, Barcelona, Spain – sequence: 2 givenname: Tomas Banet surname: Aluja fullname: Aluja, Tomas Banet organization: Department of Statistics and Operation Research, Universitat Politècnica de Catalunya - Barcelona Tech, Campus Nord, C5204 c. Jordi Girona 1-3, 08034, Barcelona, Spain – sequence: 3 givenname: Gaston surname: Sanchez fullname: Sanchez, Gaston organization: Data Science Insight, CA, Palo Alto, U.S.A |
| BookMark | eNp9kFtLAzEQhYMoeH3wH-yjPqwm2dz6qKKtWi9gRfAlZNOJje5uarJF_fdubVEQ9GGYGeZ8B-ZsotUmNIDQLsEHBGN6aFJdHlAi1AraIJyKnGHKV79mlpMeZutoM6VnjAlhkmwgOZpAdmvaSR3eMzOdxmDsJHMhZrfDu2zaHbI6jKHyzVOW4KmGpjWtD802WnOmSrCz7Fvo_ux0dDLIhzf985OjYW6Zkio3inKgPckM741xiccOc16AA2bHhaKlA0UkkJIIZo0rqWISKBQMnHA96VixhcjC16aZ1REsRGtaHYz_WeZFsaSaKlII2TF7C6b75nUGqdW1TxaqyjQQZkkTVXAhpBK8k-4v7WNIKYLT0-hrEz80wXoeqJ4HqueBdtrDX1rrF2G00fjqP-LNV_Dxt7U-urs6XhL5gvCphfdvwsQX3T0muX647muh-o-Dy4uRHhSf7rGYNg |
| CitedBy_id | crossref_primary_10_1007_s00180_023_01371_3 crossref_primary_10_1007_s11205_018_1983_3 crossref_primary_10_1080_02681102_2023_2202640 crossref_primary_10_1080_09585192_2020_1711798 crossref_primary_10_1016_j_landurbplan_2020_103932 crossref_primary_10_1007_s11634_021_00469_0 crossref_primary_10_7202_1092158ar crossref_primary_10_1002_asmb_2270 crossref_primary_10_1007_s11135_023_01760_2 crossref_primary_10_1016_j_clrc_2025_100273 crossref_primary_10_1080_03075079_2020_1723526 crossref_primary_10_1007_s11135_021_01096_9 crossref_primary_10_1007_s10198_024_01753_4 crossref_primary_10_1016_j_telpol_2020_102055 crossref_primary_10_1016_j_trpro_2018_11_040 crossref_primary_10_1080_00222216_2023_2193178 crossref_primary_10_1007_s11135_021_01149_z crossref_primary_10_1108_IJSMS_12_2020_0210 crossref_primary_10_4102_sajems_v26i1_4970 |
| Cites_doi | 10.1007/s11747-011-0278-x 10.2307/1251898 10.1287/mksc.16.1.39 10.2139/ssrn.1586309 10.1177/002224378201900406 10.1080/10705510903439003 10.1080/09544120100000010 10.1007/BF02296397 10.1007/978-3-642-52512-4 10.1007/BF03396655 10.1037/0022-3514.51.6.1173 10.1007/978-3-540-32827-8_6 10.1007/978-3-540-32827-8_3 10.1080/09544120050135425 10.1007/s11747-011-0261-6 10.1007/978-3-540-32827-8_10 10.1287/isre.14.2.189.16018 10.1016/j.csda.2004.03.005 10.1207/S15327906MBR3702_03 10.1002/asmb.728 10.1080/09544120050008264 10.1007/978-3-540-32827-8_29 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya. LIAM - Laboratori de Modelització i Anàlisi de la Informació |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa – sequence: 2 fullname: Universitat Politècnica de Catalunya. LIAM - Laboratori de Modelització i Anàlisi de la Informació |
| Copyright | Copyright © 2016 John Wiley & Sons, Ltd. info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
| Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| DBID | BSCLL AAYXX CITATION 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D XX2 |
| DOI | 10.1002/asmb.2168 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Materials Business File Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Recercat |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1526-4025 |
| EndPage | 468 |
| ExternalDocumentID | oai_recercat_cat_2072_281367 10_1002_asmb_2168 ASMB2168 ark_67375_WNG_68GZHKJT_H |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHQJS AIDQK AIDYY AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBA EBO EBR EBS EBU EJD EMK EPL F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC K1G KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW QWB R.K ROL RX1 RYL SUPJJ TH9 UB1 W8V W99 WBKPD WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 YHZ ZL0 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI WRC AAYXX CITATION O8X 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D XX2 |
| ID | FETCH-LOGICAL-c4878-a825e2974a59d0b0df0553efe4cd382bfe817e1b164cafb2847e2e34ef6f97f43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380899200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-1904 |
| IngestDate | Fri Nov 07 13:50:44 EST 2025 Thu Oct 02 06:52:51 EDT 2025 Tue Nov 18 22:33:37 EST 2025 Sat Nov 29 06:37:41 EST 2025 Wed Jan 22 16:58:40 EST 2025 Tue Nov 11 03:33:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4878-a825e2974a59d0b0df0553efe4cd382bfe817e1b164cafb2847e2e34ef6f97f43 |
| Notes | istex:D1190D4C97F4A940C3DE60D4B606F7B3578E6B35 ark:/67375/WNG-68GZHKJT-H ArticleID:ASMB2168 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/281367 |
| PQID | 1835667865 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_281367 proquest_miscellaneous_1835667865 crossref_primary_10_1002_asmb_2168 crossref_citationtrail_10_1002_asmb_2168 wiley_primary_10_1002_asmb_2168_ASMB2168 istex_primary_ark_67375_WNG_68GZHKJT_H |
| PublicationCentury | 2000 |
| PublicationDate | July/August 2016 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: July/August 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied stochastic models in business and industry |
| PublicationTitleAlternate | Appl. Stochastic Models Bus. Ind |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Henseler J, Chin WW. A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares modeling. Structural Equation Modeling: A Multidisciplinary Journal 2010; 17(1):82-109. Fornell C, Bookstein FL. Two structural equation models: LISREL and PLS applied to consumer Exit-Voice theory. Journal of Marketing Research 1982; 19(4):440-452. Lohmöller JB. Latent Variable Path Modeling with Partial Least Squares. Physica: Heildelberg, 1989. Hackl P, Westlund AH. On structural equation modeling for customer satisfaction measurement. Total Quality Management 2000; 11(4,5,6):820-825. Esposito Vinzi V, Trinchera L, Squillacciotti S, Tenenhaus M. REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modeling. Applied Stochastic Models in Business and Industry 2008; 24:439-458. 10.1002/asmb.728. Hair JF, Sarstedt M, Ringle CM. An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science 2012; 40:414-430. 10.1007/s11747-011-0261-6. Jedidi K, Jagpal HS, DeSarbo WS. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science 1997; 16:39-59. 10.1287/mksc.16.1.39. Bagozzi RP, Yi Y. Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science 2012; 40:8-34. 10.1007/s11747-011-0278-x. Fornell CG, Johnson MD, Anderson EW, Cha J, Everitt B. The American Customer Satisfaction Index: nature, purpose and findings. Journal of Marketing 1996; 60(4):7-18. Lebart L, Morineau A, Fénelon JP. Traitement des donnes statistiques. Dunod: Paris, France, 1979. Anderson E, Fornell C. Foundations of the American Customer Satisfaction Index. Total Quality Management 2000; 11(7):869-882. Hahn C, Johnson MD, Herrmann A, Huber A. Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review 2002; 54:243-269. Muthén BO. Latent variable modeling in heterogeneous populations. Psychometrika 1989; 54:557-585. 10.1007/BF02296397. Brandmaier AM, Oertzen T, McArdle JJ, Lindenberger U. Structural equation model trees. Psychological methods. American Psychological Association 2013; 18(1):71-86. Tenenhaus M, Esposito Vinzi V, Chatelin YM, Lauro C. PLS path modeling. Computational Statistics and Data Analysis 2005; 48:159-205. 10.1016/j.csda.2004.03.005. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 1986; 5(6):1173-1182. Chin WW, Marcolin BL, Newsted PR. Partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research 2003; 14(2):189-217. Westlund AH, Cassel CM, Eklöf J, Hackl P. Structural analysis and measurement of customer perceptions, assuming measurement and specifications errors. Total Quality Management 2001; 12(7,8):873-881. Reinartz WJ, Echambadi R, Chin WW. Generating non-normal data for simulation of structural equation models using Mattson's method. Multivariate Behavioral Research 2002; 37(2):227-244. 2002; 37 1982; 19 2010 2010; 17 2002; 54 1998 2009 2003; 14 2007 2006 2005 2003 2005; 48 1979 2013; 18 1989; 54 2000; 11 1986; 5 1996; 60 1985 1997; 16 2008; 24 1982 2001; 12 1989 2012; 40 e_1_2_9_30_1 e_1_2_9_31_1 Wold H (e_1_2_9_8_1) 1985 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Henseler J (e_1_2_9_35_1) 2005 Esposito Vinzi V (e_1_2_9_14_1) 2010 Sanchez G (e_1_2_9_27_1) 2007 Ringle CM (e_1_2_9_19_1) 2005 e_1_2_9_15_1 e_1_2_9_38_1 Chin WW (e_1_2_9_34_1) 2003 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_18_1 Sanchez G (e_1_2_9_28_1) 2009 Lebart L (e_1_2_9_37_1) 1979 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_7_1 e_1_2_9_5_1 Sanchez G (e_1_2_9_26_1) 2006 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Chin WW (e_1_2_9_10_1) 1998 Squillacciotti S (e_1_2_9_21_1) 2005 Brandmaier AM (e_1_2_9_29_1) 2013; 18 e_1_2_9_9_1 Trinchera L (e_1_2_9_23_1) 2007 Wold H (e_1_2_9_6_1) 1982 e_1_2_9_25_1 |
| References_xml | – reference: Bagozzi RP, Yi Y. Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science 2012; 40:8-34. 10.1007/s11747-011-0278-x. – reference: Fornell C, Bookstein FL. Two structural equation models: LISREL and PLS applied to consumer Exit-Voice theory. Journal of Marketing Research 1982; 19(4):440-452. – reference: Fornell CG, Johnson MD, Anderson EW, Cha J, Everitt B. The American Customer Satisfaction Index: nature, purpose and findings. Journal of Marketing 1996; 60(4):7-18. – reference: Hackl P, Westlund AH. On structural equation modeling for customer satisfaction measurement. Total Quality Management 2000; 11(4,5,6):820-825. – reference: Lebart L, Morineau A, Fénelon JP. Traitement des donnes statistiques. Dunod: Paris, France, 1979. – reference: Hahn C, Johnson MD, Herrmann A, Huber A. Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review 2002; 54:243-269. – reference: Hair JF, Sarstedt M, Ringle CM. An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science 2012; 40:414-430. 10.1007/s11747-011-0261-6. – reference: Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 1986; 5(6):1173-1182. – reference: Jedidi K, Jagpal HS, DeSarbo WS. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science 1997; 16:39-59. 10.1287/mksc.16.1.39. – reference: Brandmaier AM, Oertzen T, McArdle JJ, Lindenberger U. Structural equation model trees. Psychological methods. American Psychological Association 2013; 18(1):71-86. – reference: Chin WW, Marcolin BL, Newsted PR. Partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research 2003; 14(2):189-217. – reference: Henseler J, Chin WW. A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares modeling. Structural Equation Modeling: A Multidisciplinary Journal 2010; 17(1):82-109. – reference: Tenenhaus M, Esposito Vinzi V, Chatelin YM, Lauro C. PLS path modeling. Computational Statistics and Data Analysis 2005; 48:159-205. 10.1016/j.csda.2004.03.005. – reference: Esposito Vinzi V, Trinchera L, Squillacciotti S, Tenenhaus M. REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modeling. Applied Stochastic Models in Business and Industry 2008; 24:439-458. 10.1002/asmb.728. – reference: Reinartz WJ, Echambadi R, Chin WW. Generating non-normal data for simulation of structural equation models using Mattson's method. Multivariate Behavioral Research 2002; 37(2):227-244. – reference: Westlund AH, Cassel CM, Eklöf J, Hackl P. Structural analysis and measurement of customer perceptions, assuming measurement and specifications errors. Total Quality Management 2001; 12(7,8):873-881. – reference: Lohmöller JB. Latent Variable Path Modeling with Partial Least Squares. Physica: Heildelberg, 1989. – reference: Muthén BO. Latent variable modeling in heterogeneous populations. Psychometrika 1989; 54:557-585. 10.1007/BF02296397. – reference: Anderson E, Fornell C. Foundations of the American Customer Satisfaction Index. Total Quality Management 2000; 11(7):869-882. – volume: 60 start-page: 7 issue: 4 year: 1996 end-page: 18 article-title: The American Customer Satisfaction Index: nature, purpose and findings publication-title: Journal of Marketing – article-title: R package plspm – volume: 11 start-page: 820 issue: 4,5,6 year: 2000 end-page: 825 article-title: On structural equation modeling for customer satisfaction measurement publication-title: Total Quality Management – volume: 11 start-page: 869 issue: 7 year: 2000 end-page: 882 article-title: Foundations of the American Customer Satisfaction Index publication-title: Total Quality Management – start-page: 125 year: 2010 end-page: 140 – year: 1989 – start-page: 33 year: 2003 end-page: 43 – volume: 40 start-page: 8 year: 2012 end-page: 34 article-title: Specification, evaluation, and interpretation of structural equation models publication-title: Journal of the Academy of Marketing Science – volume: 5 start-page: 1173 issue: 6 year: 1986 end-page: 1182 article-title: The moderator‐mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations publication-title: Journal of Personality and Social Psychology – volume: 40 start-page: 414 year: 2012 end-page: 430 article-title: An assessment of the use of partial least squares structural equation modeling in marketing research publication-title: Journal of the Academy of Marketing Science – start-page: 47 year: 2010 end-page: 82 – volume: 19 start-page: 440 issue: 4 year: 1982 end-page: 452 article-title: Two structural equation models: LISREL and PLS applied to consumer Exit‐Voice theory publication-title: Journal of Marketing Research – year: 1979 – start-page: 507 year: 2005 end-page: 514 – volume: 17 start-page: 82 issue: 1 year: 2010 end-page: 109 article-title: A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares modeling publication-title: Structural Equation Modeling: A Multidisciplinary Journal – volume: 54 start-page: 557 year: 1989 end-page: 585 article-title: Latent variable modeling in heterogeneous populations publication-title: Psychometrika – start-page: 79 year: 2007 end-page: 82 – volume: 16 start-page: 39 year: 1997 end-page: 59 article-title: Finite‐mixture structural equation models for response‐based segmentation and unobserved heterogeneity publication-title: Marketing Science – start-page: 499 year: 2005 end-page: 506 – start-page: 655 year: 2010 end-page: 690 – volume: 12 start-page: 873 issue: 7,8 year: 2001 end-page: 881 article-title: Structural analysis and measurement of customer perceptions, assuming measurement and specifications errors publication-title: Total Quality Management – volume: 14 start-page: 189 issue: 2 year: 2003 end-page: 217 article-title: Partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic‐mail emotion/adoption study publication-title: Information Systems Research – year: 2006 – start-page: 295 year: 1998 end-page: 336 – start-page: 33 year: 2007 end-page: 36 – start-page: 1 year: 1982 end-page: 54 – volume: 48 start-page: 159 year: 2005 end-page: 205 article-title: PLS path modeling publication-title: Computational Statistics and Data Analysis – volume: 18 start-page: 71 issue: 1 year: 2013 end-page: 86 article-title: Structural equation model trees. Psychological methods publication-title: American Psychological Association – volume: 54 start-page: 243 year: 2002 end-page: 269 article-title: Capturing customer heterogeneity using a finite mixture PLS approach publication-title: Schmalenbach Business Review – volume: 37 start-page: 227 issue: 2 year: 2002 end-page: 244 article-title: Generating non‐normal data for simulation of structural equation models using Mattson's method publication-title: Multivariate Behavioral Research – start-page: 54 year: 2009 end-page: 59 – start-page: 581 year: 1985 end-page: 591 – start-page: 219 year: 2010 end-page: 233 – start-page: 371 year: 2005 end-page: 377 – volume: 24 start-page: 439 year: 2008 end-page: 458 article-title: REBUS‐PLS: a response‐based procedure for detecting unit segments in PLS path modeling publication-title: Applied Stochastic Models in Business and Industry – ident: e_1_2_9_5_1 doi: 10.1007/s11747-011-0278-x – ident: e_1_2_9_15_1 doi: 10.2307/1251898 – ident: e_1_2_9_3_1 doi: 10.1287/mksc.16.1.39 – ident: e_1_2_9_20_1 doi: 10.2139/ssrn.1586309 – ident: e_1_2_9_7_1 doi: 10.1177/002224378201900406 – volume-title: Traitement des donnes statistiques year: 1979 ident: e_1_2_9_37_1 – ident: e_1_2_9_36_1 doi: 10.1080/10705510903439003 – ident: e_1_2_9_25_1 – ident: e_1_2_9_16_1 doi: 10.1080/09544120100000010 – ident: e_1_2_9_17_1 – ident: e_1_2_9_2_1 doi: 10.1007/BF02296397 – ident: e_1_2_9_9_1 doi: 10.1007/978-3-642-52512-4 – start-page: 1 volume-title: Systems under Indirect Observation: Causality, Structure, Prediction year: 1982 ident: e_1_2_9_6_1 – start-page: 371 volume-title: Proceedings of the PLS05 International Symposium year: 2005 ident: e_1_2_9_35_1 – ident: e_1_2_9_18_1 doi: 10.1007/BF03396655 – ident: e_1_2_9_39_1 – ident: e_1_2_9_30_1 doi: 10.1037/0022-3514.51.6.1173 – start-page: 499 volume-title: Proceedings of the PLS05 International Symposium year: 2005 ident: e_1_2_9_21_1 – volume-title: Electronic Proceedings of the workshop on Knowledge Extraction and Modeling (KNEMO) year: 2006 ident: e_1_2_9_26_1 – ident: e_1_2_9_31_1 doi: 10.1007/978-3-540-32827-8_6 – start-page: 33 volume-title: Proceedings of the PLS07 International Symposium year: 2007 ident: e_1_2_9_27_1 – volume: 18 start-page: 71 issue: 1 year: 2013 ident: e_1_2_9_29_1 article-title: Structural equation model trees. Psychological methods publication-title: American Psychological Association – start-page: 47 volume-title: Handbook of Partial Least Squares year: 2010 ident: e_1_2_9_14_1 doi: 10.1007/978-3-540-32827-8_3 – start-page: 581 volume-title: Encyclopedia of Statistical Sciences year: 1985 ident: e_1_2_9_8_1 – ident: e_1_2_9_11_1 doi: 10.1080/09544120050135425 – ident: e_1_2_9_4_1 doi: 10.1007/s11747-011-0261-6 – ident: e_1_2_9_22_1 doi: 10.1007/978-3-540-32827-8_10 – start-page: 54 volume-title: Proceedings of the PLS'09 International Symposium year: 2009 ident: e_1_2_9_28_1 – start-page: 33 volume-title: Proceedings of the PLS03 International Symposium year: 2003 ident: e_1_2_9_34_1 – start-page: 79 volume-title: Proceedings of the PLS07 International Symposium year: 2007 ident: e_1_2_9_23_1 – ident: e_1_2_9_32_1 doi: 10.1287/isre.14.2.189.16018 – ident: e_1_2_9_13_1 doi: 10.1016/j.csda.2004.03.005 – start-page: 507 volume-title: Proceedings of the PLS05 International Symposium year: 2005 ident: e_1_2_9_19_1 – ident: e_1_2_9_38_1 doi: 10.1207/S15327906MBR3702_03 – start-page: 295 volume-title: Modern Methods for Business Research year: 1998 ident: e_1_2_9_10_1 – ident: e_1_2_9_24_1 doi: 10.1002/asmb.728 – ident: e_1_2_9_12_1 doi: 10.1080/09544120050008264 – ident: e_1_2_9_33_1 doi: 10.1007/978-3-540-32827-8_29 |
| SSID | ssj0011471 |
| Score | 2.1514568 |
| Snippet | Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in... This is the peer reviewed version of the following article: Giuseppe Lamberti, Aluja, T., Sanchez, G. The Pathmox approach for PLS path modeling segmentation.... |
| SourceID | csuc proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 453 |
| SubjectTerms | 60 Probability theory and stochastic processes 60H Stochastic analysis 62 Statistics 62H Multivariate analysis Anàlisi multivariable Anàlisi multivariant Classificació AMS Construction Criteria Decision trees Decisions Estadística matemàtica Heterogeneity Least squares method Matemàtiques i estadística Mathematical models model comparison Modelling Multivariate analysis Mètodes estadístics partial least squares path modeling Processos estocàstics segmentation segmentation trees Stochastic processes Àrees temàtiques de la UPC |
| Title | The Pathmox approach for PLS path modeling segmentation |
| URI | https://api.istex.fr/ark:/67375/WNG-68GZHKJT-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.2168 https://www.proquest.com/docview/1835667865 https://recercat.cat/handle/2072/281367 |
| Volume | 32 |
| WOSCitedRecordID | wos000380899200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1526-4025 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011471 issn: 1524-1904 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB6STR-Sh94hmx6opZRScGPLtiSTp_TYLO1mWZqkWfoiJFkKIVlvWe-W_PyMfLWBFgp9MNhGFvLMSPONjm8AXiWxETQxOPqlGQsQEUeByHITOOOinAnHRJVF4duIj8diOs0ma7DfnoWp-SG6CTffM6rx2ndwpcu9X6ShqpzpdzRiYh02KNpt0oONj18Hp6NuESFq4q2UJgH6vaQlFgrpXvfxLXfUM-XKIEr1Ar6-BTl_B66V5xnc-68234e7DeAkB7WFPIA1WzyEraOOrbV8BBxthUzwzWx-TVqScYJolkxGx8TnLCZVwhz0cqS057PmuFLxGE4Hn04-DIMmoUJgUAsiUBgOWooRhEqzPNRh7sI0ja2zicljQbWzIuI20hhCGeW091yW2jixjrmMuyTehl4xL-wOEB6lOWItlnOrMESMM8e1yrTWkcB6Fe_Dm1au0jRs4z7pxZWseZKp9LKQXhZ9eNkV_VFTbPyp0FuvHIluwC6MWkpPi909-IuGnEoqPAVdH15XKuyqU4tLv4GNp_JsfCiZOPw-_PL5RA778KLVscRu5ddKVGHnq1LiSIdAlwuW4p9UKv172-TB8dF7f7P770WfwCZCL1Zv_H0KveViZZ_BHfNzeVEunjeWfAOOx_ZG |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEB_OPUH94PtwfUYRkYPetWnzKPjlfOytXndZvD09_BLSNBHR7cp2V-7Pd9KXHigIfii0JQ3pzCTzmzx-A_A0iY2kicHRj6U8QEQcBTItTOCMiwouHZd1FoUPmZhO5elpOtuCF91ZmIYfop9w8z2jHq99B_cT0vu_WEN1tcj3aMTlBdhO0IzYALZfvx-dZP0qQtQGXIwmATq-pGMWCul-__E5fzQw1cYgTPUSPjuHOX9HrrXrGV37v0Zfh6st5CQHjY3cgC1b3oQrk56vtboFAq2FzPDNYnlGOppxgniWzLJj4rMWkzplDvo5UtnPi_bAUnkbTkZv5q_GQZtSITCoBxloDAgtxRhCs7QI87BwIWOxdTYxRSxp7qyMhI1yDKKMdrn3XZbaOLGOu1S4JN6BQbks7R0gImIFoi1eCKsxSIxTJ3Kd5nkeSaxXiyE87wSrTMs37tNefFMNUzJVXhbKy2IIT_qi3xuSjT8V2vXaUegI7MrotfLE2P2Dv2goqKLSk9AN4Vmtw746vfrqt7AJpj5ODxWXh5_GR-_majyEx52SFXYsv1qiS7vcVArHOoS6QnKGf1Lr9O9tUwfHk5f-5u6_F30El8bzSaayt9Oje3AZgRhvtgHfh8F6tbEP4KL5sf5SrR62Zv0TSwP6Ng |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDiF4YONLFDZmEEJoUljiJLYj7WWwdYV1VcU2mHixbMdGCJpOTYv253POF0wCaRIPkZLIcZw7n-93sf07gJdJbARNDI5-acYCRMRRILLcBM64KGfCMVFlUfg04uOxOD_PJiuw2-6Fqfkhuh9u3jKq8dobuL3I3c5v1lBVTvUbGjFxA1YTfBOa5er-x8HZqJtFiJqAK6VJgI4vaZmFQrrTPXzFH_VMuTQIU72EL69gzj-Ra-V6Bmv_1-h1uNtATrJX95F7sGKL-3DnuONrLR8Ax95CJnhnOrskLc04QTxLJqMT4rMWkyplDvo5Utqv02bDUvEQzgYHp--GQZNSITCoBxEoDAgtxRhCpVke6jB3YZrG1tnE5LGg2lkRcRtpDKKMctr7LkttnFjHXMZdEj-CXjEr7GMgPEpzRFss51ZhkBhnjmuVaa0jgfUq3ofXrWClafjGfdqLH7JmSqbSy0J6WfThRVf0oibZ-Fuhba8diY7Azo1aSE-M3V34g4acSio8CV0fXlU67KpT8-9-CRtP5efxoWTi8Mvw6MOpHPbheatkiYblZ0tUYWfLUuJYh1CXC5bil1Q6_Xfb5N7J8Vt_8uT6Rbfg1mR_IEfvx0dP4TbiMFavAt6A3mK-tJtw0_xcfCvnz5pe_QvfSfmx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pathmox+approach+for+PLS+path+modeling+segmentation&rft.jtitle=Applied+stochastic+models+in+business+and+industry&rft.au=Lamberti%2C+Giuseppe&rft.au=Aluja%2C+Tomas+Banet&rft.au=Sanchez%2C+Gaston&rft.date=2016-07-01&rft.issn=1524-1904&rft.eissn=1526-4025&rft.volume=32&rft.issue=4&rft.spage=453&rft.epage=468&rft_id=info:doi/10.1002%2Fasmb.2168&rft.externalDBID=10.1002%252Fasmb.2168&rft.externalDocID=ASMB2168 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-1904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-1904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-1904&client=summon |