The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells
Summary Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several...
Gespeichert in:
| Veröffentlicht in: | The Plant journal : for cell and molecular biology Jg. 93; H. 2; S. 355 - 376 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Blackwell Publishing Ltd
01.01.2018
|
| Schlagworte: | |
| ISSN: | 0960-7412, 1365-313X, 1365-313X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Summary
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression.
Significance Statement
Growth and development are controlled by a few regulatory proteins, which sense environmental conditions and translate this information into intracellular molecular responses. Target of Rapamycin is one of the central regulatory proteins controlling several metabolic, especially biosynthetic, processes. In the current study, we elucidate the influence of Target of Rapamycin activity on biomass accumulation, cellular growth, cell cycle and central carbon and nitrogen metabolism in the photoautotrophically growing alga Chlamydomonas reinhardtii. |
|---|---|
| AbstractList | Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. Summary Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. Significance Statement Growth and development are controlled by a few regulatory proteins, which sense environmental conditions and translate this information into intracellular molecular responses. Target of Rapamycin is one of the central regulatory proteins controlling several metabolic, especially biosynthetic, processes. In the current study, we elucidate the influence of Target of Rapamycin activity on biomass accumulation, cellular growth, cell cycle and central carbon and nitrogen metabolism in the photoautotrophically growing alga Chlamydomonas reinhardtii. Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra- and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time-resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non-linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time-resolved analysis illustrated that metabolic processes including amino acid-, starch- and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen-containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression.Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra- and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time-resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non-linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time-resolved analysis illustrated that metabolic processes including amino acid-, starch- and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen-containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin ( TOR ) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. Growth and development are controlled by a few regulatory proteins, which sense environmental conditions and translate this information into intracellular molecular responses. Target of Rapamycin is one of the central regulatory proteins controlling several metabolic, especially biosynthetic, processes. In the current study, we elucidate the influence of Target of Rapamycin activity on biomass accumulation, cellular growth, cell cycle and central carbon and nitrogen metabolism in the photoautotrophically growing alga Chlamydomonas reinhardtii . |
| Author | Jüppner, Jessica Mubeen, Umarah Leisse, Andrea Giavalisco, Patrick Steinhauser, Dirk Wiszniewski, Andrew Caldana, Camila |
| Author_xml | – sequence: 1 givenname: Jessica surname: Jüppner fullname: Jüppner, Jessica organization: Max Planck Institute of Molecular Plant Physiology – sequence: 2 givenname: Umarah surname: Mubeen fullname: Mubeen, Umarah organization: Max Planck Institute of Molecular Plant Physiology – sequence: 3 givenname: Andrea surname: Leisse fullname: Leisse, Andrea organization: Max Planck Institute of Molecular Plant Physiology – sequence: 4 givenname: Camila surname: Caldana fullname: Caldana, Camila organization: Brazilian Bioethanol Science and Technology Laboratory/CNPEM – sequence: 5 givenname: Andrew surname: Wiszniewski fullname: Wiszniewski, Andrew organization: Max Planck Institute of Molecular Plant Physiology – sequence: 6 givenname: Dirk surname: Steinhauser fullname: Steinhauser, Dirk organization: Max Planck Institute of Molecular Plant Physiology – sequence: 7 givenname: Patrick surname: Giavalisco fullname: Giavalisco, Patrick email: Giavalisco@mpimp-golm.mpg.de organization: Max Planck Institute of Molecular Plant Physiology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29172247$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks-O0zAQxi20iO0uHHgBZIkLHLqN7cR2jqjir1aCQ5G4RRNn3LokdrETofBIPCVuu3BYCZjLHOY3881ovity4YNHQp6y4oblWI2H_Q0TSqsHZMGErJaCiS8XZFHUsliqkvFLcpXSviiYErJ8RC55zRTnpVqQn5sd0hHiFkcaLI1wgGE2ztOvzkNCCtaiGRNtXRggJQrGTMPUw-iCp-A7arDvqZlNj_QQwzZiSsdSO1PoR4zOb6mB2Aa_8m7MAOYa9OAN0qySZm92MXj3Azu63vVZvAtDyNI0ovM7iN3o3EkkPSYPLfQJn9zla_L5zevN-t3y9uPb9-tXt0tTaqWWJWvLykqtu1YqLC0HwU1b1hoUF6wVxlQIPCeLaAWWxkAlWwW65lxbK8U1eXGem-_5NmEam8Gl4wbgMUyp4QUvtNKy0v9FWS3rWkiuqow-v4fuwxR9PiRTWkghlCoy9eyOmtoBu-YQ3QBxbn4_LAMvz4CJIaWI9g_CiuZohiaboTmZIbOre6xx4-lzYwTX_6vju-tx_vvoZvPpw7njFxqyycg |
| CitedBy_id | crossref_primary_10_1080_01904167_2021_1994598 crossref_primary_10_1093_jxb_erz378 crossref_primary_10_1093_pcp_pcaa023 crossref_primary_10_1111_tpj_16684 crossref_primary_10_3390_microorganisms8081195 crossref_primary_10_3390_microorganisms12122574 crossref_primary_10_1186_s13068_019_1635_0 crossref_primary_10_3389_fpls_2021_637508 crossref_primary_10_3389_fpls_2021_758933 crossref_primary_10_1016_j_plantsci_2022_111390 crossref_primary_10_3389_fgene_2020_00186 crossref_primary_10_1002_1873_3468_13888 crossref_primary_10_1093_jxb_erz140 crossref_primary_10_1126_sciadv_adu1240 crossref_primary_10_3390_genes11111285 crossref_primary_10_3390_ijms231911309 crossref_primary_10_1093_jxb_ery459 crossref_primary_10_1016_j_biochi_2019_06_016 crossref_primary_10_1093_jxb_erac401 crossref_primary_10_1016_j_jksus_2022_102292 crossref_primary_10_3390_biom12030387 crossref_primary_10_3390_ijms21218259 crossref_primary_10_1186_s12870_019_2085_3 crossref_primary_10_3390_microorganisms10030503 crossref_primary_10_1016_j_biortech_2024_132004 crossref_primary_10_1016_j_pbi_2018_08_003 crossref_primary_10_3389_fmicb_2019_00501 crossref_primary_10_1091_mbc_E24_09_0425 crossref_primary_10_3390_ijms23137451 crossref_primary_10_1007_s00253_022_11931_0 crossref_primary_10_1007_s00418_025_02354_9 crossref_primary_10_3389_fpls_2025_1622214 crossref_primary_10_1016_j_plaphy_2024_108661 crossref_primary_10_1093_jxb_eraf338 crossref_primary_10_1073_pnas_2115261119 crossref_primary_10_1093_jxb_erz125 crossref_primary_10_1093_plphys_kiae254 crossref_primary_10_1007_s10529_025_03614_3 crossref_primary_10_3389_fpls_2018_01590 crossref_primary_10_1093_jxb_erac264 crossref_primary_10_1002_pld3_184 crossref_primary_10_1016_j_algal_2024_103419 crossref_primary_10_1111_tpj_14136 crossref_primary_10_1186_s13068_025_02617_6 crossref_primary_10_1093_plphys_kiaf106 crossref_primary_10_3390_cells10010062 crossref_primary_10_1080_15592324_2019_1670595 crossref_primary_10_1038_s41598_018_30809_8 crossref_primary_10_1093_jxb_erz053 |
| Cites_doi | 10.1016/S0092-8674(02)00808-5 10.1038/embor.2013.5 10.1007/s11103-015-0370-6 10.1016/j.copbio.2011.12.001 10.1073/pnas.0903478106 10.1105/tpc.112.105106 10.1083/jcb.201306041 10.1016/j.ceb.2017.02.012 10.1146/annurev-arplant-043014-114648 10.1371/journal.pgen.0020167 10.1186/s13007-016-0146-2 10.1128/EC.00268-12 10.1104/pp.109.152520 10.1093/aob/mcp259 10.1104/pp.113.229948 10.1038/nature12030 10.1016/j.cub.2004.06.054 10.1128/EC.00280-13 10.1104/pp.111.179861 10.3389/fpls.2016.01611 10.1093/jxb/ert466 10.1038/sj.embor.7401043 10.1016/j.bpj.2012.07.026 10.1016/j.jchromb.2009.07.006 10.1007/s10592-005-9073-x 10.1093/genetics/40.4.476 10.1016/S0960-9822(00)00866-6 10.1016/j.tibs.2013.01.004 10.1016/S0076-6879(80)69036-3 10.1016/j.cell.2015.02.041 10.1126/science.1228792 10.3389/fpls.2017.01204 10.3389/fpls.2011.00054 10.1126/science.1715094 10.1104/pp.105.070847 10.1104/pp.010896 10.1016/j.devcel.2005.07.004 10.1091/mbc.7.1.25 10.1111/tpj.13642 10.1016/j.ceb.2009.08.007 10.1006/abbi.1995.1141 10.1042/bj20021266 10.1038/nrm2672 10.1111/tpj.12080 10.1016/j.ymben.2010.02.002 10.1016/j.tibs.2016.04.001 10.1371/journal.pone.0017806 10.1016/j.cub.2004.11.027 10.1146/annurev.arplant.57.032905.105421 10.15252/embj.201696010 10.1073/pnas.73.5.1664 10.1016/j.febslet.2011.05.018 10.1111/tpj.12787 10.3390/biom7030054 10.1242/jcs.54.1.173 10.1093/pcp/pcs082 10.1105/tpc.112.107144 10.7164/antibiotics.28.727 10.1073/pnas.092141899 10.1111/tpj.12795 10.1139/y77-007 10.1371/journal.pone.0011883 10.1016/j.cell.2006.01.016 10.1007/BF02932138 10.1128/MCB.24.1.338-351.2004 10.1186/1471-2229-7-26 10.1007/s11103-012-9939-5 10.1105/tpc.16.00351 10.1016/j.cell.2017.02.004 10.1128/EC.00318-12 10.1126/science.1228771 10.1101/gad.892101 10.7164/antibiotics.28.721 10.1016/S0092-8674(02)00833-4 10.1073/pnas.1521919112 10.1038/cr.2013.166 10.1016/j.cmet.2009.11.010 10.1016/0277-5379(83)90012-3 10.1105/tpc.110.074005 10.1080/15592324.2016.1149285 10.1016/S1097-2765(02)00636-6 10.4014/jmb.1304.04057 10.1111/tpj.12763 10.1007/s00425-008-0772-7 10.1128/JB.183.3.1069-1077.2001 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors. published by John Wiley & Sons Ltd and Society for Experimental Biology. 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology. Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology |
| Copyright_xml | – notice: 2017 The Authors. published by John Wiley & Sons Ltd and Society for Experimental Biology. – notice: 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology. – notice: Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology |
| DBID | 24P AAYXX CITATION NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/tpj.13787 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Genetics Abstracts AGRICOLA MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1365-313X |
| EndPage | 376 |
| ExternalDocumentID | 29172247 10_1111_tpj_13787 TPJ13787 |
| Genre | article Journal Article |
| GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4877-41b45f688db67e4f2a32cb498a7231b3cc5ea23ccfeef3e4cca56b7a89228ff63 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419139400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-7412 1365-313X |
| IngestDate | Fri Jul 11 18:22:21 EDT 2025 Fri Jul 11 08:32:54 EDT 2025 Fri Jul 25 10:56:50 EDT 2025 Wed Feb 19 02:44:22 EST 2025 Sat Nov 29 06:05:31 EST 2025 Tue Nov 18 22:37:48 EST 2025 Wed Jan 22 16:39:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | systems biology carbon partitioning photoautotrophic growth cell cycle metabolomics Chlamydomonas reinhardtii amino acids synchronized cell cultures target of rapamycin lipidomics |
| Language | English |
| License | Attribution-NonCommercial 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4877-41b45f688db67e4f2a32cb498a7231b3cc5ea23ccfeef3e4cca56b7a89228ff63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13787 |
| PMID | 29172247 |
| PQID | 1983633770 |
| PQPubID | 31702 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_2020878658 proquest_miscellaneous_1969936275 proquest_journals_1983633770 pubmed_primary_29172247 crossref_primary_10_1111_tpj_13787 crossref_citationtrail_10_1111_tpj_13787 wiley_primary_10_1111_tpj_13787_TPJ13787 |
| PublicationCentury | 2000 |
| PublicationDate | January 2018 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | The Plant journal : for cell and molecular biology |
| PublicationTitleAlternate | Plant J |
| PublicationYear | 2018 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2010; 12 2010; 11 2017; 7 2011; 157 2017; 8 2001; 183 1983; 19 2002; 110 2010; 105 2013; 23 2013; 203 1982; 54 2002; 10 2017; 45 2005; 139 2002; 99 2004; 24 2008; 228 2014; 24 2009; 877 1955; 40 2016a; 67 2012; 53 2014; 65 2015; 89 1976; 73 2013; 14 2009; 10 2015; 82 2017; 36 2015; 81 2013; 12 2000; 10 2007; 8 2016; 41 2010; 152 2014; 13 2007; 7 2001; 15 2011; 23 2012; 24 2016b; 7 2010; 5 2012; 23 2017; 168 2014; 164 1996; 7 2006; 124 1991; 253 1980; 69 2015; 161 2012; 80 2011; 2 2009; 21 2006; 57 1995; 317 2009 2012b; 24 2006; 2 2007; 52 2012; 103 1987; 19 2011; 6 2016; 12 2003; 372 2016; 11 2013; 38 2017; 92 2013; 339 2013; 73 2004; 14 2012a; 11 1975; 28 2005; 9 2015; 112 2002; 128 2013; 496 1977; 55 2016; 171 2016; 28 2011; 585 2009; 106 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 Harris E.H. (e_1_2_7_31_1) 2009 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Craigie R.A. (e_1_2_7_15_1) 1982; 54 e_1_2_7_6_1 e_1_2_7_4_1 Juergens M.T. (e_1_2_7_40_1) 2016; 171 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – volume: 28 start-page: 2026 year: 2016 end-page: 2042 article-title: Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas publication-title: Plant Cell – volume: 585 start-page: 1985 year: 2011 end-page: 1991 article-title: A chloroplast pathway for the de novo biosynthesis of triacylglycerol in publication-title: FEBS Lett. – volume: 23 start-page: 185 year: 2011 end-page: 209 article-title: The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants publication-title: Plant Cell – volume: 65 start-page: 2585 year: 2014 end-page: 2602 article-title: Cell‐cycle regulation in green algae dividing by multiple fission publication-title: J. Exp. Bot. – volume: 228 start-page: 367 year: 2008 end-page: 381 article-title: Polyamines: essential factors for growth and survival publication-title: Planta – volume: 23 start-page: 352 year: 2012 end-page: 363 article-title: TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation publication-title: Curr. Opin. Biotechnol. – volume: 40 start-page: 476 year: 1955 end-page: 489 article-title: Inheritance in the green alga publication-title: Genetics – volume: 69 start-page: 363 year: 1980 end-page: 374 article-title: [34] Chloroplast membrane polypeptides publication-title: Methods Enzymol. – volume: 5 start-page: e11883 year: 2010 article-title: TOR is a negative regulator of autophagy in publication-title: PLoS ONE – volume: 36 start-page: 397 year: 2017 end-page: 408 article-title: Nutrient sensing and TOR signaling in yeast and mammals publication-title: EMBO J. – volume: 82 start-page: 370 year: 2015 end-page: 392 article-title: The Chlamydomonas cell cycle publication-title: Plant J. – volume: 110 start-page: 163 year: 2002 end-page: 175 article-title: mTOR interacts with raptor to form a nutrient‐sensitive complex that signals to the cell growth machinery publication-title: Cell – volume: 9 start-page: 271 year: 2005 end-page: 281 article-title: Drosophila Melted modulates FOXO and TOR activity publication-title: Dev. Cell – volume: 317 start-page: 103 year: 1995 end-page: 111 article-title: Accumulation of a novel glycolipid and a betaine lipid in cells of grown under phosphate limitation publication-title: Arch. Biochem. Biophys. – volume: 339 start-page: 1320 year: 2013 end-page: 1323 article-title: Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis publication-title: Science – volume: 11 start-page: 1451 year: 2012a end-page: 1462 article-title: Rapid triacylglycerol turnover in requires a lipase with broad substrate specificity publication-title: Eukaryot. Cell – volume: 10 start-page: 307 year: 2009 end-page: 318 article-title: Molecular mechanisms of mTOR‐mediated translational control publication-title: Nat. Rev. Mol. Cell Biol. – volume: 80 start-page: 189 year: 2012 end-page: 202 article-title: The purification of the chloroplast ClpP complex: additional subunits and structural features publication-title: Plant Mol. Biol. – volume: 339 start-page: 1323 year: 2013 end-page: 1328 article-title: Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1 publication-title: Science – volume: 23 start-page: 923 year: 2013 end-page: 931 article-title: Metabolomic response of to the inhibition of target of rapamycin (TOR) by rapamycin publication-title: J. Microbiol. Biotechnol. – volume: 10 start-page: 457 year: 2002 end-page: 468 article-title: Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control publication-title: Mol. Cell – volume: 67 start-page: 261 year: 2016a end-page: 285 article-title: TOR signaling and nutrient sensing publication-title: Annu. Rev. Plant Biol. – volume: 55 start-page: 48 year: 1977 end-page: 51 article-title: Inhibition of the immune response by rapamycin, a new antifungal antibiotic publication-title: Can. J. Physiol. Pharmacol. – volume: 13 start-page: 256 year: 2014 end-page: 266 article-title: Detailed identification of fatty acid isomers sheds light on the probable precursors of triacylglycerol accumulation in photoautotrophically grown publication-title: Eukaryot. Cell – volume: 12 start-page: 45 year: 2016 article-title: Protocol: a fast, comprehensive and reproducible one‐step extraction method for the rapid preparation of polar and semi‐polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample publication-title: Plant Methods – volume: 152 start-page: 1874 year: 2010 end-page: 1888 article-title: Inhibition of target of rapamycin signaling and stress activate autophagy in publication-title: Plant Physiol. – volume: 164 start-page: 499 year: 2014 end-page: 512 article-title: The role of target of rapamycin signaling networks in plant growth and metabolism publication-title: Plant Physiol. – volume: 24 start-page: 42 year: 2014 end-page: 57 article-title: Autophagy regulation by nutrient signaling publication-title: Cell Res. – volume: 8 start-page: 864 year: 2007 end-page: 870 article-title: The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation publication-title: EMBO Rep. – volume: 183 start-page: 1069 year: 2001 end-page: 1077 article-title: Starchless mutants of lack the small subunit of a heterotetrameric ADP‐glucose pyrophosphorylase publication-title: J. Bacteriol. – volume: 52 start-page: 53 year: 2007 end-page: 60 article-title: The cell cycle of : the role of the commitment point publication-title: Folia Microbiol. (Praha) – volume: 139 start-page: 1736 year: 2005 end-page: 1749 article-title: Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga publication-title: Plant Physiol. – volume: 11 start-page: e1149285 year: 2016 article-title: TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae publication-title: Plant Signal. Behav. – volume: 19 start-page: 799 year: 1983 end-page: 805 article-title: Human brain tumor xenografts in nude mice as a chemotherapy model publication-title: Eur. J. Cancer Clin. Oncol. – volume: 53 start-page: 1380 year: 2012 end-page: 1390 article-title: Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in publication-title: Plant Cell Physiol. – volume: 54 start-page: 173 year: 1982 end-page: 191 article-title: Cell‐volume and the control of the Chlamydomonas cell‐cycle publication-title: J. Cell Sci. – volume: 45 start-page: 72 year: 2017 end-page: 82 article-title: mTORC1 signaling and the metabolic control of cell growth publication-title: Curr. Opin. Cell Biol. – volume: 24 start-page: 338 year: 2004 end-page: 351 article-title: Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast publication-title: Mol. Cell. Biol. – volume: 14 start-page: 242 year: 2013 end-page: 251 article-title: The multifaceted role of mTORC1 in the control of lipid metabolism publication-title: EMBO Rep. – volume: 73 start-page: 897 year: 2013 end-page: 909 article-title: Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in publication-title: Plant J. – volume: 89 start-page: 309 year: 2015 end-page: 318 article-title: Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae publication-title: Plant Mol. Biol. – volume: 11 start-page: 35 year: 2010 end-page: 46 article-title: Mechanisms of life span extension by rapamycin in the fruit fly publication-title: Cell Metab. – volume: 21 start-page: 825 year: 2009 end-page: 836 article-title: TOR signaling in invertebrates publication-title: Curr. Opin. Cell Biol. – volume: 81 start-page: 822 year: 2015 end-page: 835 article-title: Integration of transcriptomics and metabolomics data specifies the metabolic response of Chlamydomonas to rapamycin treatment publication-title: Plant J. – volume: 15 start-page: 1652 year: 2001 end-page: 1661 article-title: Control of cell division by a retinoblastoma protein homolog in Chlamydomonas publication-title: Genes Dev. – volume: 19 start-page: 11 year: 1987 end-page: 15 article-title: A rapid DNA isolation procedure for small quantities of fresh leaf tissue publication-title: Phytochem. Bulletin – volume: 128 start-page: 1470 year: 2002 end-page: 1479 article-title: Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga publication-title: Plant Physiol. – volume: 2 start-page: e167 year: 2006 article-title: Cell size checkpoint control by the retinoblastoma tumor suppressor pathway publication-title: PLoS Genet. – volume: 496 start-page: 181 year: 2013 end-page: 186 article-title: Glucose‐TOR signalling reprograms the transcriptome and activates meristems publication-title: Nature – volume: 7 start-page: 1611 year: 2016b article-title: The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6 publication-title: Front. Plant Sci. – volume: 253 start-page: 905 year: 1991 end-page: 909 article-title: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast publication-title: Science – volume: 73 start-page: 1664 year: 1976 end-page: 1668 article-title: Control of cell division in by methionyl‐tRNA publication-title: Proc. Natl Acad. Sci. USA – volume: 161 start-page: 67 year: 2015 end-page: 83 article-title: Nutrient‐sensing mechanisms across evolution publication-title: Cell – volume: 168 start-page: 960 year: 2017 end-page: 976 article-title: mTOR signaling in growth, metabolism, and disease publication-title: Cell – volume: 12 start-page: 387 year: 2010 end-page: 391 article-title: Chlamydomonas starchless mutant defective in ADP‐glucose pyrophosphorylase hyper‐accumulates triacylglycerol publication-title: Metab. Eng. – volume: 112 start-page: 15790 year: 2015 end-page: 15797 article-title: mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy publication-title: Proc. Natl Acad. Sci. USA – volume: 82 start-page: 504 year: 2015 end-page: 522 article-title: Metabolism of acyl‐lipids in publication-title: Plant J. – volume: 57 start-page: 805 year: 2006 end-page: 836 article-title: Pyrimidine and purine biosynthesis and degradation in plants publication-title: Annu. Rev. Plant Biol. – volume: 203 start-page: 563 year: 2013 end-page: 574 article-title: Where is mTOR and what is it doing there? publication-title: J. Cell Biol. – volume: 372 start-page: 555 year: 2003 end-page: 566 article-title: Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability publication-title: Biochem. J. – volume: 41 start-page: 532 year: 2016 end-page: 545 article-title: TORC2 structure and function publication-title: Trends Biochem. Sci. – volume: 14 start-page: R1014 year: 2004 end-page: R1027 article-title: How cells coordinate growth and division publication-title: Curr. Biol. – volume: 7 start-page: 26 year: 2007 article-title: FKBP12 binds TOR and its expression in plants leads to rapamycin susceptibility publication-title: BMC Plant Biol. – volume: 171 start-page: 2445 year: 2016 end-page: 2457 article-title: The relationship of triacylglycerol and starch accumulation to carbon and energy flows during nutrient deprivation in publication-title: Plant Physiol. – volume: 6 start-page: e17806 year: 2011 article-title: A topological map of the compartmentalized leaf metabolome publication-title: PLoS ONE – start-page: 241 year: 2009 end-page: 302 – volume: 92 start-page: 331 year: 2017 end-page: 343 article-title: Dynamics of lipids and metabolites during the cell cycle of publication-title: Plant J. – volume: 105 start-page: 1 year: 2010 end-page: 6 article-title: Polyamines: ubiquitous polycations with unique roles in growth and stress responses publication-title: Ann. Bot. – volume: 12 start-page: 776 year: 2013 end-page: 793 article-title: Central carbon metabolism and electron transport in : metabolic constraints for carbon partitioning between oil and starch publication-title: Eukaryot. Cell – volume: 99 start-page: 6422 year: 2002 end-page: 6427 article-title: Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 4850 year: 2012 end-page: 4874 article-title: Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis publication-title: Plant Cell – volume: 14 start-page: 1296 year: 2004 end-page: 1302 article-title: Rictor, a novel binding partner of mTOR, defines a rapamycin‐insensitive and raptor‐independent pathway that regulates the cytoskeleton publication-title: Curr. Biol. – volume: 28 start-page: 721 year: 1975 end-page: 726 article-title: Rapamycin (AY‐22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle publication-title: J. Antibiot. (Tokyo) – volume: 877 start-page: 2952 year: 2009 end-page: 2960 article-title: Assessment of sampling strategies for gas chromatography‐mass spectrometry (GC‐MS) based metabolomics of cyanobacteria publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. – volume: 7 start-page: 54 year: 2017 article-title: The TOR signaling network in the model unicellular green alga publication-title: Biomolecules – volume: 110 start-page: 177 year: 2002 end-page: 189 article-title: Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action publication-title: Cell – volume: 2 start-page: 54 year: 2011 article-title: Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids publication-title: Front. Plant Sci. – volume: 8 start-page: 1204 year: 2017 article-title: TOR‐dependent and ‐independent pathways regulate autophagy in publication-title: Front. Plant Sci. – volume: 38 start-page: 233 year: 2013 end-page: 242 article-title: Nutrient signaling to mTOR and cell growth publication-title: Trends Biochem. Sci. – volume: 106 start-page: 10348 year: 2009 end-page: 10353 article-title: Starch as a major integrator in the regulation of plant growth publication-title: Proc. Natl Acad. Sci. USA – volume: 157 start-page: 730 year: 2011 end-page: 741 article-title: Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas publication-title: Plant Physiol. – volume: 10 start-page: 1574 year: 2000 end-page: 1581 article-title: Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins publication-title: Curr. Biol. – volume: 124 start-page: 471 year: 2006 end-page: 484 article-title: TOR signaling in growth and metabolism publication-title: Cell – volume: 28 start-page: 727 year: 1975 end-page: 732 article-title: Rapamycin (AY‐22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization publication-title: J. Antibiot. (Tokyo) – volume: 7 start-page: 25 year: 1996 end-page: 42 article-title: TOR controls translation initiation and early G1 progression in yeast publication-title: Mol. Biol. Cell – volume: 103 start-page: 1078 year: 2012 end-page: 1086 article-title: Cell‐to‐cell diversity in a synchronized Chlamydomonas culture as revealed by single‐cell analyses publication-title: Biophys. J . – volume: 24 start-page: 4670 year: 2012b end-page: 4686 article-title: A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in publication-title: Plant Cell – ident: e_1_2_7_42_1 doi: 10.1016/S0092-8674(02)00808-5 – ident: e_1_2_7_63_1 doi: 10.1038/embor.2013.5 – ident: e_1_2_7_35_1 doi: 10.1007/s11103-015-0370-6 – ident: e_1_2_7_57_1 doi: 10.1016/j.copbio.2011.12.001 – ident: e_1_2_7_76_1 doi: 10.1073/pnas.0903478106 – ident: e_1_2_7_50_1 doi: 10.1105/tpc.112.105106 – ident: e_1_2_7_8_1 doi: 10.1083/jcb.201306041 – ident: e_1_2_7_6_1 doi: 10.1016/j.ceb.2017.02.012 – ident: e_1_2_7_21_1 doi: 10.1146/annurev-arplant-043014-114648 – ident: e_1_2_7_26_1 doi: 10.1371/journal.pgen.0020167 – ident: e_1_2_7_68_1 doi: 10.1186/s13007-016-0146-2 – ident: e_1_2_7_49_1 doi: 10.1128/EC.00268-12 – ident: e_1_2_7_59_1 doi: 10.1104/pp.109.152520 – ident: e_1_2_7_77_1 doi: 10.1093/aob/mcp259 – ident: e_1_2_7_84_1 doi: 10.1104/pp.113.229948 – ident: e_1_2_7_85_1 doi: 10.1038/nature12030 – ident: e_1_2_7_69_1 doi: 10.1016/j.cub.2004.06.054 – ident: e_1_2_7_67_1 doi: 10.1128/EC.00280-13 – ident: e_1_2_7_20_1 doi: 10.1104/pp.111.179861 – ident: e_1_2_7_22_1 doi: 10.3389/fpls.2016.01611 – ident: e_1_2_7_10_1 doi: 10.1093/jxb/ert466 – ident: e_1_2_7_18_1 doi: 10.1038/sj.embor.7401043 – ident: e_1_2_7_27_1 doi: 10.1016/j.bpj.2012.07.026 – ident: e_1_2_7_44_1 doi: 10.1016/j.jchromb.2009.07.006 – ident: e_1_2_7_23_1 doi: 10.1007/s10592-005-9073-x – ident: e_1_2_7_66_1 doi: 10.1093/genetics/40.4.476 – ident: e_1_2_7_73_1 doi: 10.1016/S0960-9822(00)00866-6 – ident: e_1_2_7_37_1 doi: 10.1016/j.tibs.2013.01.004 – ident: e_1_2_7_4_1 doi: 10.1016/S0076-6879(80)69036-3 – ident: e_1_2_7_13_1 doi: 10.1016/j.cell.2015.02.041 – start-page: 241 volume-title: The Chlamydomonas Sourcebook year: 2009 ident: e_1_2_7_31_1 – ident: e_1_2_7_7_1 doi: 10.1126/science.1228792 – ident: e_1_2_7_61_1 doi: 10.3389/fpls.2017.01204 – ident: e_1_2_7_34_1 doi: 10.3389/fpls.2011.00054 – ident: e_1_2_7_32_1 doi: 10.1126/science.1715094 – ident: e_1_2_7_16_1 doi: 10.1104/pp.105.070847 – ident: e_1_2_7_79_1 doi: 10.1104/pp.010896 – ident: e_1_2_7_78_1 doi: 10.1016/j.devcel.2005.07.004 – ident: e_1_2_7_3_1 doi: 10.1091/mbc.7.1.25 – ident: e_1_2_7_41_1 doi: 10.1111/tpj.13642 – ident: e_1_2_7_75_1 doi: 10.1016/j.ceb.2009.08.007 – ident: e_1_2_7_5_1 doi: 10.1006/abbi.1995.1141 – ident: e_1_2_7_9_1 doi: 10.1042/bj20021266 – ident: e_1_2_7_54_1 doi: 10.1038/nrm2672 – ident: e_1_2_7_12_1 doi: 10.1111/tpj.12080 – ident: e_1_2_7_48_1 doi: 10.1016/j.ymben.2010.02.002 – ident: e_1_2_7_28_1 doi: 10.1016/j.tibs.2016.04.001 – ident: e_1_2_7_45_1 doi: 10.1371/journal.pone.0017806 – ident: e_1_2_7_39_1 doi: 10.1016/j.cub.2004.11.027 – ident: e_1_2_7_88_1 doi: 10.1146/annurev.arplant.57.032905.105421 – ident: e_1_2_7_29_1 doi: 10.15252/embj.201696010 – ident: e_1_2_7_81_1 doi: 10.1073/pnas.73.5.1664 – ident: e_1_2_7_24_1 doi: 10.1016/j.febslet.2011.05.018 – ident: e_1_2_7_51_1 doi: 10.1111/tpj.12787 – ident: e_1_2_7_60_1 doi: 10.3390/biom7030054 – volume: 54 start-page: 173 year: 1982 ident: e_1_2_7_15_1 article-title: Cell‐volume and the control of the Chlamydomonas cell‐cycle publication-title: J. Cell Sci. doi: 10.1242/jcs.54.1.173 – ident: e_1_2_7_25_1 doi: 10.1093/pcp/pcs082 – ident: e_1_2_7_62_1 doi: 10.1105/tpc.112.107144 – ident: e_1_2_7_72_1 doi: 10.7164/antibiotics.28.727 – ident: e_1_2_7_56_1 doi: 10.1073/pnas.092141899 – ident: e_1_2_7_17_1 doi: 10.1111/tpj.12795 – ident: e_1_2_7_55_1 doi: 10.1139/y77-007 – ident: e_1_2_7_52_1 doi: 10.1371/journal.pone.0011883 – ident: e_1_2_7_83_1 doi: 10.1016/j.cell.2006.01.016 – ident: e_1_2_7_58_1 doi: 10.1007/BF02932138 – ident: e_1_2_7_71_1 doi: 10.1128/MCB.24.1.338-351.2004 – ident: e_1_2_7_74_1 doi: 10.1186/1471-2229-7-26 – ident: e_1_2_7_19_1 doi: 10.1007/s11103-012-9939-5 – ident: e_1_2_7_14_1 doi: 10.1105/tpc.16.00351 – ident: e_1_2_7_70_1 doi: 10.1016/j.cell.2017.02.004 – ident: e_1_2_7_38_1 doi: 10.1128/EC.00318-12 – ident: e_1_2_7_64_1 doi: 10.1126/science.1228771 – ident: e_1_2_7_80_1 doi: 10.1101/gad.892101 – ident: e_1_2_7_82_1 doi: 10.7164/antibiotics.28.721 – ident: e_1_2_7_30_1 doi: 10.1016/S0092-8674(02)00833-4 – ident: e_1_2_7_87_1 doi: 10.1073/pnas.1521919112 – ident: e_1_2_7_65_1 doi: 10.1038/cr.2013.166 – ident: e_1_2_7_11_1 doi: 10.1016/j.cmet.2009.11.010 – ident: e_1_2_7_33_1 doi: 10.1016/0277-5379(83)90012-3 – volume: 171 start-page: 2445 year: 2016 ident: e_1_2_7_40_1 article-title: The relationship of triacylglycerol and starch accumulation to carbon and energy flows during nutrient deprivation in Chlamydomonas reinhardtii publication-title: Plant Physiol. – ident: e_1_2_7_2_1 doi: 10.1105/tpc.110.074005 – ident: e_1_2_7_36_1 doi: 10.1080/15592324.2016.1149285 – ident: e_1_2_7_53_1 doi: 10.1016/S1097-2765(02)00636-6 – ident: e_1_2_7_47_1 doi: 10.4014/jmb.1304.04057 – ident: e_1_2_7_43_1 doi: 10.1111/tpj.12763 – ident: e_1_2_7_46_1 doi: 10.1007/s00425-008-0772-7 – ident: e_1_2_7_86_1 doi: 10.1128/JB.183.3.1069-1077.2001 |
| SSID | ssj0017364 |
| Score | 2.4611337 |
| Snippet | Summary
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin... Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin ( TOR )... Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR)... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 355 |
| SubjectTerms | Accumulation Active control algae Amino acids autotrophs Biodegradation Biomass biomass production Carbon Carbon cycle carbon partitioning Cell cycle Chlamydomonas reinhardtii Diurnal Diurnal variations Environmental conditions Eukaryotes eukaryotic cells lipidomics Metabolism Metabolomics Nitrogen Nitrogen balance Nitrogen metabolism photoautotrophic growth Photosynthesis Proteins Rapamycin Regulatory proteins Ribonucleic acid RNA Starch synchronized cell cultures systems biology target of rapamycin target of rapamycin proteins TOR protein Transcription triacylglycerols |
| Title | The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13787 https://www.ncbi.nlm.nih.gov/pubmed/29172247 https://www.proquest.com/docview/1983633770 https://www.proquest.com/docview/1969936275 https://www.proquest.com/docview/2020878658 |
| Volume | 93 |
| WOSCitedRecordID | wos000419139400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-313X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Journals (OA) customDbUrl: eissn: 1365-313X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB71euCF-1golUE89CUi6xx2xBMUVoDQaoVasW-RTzWCOtVmFyn8JH4lYzsbUUElJF5yyJN45MxkPttzALyorJDcqipJvQtVbgXqXGpVwrXRaa5TH-cTik2w-Zwvl9ViB15tY2Fifohxwc1rRvhfewUXsvtNydeX3kcL5W0X9n1QFc689t9-np19GjcRWBazRyFIT9Bw0iGxkHfkGR--ao7-wJhXIWuwObNb_8Xtbbg5QE3yOsrGHdgx7i4cvGkRDvb34CcKCIl-4KS1xBdCv-hV48jXxqFlIyI6ehAfn48AmwilNhdDrS8inCZ-yZ-oHl9NgpNXTPBBZE_CDjyaRKLESrbuJf41kMBgm_ejVIZgL13vVMjL-8NocnKOctnrFlVCdGRlGudjwdZNEzrp7sPZ7N3pyftkKNyQKJz_sCSfyrywJedalszkloqMKplXXDCEkzJTqjCC4skaYzOToxQVpWSCV5Rya8vsAey51plHQDTTtjR2yg3iVKqsLDQrbF4iErWSV3YCx9vvV6shq7kvrvGt3s5ucOTrMPITeD6SXsZUHn8jOtwKQT1oc1dPK56VWcZYOoFnYzPqoR8E4Uy78TQlQj2f8_l6GuorojKOoG8CD6OAjZxQnDcjnEIGjoMcXc9ifbr4GC4e_zvpE7iBSI_HtaND2FuvNuYpHKjv66ZbHcEuzRd4ZEt-NCgR3n35MP8FUF4kRw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VUgkulDcLBQzi0EtE1nFiR-JSKqoCZbWHReot8lNEUKfa7CKlP6m_krGTjaigEhKnRPIkGTkzns_jeQC8KZ1UwukySUMIFXMSdS51OhHGmpSZNOT5xGYTfDYTp6flfAvebXJh-voQo8MtaEZcr4OCB4f0b1q-Og9BWihwN-AmQ6sUAvoom49nCDzri0chRk_QbtKhrlCI4xkfvWqN_oCYVxFrNDlHu__H7F24M0BNctDLxj3Ysv4-7LxvEA52D-ASBYT0ceCkcSQ0Qj_rdO3J99qjZSOyD_QgIT8fATaRWq_Phl5fRHpDgsuf6A5fTWKQV1_gg6iOxBN4NIlEy6Vq_FtcNZDA4liIo9SW4FfazutYl_fCGnL4DeWyMw2qhGzJ0tY-5IKt6jp-pH0IX48-LA6Pk6FxQ6Jx_8MTNlUsd4UQRhXcMkdlRrVipZAc4aTKtM6tpHhx1rrMMpSivFBcipJS4VyRPYJt33j7BIjhxhXWTYVFnEq1U7nhuWMFIlGnROkmsL_5gZUeqpqH5ho_qs3uBme-ijM_gdcj6XlfyuNvRHsbKagGbW6raSmyIss4TyfwahxGPQyTIL1t1oGmQKgXaj5fT0NDR1QuEPRN4HEvYSMnFPfNCKeQgf0oSNezWC3mn-LN038nfQm3jhdfTqqTj7PPz-A2oj7R-5H2YHu1XNvnsKN_rup2-SLq0C_aoSPO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VUiEulFdhoYBBHHqJyDpO7EhcSmHFS6s9FKm3yE8RlTqrzS5S-En8SsZONqKCSkicEsmTZOTM5_lsj2cAXpZOKuF0maQhhIo5iZhLnU6EsSZlJg3nfGKxCT6fi7OzcrEDr7dnYfr8EOOCW0BGHK8DwO3SuN9Qvl6GIC00uGtwneU8wpKyxbiHwLM-eRRy9AT9Jh3yCoU4nvHRy97oD4p5mbFGlzPb_z9lb8OtgWqS49427sCO9Xdh702DdLC7Bz_RQEgfB04aR0Ih9ItO156c1x49G5F9oAcJ5_ORYBOp9eZiqPVFpDckLPkT3eGrSQzy6hN8ENWRuAOPLpFouVKNf4WjBgpYbAtxlNoS_ErbeR3z8v6whpx8RbvsTIOQkC1Z2dqHs2Druo4fae_Dl9m705P3yVC4IdE4_-EJmyqWu0IIowpumaMyo1qxUkiOdFJlWudWUrw4a11mGVpRXiguRUmpcK7IDmDXN94-BGK4cYV1U2GRp1LtVG547liBTNQpUboJHG1_YKWHrOahuMa3aju7wZ6vYs9P4MUouuxTefxN6HBrBdWA5raaliIrsozzdALPx2bEYegE6W2zCTIFUr2Q8_lqGRoqonKBpG8CD3oLGzWhOG9GOoUKHEVDulrF6nTxMd48-nfRZ3Bj8XZWff4w__QYbiLpE_0y0iHsrlcb-wT29Pd13a6eRgj9AjOVI0k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+target+of+rapamycin+kinase+affects+biomass+accumulation+and+cell+cycle+progression+by+altering+carbon%2Fnitrogen+balance+in+synchronized+Chlamydomonas+reinhardtii+cells&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=J%C3%BCppner%2C+Jessica&rft.au=Mubeen%2C+Umarah&rft.au=Leisse%2C+Andrea&rft.au=Caldana%2C+Camila&rft.date=2018-01-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=93&rft.issue=2&rft.spage=355&rft.epage=376&rft_id=info:doi/10.1111%2Ftpj.13787&rft.externalDBID=10.1111%252Ftpj.13787&rft.externalDocID=TPJ13787 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |