The Pathmox approach for PLS path modeling segmentation

Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied stochastic models in business and industry Ročník 32; číslo 4; s. 453 - 468
Hlavní autoři: Lamberti, Giuseppe, Aluja, Tomas Banet, Sanchez, Gaston
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Blackwell Publishing Ltd 01.07.2016
Témata:
ISSN:1524-1904, 1526-4025
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub‐populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look‐alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub‐populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look‐alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd.
Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub‐populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look‐alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd.
This is the peer reviewed version of the following article: Giuseppe Lamberti, Aluja, T., Sanchez, G. The Pathmox approach for PLS path modeling segmentation. "Applied stochastic models in business and industry", Agost 2016, vol. 32, núm. 4, p. 453-468, which has been published in final form at DOI: 10.1002/asmb.2168. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of ‘one model fits all’ is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub-populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look-alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd. Peer Reviewed
Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in mathematical models. Reality is frequently too complex to be reflected in a single model. This is often the case of marketing research, where variables relating to socioeconomics or psychographics constitute potential sources of heterogeneity. In such cases, the assumption of 'one model fits all' is unrealistic and may lead to inaccurate decisions. Thus, heterogeneity is a major issue in modeling. Once a model has been fitted to a complete data set that fulfills all validation criteria, it is difficult to establish whether it is valid for the whole population or it is merely an average artifact from several sub-populations. The purpose of this paper is to present the Pathmox approach to deal with heterogeneity in partial least squares path modeling. The idea behind Pathmox is to build a tree of path models that have look-alike structure as a binary decision tree, with different models for each of its nodes. The split criterion consists of an F statistic comparing two structural models. In order to ensure the suitability of the split criterion, a simulation study was conducted. Finally, we have applied Pathmox to a survey that measured Satisfaction among Spanish mobile phone operators. Results suggest that the Pathmox approach performs adequately in detecting partial least squares path modeling heterogeneity.
Author Lamberti, Giuseppe
Aluja, Tomas Banet
Sanchez, Gaston
Author_xml – sequence: 1
  givenname: Giuseppe
  surname: Lamberti
  fullname: Lamberti, Giuseppe
  email: Correspondence to: Giuseppe Lamberti, Universitat Politècnica de Catalunya - Barcelona Tech, Department of Statistics and Operation, Research Campus Nord, C5204 c. Jordi Girona 1-3, Barcelona 08034, Spain., giuseppelamb@hotmail.com
  organization: Department of Statistics and Operation Research, Universitat Politècnica de Catalunya - Barcelona Tech, Campus Nord, C5204 c. Jordi Girona 1-3, 08034, Barcelona, Spain
– sequence: 2
  givenname: Tomas Banet
  surname: Aluja
  fullname: Aluja, Tomas Banet
  organization: Department of Statistics and Operation Research, Universitat Politècnica de Catalunya - Barcelona Tech, Campus Nord, C5204 c. Jordi Girona 1-3, 08034, Barcelona, Spain
– sequence: 3
  givenname: Gaston
  surname: Sanchez
  fullname: Sanchez, Gaston
  organization: Data Science Insight, CA, Palo Alto, U.S.A
BookMark eNp9kFtLAzEQhYMoeH3wH-yjPqwm2dz6qKKtWi9gRfAlZNOJje5uarJF_fdubVEQ9GGYGeZ8B-ZsotUmNIDQLsEHBGN6aFJdHlAi1AraIJyKnGHKV79mlpMeZutoM6VnjAlhkmwgOZpAdmvaSR3eMzOdxmDsJHMhZrfDu2zaHbI6jKHyzVOW4KmGpjWtD802WnOmSrCz7Fvo_ux0dDLIhzf985OjYW6Zkio3inKgPckM741xiccOc16AA2bHhaKlA0UkkJIIZo0rqWISKBQMnHA96VixhcjC16aZ1REsRGtaHYz_WeZFsaSaKlII2TF7C6b75nUGqdW1TxaqyjQQZkkTVXAhpBK8k-4v7WNIKYLT0-hrEz80wXoeqJ4HqueBdtrDX1rrF2G00fjqP-LNV_Dxt7U-urs6XhL5gvCphfdvwsQX3T0muX647muh-o-Dy4uRHhSf7rGYNg
CitedBy_id crossref_primary_10_1007_s00180_023_01371_3
crossref_primary_10_1007_s11205_018_1983_3
crossref_primary_10_1080_02681102_2023_2202640
crossref_primary_10_1080_09585192_2020_1711798
crossref_primary_10_1016_j_landurbplan_2020_103932
crossref_primary_10_1007_s11634_021_00469_0
crossref_primary_10_7202_1092158ar
crossref_primary_10_1002_asmb_2270
crossref_primary_10_1007_s11135_023_01760_2
crossref_primary_10_1016_j_clrc_2025_100273
crossref_primary_10_1080_03075079_2020_1723526
crossref_primary_10_1007_s11135_021_01096_9
crossref_primary_10_1007_s10198_024_01753_4
crossref_primary_10_1016_j_telpol_2020_102055
crossref_primary_10_1016_j_trpro_2018_11_040
crossref_primary_10_1080_00222216_2023_2193178
crossref_primary_10_1007_s11135_021_01149_z
crossref_primary_10_1108_IJSMS_12_2020_0210
crossref_primary_10_4102_sajems_v26i1_4970
Cites_doi 10.1007/s11747-011-0278-x
10.2307/1251898
10.1287/mksc.16.1.39
10.2139/ssrn.1586309
10.1177/002224378201900406
10.1080/10705510903439003
10.1080/09544120100000010
10.1007/BF02296397
10.1007/978-3-642-52512-4
10.1007/BF03396655
10.1037/0022-3514.51.6.1173
10.1007/978-3-540-32827-8_6
10.1007/978-3-540-32827-8_3
10.1080/09544120050135425
10.1007/s11747-011-0261-6
10.1007/978-3-540-32827-8_10
10.1287/isre.14.2.189.16018
10.1016/j.csda.2004.03.005
10.1207/S15327906MBR3702_03
10.1002/asmb.728
10.1080/09544120050008264
10.1007/978-3-540-32827-8_29
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
Universitat Politècnica de Catalunya. LIAM - Laboratori de Modelització i Anàlisi de la Informació
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. LIAM - Laboratori de Modelització i Anàlisi de la Informació
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID BSCLL
AAYXX
CITATION
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
XX2
DOI 10.1002/asmb.2168
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Materials Business File
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1526-4025
EndPage 468
ExternalDocumentID oai_recercat_cat_2072_281367
10_1002_asmb_2168
ASMB2168
ark_67375_WNG_68GZHKJT_H
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHQJS
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBA
EBO
EBR
EBS
EBU
EJD
EMK
EPL
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
K1G
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
QWB
R.K
ROL
RX1
RYL
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YHZ
ZL0
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
AAYXX
CITATION
O8X
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c4878-a825e2974a59d0b0df0553efe4cd382bfe817e1b164cafb2847e2e34ef6f97f43
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380899200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-1904
IngestDate Fri Nov 07 13:50:44 EST 2025
Thu Oct 02 06:52:51 EDT 2025
Tue Nov 18 22:33:37 EST 2025
Sat Nov 29 06:37:41 EST 2025
Wed Jan 22 16:58:40 EST 2025
Tue Nov 11 03:33:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4878-a825e2974a59d0b0df0553efe4cd382bfe817e1b164cafb2847e2e34ef6f97f43
Notes istex:D1190D4C97F4A940C3DE60D4B606F7B3578E6B35
ark:/67375/WNG-68GZHKJT-H
ArticleID:ASMB2168
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/281367
PQID 1835667865
PQPubID 23500
PageCount 16
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_281367
proquest_miscellaneous_1835667865
crossref_primary_10_1002_asmb_2168
crossref_citationtrail_10_1002_asmb_2168
wiley_primary_10_1002_asmb_2168_ASMB2168
istex_primary_ark_67375_WNG_68GZHKJT_H
PublicationCentury 2000
PublicationDate July/August 2016
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July/August 2016
PublicationDecade 2010
PublicationTitle Applied stochastic models in business and industry
PublicationTitleAlternate Appl. Stochastic Models Bus. Ind
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Henseler J, Chin WW. A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares modeling. Structural Equation Modeling: A Multidisciplinary Journal 2010; 17(1):82-109.
Fornell C, Bookstein FL. Two structural equation models: LISREL and PLS applied to consumer Exit-Voice theory. Journal of Marketing Research 1982; 19(4):440-452.
Lohmöller JB. Latent Variable Path Modeling with Partial Least Squares. Physica: Heildelberg, 1989.
Hackl P, Westlund AH. On structural equation modeling for customer satisfaction measurement. Total Quality Management 2000; 11(4,5,6):820-825.
Esposito Vinzi V, Trinchera L, Squillacciotti S, Tenenhaus M. REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modeling. Applied Stochastic Models in Business and Industry 2008; 24:439-458. 10.1002/asmb.728.
Hair JF, Sarstedt M, Ringle CM. An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science 2012; 40:414-430. 10.1007/s11747-011-0261-6.
Jedidi K, Jagpal HS, DeSarbo WS. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science 1997; 16:39-59. 10.1287/mksc.16.1.39.
Bagozzi RP, Yi Y. Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science 2012; 40:8-34. 10.1007/s11747-011-0278-x.
Fornell CG, Johnson MD, Anderson EW, Cha J, Everitt B. The American Customer Satisfaction Index: nature, purpose and findings. Journal of Marketing 1996; 60(4):7-18.
Lebart L, Morineau A, Fénelon JP. Traitement des donnes statistiques. Dunod: Paris, France, 1979.
Anderson E, Fornell C. Foundations of the American Customer Satisfaction Index. Total Quality Management 2000; 11(7):869-882.
Hahn C, Johnson MD, Herrmann A, Huber A. Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review 2002; 54:243-269.
Muthén BO. Latent variable modeling in heterogeneous populations. Psychometrika 1989; 54:557-585. 10.1007/BF02296397.
Brandmaier AM, Oertzen T, McArdle JJ, Lindenberger U. Structural equation model trees. Psychological methods. American Psychological Association 2013; 18(1):71-86.
Tenenhaus M, Esposito Vinzi V, Chatelin YM, Lauro C. PLS path modeling. Computational Statistics and Data Analysis 2005; 48:159-205. 10.1016/j.csda.2004.03.005.
Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 1986; 5(6):1173-1182.
Chin WW, Marcolin BL, Newsted PR. Partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research 2003; 14(2):189-217.
Westlund AH, Cassel CM, Eklöf J, Hackl P. Structural analysis and measurement of customer perceptions, assuming measurement and specifications errors. Total Quality Management 2001; 12(7,8):873-881.
Reinartz WJ, Echambadi R, Chin WW. Generating non-normal data for simulation of structural equation models using Mattson's method. Multivariate Behavioral Research 2002; 37(2):227-244.
2002; 37
1982; 19
2010
2010; 17
2002; 54
1998
2009
2003; 14
2007
2006
2005
2003
2005; 48
1979
2013; 18
1989; 54
2000; 11
1986; 5
1996; 60
1985
1997; 16
2008; 24
1982
2001; 12
1989
2012; 40
e_1_2_9_30_1
e_1_2_9_31_1
Wold H (e_1_2_9_8_1) 1985
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Henseler J (e_1_2_9_35_1) 2005
Esposito Vinzi V (e_1_2_9_14_1) 2010
Sanchez G (e_1_2_9_27_1) 2007
Ringle CM (e_1_2_9_19_1) 2005
e_1_2_9_15_1
e_1_2_9_38_1
Chin WW (e_1_2_9_34_1) 2003
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_18_1
Sanchez G (e_1_2_9_28_1) 2009
Lebart L (e_1_2_9_37_1) 1979
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_7_1
e_1_2_9_5_1
Sanchez G (e_1_2_9_26_1) 2006
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Chin WW (e_1_2_9_10_1) 1998
Squillacciotti S (e_1_2_9_21_1) 2005
Brandmaier AM (e_1_2_9_29_1) 2013; 18
e_1_2_9_9_1
Trinchera L (e_1_2_9_23_1) 2007
Wold H (e_1_2_9_6_1) 1982
e_1_2_9_25_1
References_xml – reference: Bagozzi RP, Yi Y. Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science 2012; 40:8-34. 10.1007/s11747-011-0278-x.
– reference: Fornell C, Bookstein FL. Two structural equation models: LISREL and PLS applied to consumer Exit-Voice theory. Journal of Marketing Research 1982; 19(4):440-452.
– reference: Fornell CG, Johnson MD, Anderson EW, Cha J, Everitt B. The American Customer Satisfaction Index: nature, purpose and findings. Journal of Marketing 1996; 60(4):7-18.
– reference: Hackl P, Westlund AH. On structural equation modeling for customer satisfaction measurement. Total Quality Management 2000; 11(4,5,6):820-825.
– reference: Lebart L, Morineau A, Fénelon JP. Traitement des donnes statistiques. Dunod: Paris, France, 1979.
– reference: Hahn C, Johnson MD, Herrmann A, Huber A. Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review 2002; 54:243-269.
– reference: Hair JF, Sarstedt M, Ringle CM. An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science 2012; 40:414-430. 10.1007/s11747-011-0261-6.
– reference: Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 1986; 5(6):1173-1182.
– reference: Jedidi K, Jagpal HS, DeSarbo WS. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science 1997; 16:39-59. 10.1287/mksc.16.1.39.
– reference: Brandmaier AM, Oertzen T, McArdle JJ, Lindenberger U. Structural equation model trees. Psychological methods. American Psychological Association 2013; 18(1):71-86.
– reference: Chin WW, Marcolin BL, Newsted PR. Partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research 2003; 14(2):189-217.
– reference: Henseler J, Chin WW. A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares modeling. Structural Equation Modeling: A Multidisciplinary Journal 2010; 17(1):82-109.
– reference: Tenenhaus M, Esposito Vinzi V, Chatelin YM, Lauro C. PLS path modeling. Computational Statistics and Data Analysis 2005; 48:159-205. 10.1016/j.csda.2004.03.005.
– reference: Esposito Vinzi V, Trinchera L, Squillacciotti S, Tenenhaus M. REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modeling. Applied Stochastic Models in Business and Industry 2008; 24:439-458. 10.1002/asmb.728.
– reference: Reinartz WJ, Echambadi R, Chin WW. Generating non-normal data for simulation of structural equation models using Mattson's method. Multivariate Behavioral Research 2002; 37(2):227-244.
– reference: Westlund AH, Cassel CM, Eklöf J, Hackl P. Structural analysis and measurement of customer perceptions, assuming measurement and specifications errors. Total Quality Management 2001; 12(7,8):873-881.
– reference: Lohmöller JB. Latent Variable Path Modeling with Partial Least Squares. Physica: Heildelberg, 1989.
– reference: Muthén BO. Latent variable modeling in heterogeneous populations. Psychometrika 1989; 54:557-585. 10.1007/BF02296397.
– reference: Anderson E, Fornell C. Foundations of the American Customer Satisfaction Index. Total Quality Management 2000; 11(7):869-882.
– volume: 60
  start-page: 7
  issue: 4
  year: 1996
  end-page: 18
  article-title: The American Customer Satisfaction Index: nature, purpose and findings
  publication-title: Journal of Marketing
– article-title: R package plspm
– volume: 11
  start-page: 820
  issue: 4,5,6
  year: 2000
  end-page: 825
  article-title: On structural equation modeling for customer satisfaction measurement
  publication-title: Total Quality Management
– volume: 11
  start-page: 869
  issue: 7
  year: 2000
  end-page: 882
  article-title: Foundations of the American Customer Satisfaction Index
  publication-title: Total Quality Management
– start-page: 125
  year: 2010
  end-page: 140
– year: 1989
– start-page: 33
  year: 2003
  end-page: 43
– volume: 40
  start-page: 8
  year: 2012
  end-page: 34
  article-title: Specification, evaluation, and interpretation of structural equation models
  publication-title: Journal of the Academy of Marketing Science
– volume: 5
  start-page: 1173
  issue: 6
  year: 1986
  end-page: 1182
  article-title: The moderator‐mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations
  publication-title: Journal of Personality and Social Psychology
– volume: 40
  start-page: 414
  year: 2012
  end-page: 430
  article-title: An assessment of the use of partial least squares structural equation modeling in marketing research
  publication-title: Journal of the Academy of Marketing Science
– start-page: 47
  year: 2010
  end-page: 82
– volume: 19
  start-page: 440
  issue: 4
  year: 1982
  end-page: 452
  article-title: Two structural equation models: LISREL and PLS applied to consumer Exit‐Voice theory
  publication-title: Journal of Marketing Research
– year: 1979
– start-page: 507
  year: 2005
  end-page: 514
– volume: 17
  start-page: 82
  issue: 1
  year: 2010
  end-page: 109
  article-title: A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares modeling
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 54
  start-page: 557
  year: 1989
  end-page: 585
  article-title: Latent variable modeling in heterogeneous populations
  publication-title: Psychometrika
– start-page: 79
  year: 2007
  end-page: 82
– volume: 16
  start-page: 39
  year: 1997
  end-page: 59
  article-title: Finite‐mixture structural equation models for response‐based segmentation and unobserved heterogeneity
  publication-title: Marketing Science
– start-page: 499
  year: 2005
  end-page: 506
– start-page: 655
  year: 2010
  end-page: 690
– volume: 12
  start-page: 873
  issue: 7,8
  year: 2001
  end-page: 881
  article-title: Structural analysis and measurement of customer perceptions, assuming measurement and specifications errors
  publication-title: Total Quality Management
– volume: 14
  start-page: 189
  issue: 2
  year: 2003
  end-page: 217
  article-title: Partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic‐mail emotion/adoption study
  publication-title: Information Systems Research
– year: 2006
– start-page: 295
  year: 1998
  end-page: 336
– start-page: 33
  year: 2007
  end-page: 36
– start-page: 1
  year: 1982
  end-page: 54
– volume: 48
  start-page: 159
  year: 2005
  end-page: 205
  article-title: PLS path modeling
  publication-title: Computational Statistics and Data Analysis
– volume: 18
  start-page: 71
  issue: 1
  year: 2013
  end-page: 86
  article-title: Structural equation model trees. Psychological methods
  publication-title: American Psychological Association
– volume: 54
  start-page: 243
  year: 2002
  end-page: 269
  article-title: Capturing customer heterogeneity using a finite mixture PLS approach
  publication-title: Schmalenbach Business Review
– volume: 37
  start-page: 227
  issue: 2
  year: 2002
  end-page: 244
  article-title: Generating non‐normal data for simulation of structural equation models using Mattson's method
  publication-title: Multivariate Behavioral Research
– start-page: 54
  year: 2009
  end-page: 59
– start-page: 581
  year: 1985
  end-page: 591
– start-page: 219
  year: 2010
  end-page: 233
– start-page: 371
  year: 2005
  end-page: 377
– volume: 24
  start-page: 439
  year: 2008
  end-page: 458
  article-title: REBUS‐PLS: a response‐based procedure for detecting unit segments in PLS path modeling
  publication-title: Applied Stochastic Models in Business and Industry
– ident: e_1_2_9_5_1
  doi: 10.1007/s11747-011-0278-x
– ident: e_1_2_9_15_1
  doi: 10.2307/1251898
– ident: e_1_2_9_3_1
  doi: 10.1287/mksc.16.1.39
– ident: e_1_2_9_20_1
  doi: 10.2139/ssrn.1586309
– ident: e_1_2_9_7_1
  doi: 10.1177/002224378201900406
– volume-title: Traitement des donnes statistiques
  year: 1979
  ident: e_1_2_9_37_1
– ident: e_1_2_9_36_1
  doi: 10.1080/10705510903439003
– ident: e_1_2_9_25_1
– ident: e_1_2_9_16_1
  doi: 10.1080/09544120100000010
– ident: e_1_2_9_17_1
– ident: e_1_2_9_2_1
  doi: 10.1007/BF02296397
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-642-52512-4
– start-page: 1
  volume-title: Systems under Indirect Observation: Causality, Structure, Prediction
  year: 1982
  ident: e_1_2_9_6_1
– start-page: 371
  volume-title: Proceedings of the PLS05 International Symposium
  year: 2005
  ident: e_1_2_9_35_1
– ident: e_1_2_9_18_1
  doi: 10.1007/BF03396655
– ident: e_1_2_9_39_1
– ident: e_1_2_9_30_1
  doi: 10.1037/0022-3514.51.6.1173
– start-page: 499
  volume-title: Proceedings of the PLS05 International Symposium
  year: 2005
  ident: e_1_2_9_21_1
– volume-title: Electronic Proceedings of the workshop on Knowledge Extraction and Modeling (KNEMO)
  year: 2006
  ident: e_1_2_9_26_1
– ident: e_1_2_9_31_1
  doi: 10.1007/978-3-540-32827-8_6
– start-page: 33
  volume-title: Proceedings of the PLS07 International Symposium
  year: 2007
  ident: e_1_2_9_27_1
– volume: 18
  start-page: 71
  issue: 1
  year: 2013
  ident: e_1_2_9_29_1
  article-title: Structural equation model trees. Psychological methods
  publication-title: American Psychological Association
– start-page: 47
  volume-title: Handbook of Partial Least Squares
  year: 2010
  ident: e_1_2_9_14_1
  doi: 10.1007/978-3-540-32827-8_3
– start-page: 581
  volume-title: Encyclopedia of Statistical Sciences
  year: 1985
  ident: e_1_2_9_8_1
– ident: e_1_2_9_11_1
  doi: 10.1080/09544120050135425
– ident: e_1_2_9_4_1
  doi: 10.1007/s11747-011-0261-6
– ident: e_1_2_9_22_1
  doi: 10.1007/978-3-540-32827-8_10
– start-page: 54
  volume-title: Proceedings of the PLS'09 International Symposium
  year: 2009
  ident: e_1_2_9_28_1
– start-page: 33
  volume-title: Proceedings of the PLS03 International Symposium
  year: 2003
  ident: e_1_2_9_34_1
– start-page: 79
  volume-title: Proceedings of the PLS07 International Symposium
  year: 2007
  ident: e_1_2_9_23_1
– ident: e_1_2_9_32_1
  doi: 10.1287/isre.14.2.189.16018
– ident: e_1_2_9_13_1
  doi: 10.1016/j.csda.2004.03.005
– start-page: 507
  volume-title: Proceedings of the PLS05 International Symposium
  year: 2005
  ident: e_1_2_9_19_1
– ident: e_1_2_9_38_1
  doi: 10.1207/S15327906MBR3702_03
– start-page: 295
  volume-title: Modern Methods for Business Research
  year: 1998
  ident: e_1_2_9_10_1
– ident: e_1_2_9_24_1
  doi: 10.1002/asmb.728
– ident: e_1_2_9_12_1
  doi: 10.1080/09544120050008264
– ident: e_1_2_9_33_1
  doi: 10.1007/978-3-540-32827-8_29
SSID ssj0011471
Score 2.151353
Snippet Modeling has often failed to meet expectations, mostly because of the difficulty of comprehending relationships within phenomena and expressing them in...
This is the peer reviewed version of the following article: Giuseppe Lamberti, Aluja, T., Sanchez, G. The Pathmox approach for PLS path modeling segmentation....
SourceID csuc
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 453
SubjectTerms 60 Probability theory and stochastic processes
60H Stochastic analysis
62 Statistics
62H Multivariate analysis
Anàlisi multivariable
Anàlisi multivariant
Classificació AMS
Construction
Criteria
Decision trees
Decisions
Estadística matemàtica
Heterogeneity
Least squares method
Matemàtiques i estadística
Mathematical models
model comparison
Modelling
Multivariate analysis
Mètodes estadístics
partial least squares path modeling
Processos estocàstics
segmentation
segmentation trees
Stochastic processes
Àrees temàtiques de la UPC
Title The Pathmox approach for PLS path modeling segmentation
URI https://api.istex.fr/ark:/67375/WNG-68GZHKJT-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.2168
https://www.proquest.com/docview/1835667865
https://recercat.cat/handle/2072/281367
Volume 32
WOSCitedRecordID wos000380899200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1526-4025
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011471
  issn: 1524-1904
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7o2gd9aG2tuK3KVEopQmoymcwk9MlL18XqslTFpS_DzGQiYjdbNrvFn--Z3KygUOhDIAmTMDmXOd_JzHwH4CPlNhBKoadpHXmMBtzTWcg8PzFWGJ4KxlVZbEIMBvFolAwX4GuzF6bih2h_uDnPKMdr5-BKF3sPpKGqGOsv-O54EZYo2i3rwNLRj97laTuJENT5VkSZh3GPNcRCPt1rH34UjjqmmBtEqU7Ad48g59_AtYw8vVf_1edVeFkDTrJfWchrWLD5G1g5a9laizUQaCtkiHfGkzvSkIwTRLNkeHpOXM1iUhbMwShHCns9rrcr5W_hsvft4rDv1QUVPIN5SewpTActxQxCRUnqaz_N_CgKbWaZScOY6szGgbCBxhTKqEy7yGWpDZnNeJaIjIXr0Mknud0AklKj_UgpwVGzoTIJD9LUCF8noWZJyrvwuZGrNDXbuCt68UtWPMlUOllIJ4su7LRNf1cUG0812nXKkRgG7NSomXS02O2FO6gvqKSxo6DrwqdShe3r1PTWLWATkbwaHEseH__sfz-5kP0ufGh0LNGt3FyJyu1kXkgc6RDoiphH-CWlSp_vm9w_PztwJ-_-vel7WEboxauFv5vQmU3ndgtemD-zm2K6XVvyPRb09tU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_aq1D9oNYqns-tiIgQm2z2kYBf6uN6tXfHYa9Y_LLsbjYiejm53En_fGfz0oJCoR8CSZgsm3nszOzjNwDPqXCR1BotzRgeMBqJwOQxC8LUOmlFJpnQVbEJOZkkZ2fpdAPetGdhanyIbsLNW0Y1XnsD9xPS-39QQ3U5N6-x8WQTthiqEe_B1vtPg9NRt4oQNQkXpyxAx8daZKGQ7ncfX_BHPVuuLYapnsPnF2LOvyPXyvUMbl2t07fhZhNykoNaR3ZgwxV34Ma4w2std0GitpApvpkvzkkLM04wniXT0QnxVYtJVTIH_Rwp3dd5c2CpuAungw-zd8OgKakQWMxMkkBjQugo5hCap1lowiwPOY9d7pjN4oSa3CWRdJHBJMrq3Hjf5aiLmctFnsqcxfegVywKdx9IRq0JudZSoGxjbVMRZZmVoUljw9JM9OFly1hlG7xxX_bih6qRkqnyvFCeF3141pH-rEE2_kX0yktHoSNwS6tXygNjdw_-oqGkiiYehK4PLyoZds3p5Xe_hU1y9XlyqERy-GV4_HGmhn3Ya4Ws0LD8aoku3GJdKhzrMNSVieD4J5VM_983dXAyfutvHlye9ClsD2fjkRodTY4fwnUMxES9DfgR9FbLtXsM1-yv1bdy-aRR69_anfrF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_qVUQ_-Kx4PlcRESE22ewjAb9U6_W01-OwLZZ-WfYVEb1cudxJ_3xn89KCguCHQBI2y2ZmZ-c3-_gNwHMqfCK1RkszhkeMJiIyRcqiOLdeWuEkE7pONiGn0-zkJJ9twJvuLEzDD9FPuAXLqMfrYOD-zBXbv1hDdTU3r7Hy7BJsMp4LNMvN3U-j40m_ipC0ARenLELHxzpmoZhu9x9f8EcDW60twtQg4fMLmPN35Fq7ntGN_2v0TbjeQk6y0_SRW7Dhy9tw7aDna63ugMTeQmb4Zr44Jx3NOEE8S2aTQxKyFpM6ZQ76OVL5L_P2wFK5Bcej90fvxlGbUiGyGJlkkcaA0FOMITTPXWxiV8Scp77wzLo0o6bwWSJ9YjCIsrowwXd56lPmC1HksmDpXRiUi9LfA-KoNTHXWgrUbaotKsA5K2OTp4blTgzhZSdYZVu-8ZD24rtqmJKpCrJQQRZDeNYXPWtINv5U6FXQjkJH4JdWr1Qgxu4fwkVjSRXNAgndEF7UOuyr08tvYQub5OrzdE-JbO90vP_xSI2H8LRTskLDCqsluvSLdaVwrEOoKzPB8U9qnf69bWrn8OBtuLn_70WfwJXZ7khNPkz3H8BVxGGi2QX8EAar5do_gsv2x-prtXzc9uqfbmP6QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pathmox+approach+for+PLS+path+modeling+segmentation&rft.jtitle=Applied+stochastic+models+in+business+and+industry&rft.au=Lamberti%2C+Giuseppe&rft.au=Aluja%2C+Tomas+Banet&rft.au=Sanchez%2C+Gaston&rft.date=2016-07-01&rft.issn=1524-1904&rft.eissn=1526-4025&rft.volume=32&rft.issue=4&rft.spage=453&rft.epage=468&rft_id=info:doi/10.1002%2Fasmb.2168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-1904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-1904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-1904&client=summon