The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells

Summary Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology Jg. 93; H. 2; S. 355 - 376
Hauptverfasser: Jüppner, Jessica, Mubeen, Umarah, Leisse, Andrea, Caldana, Camila, Wiszniewski, Andrew, Steinhauser, Dirk, Giavalisco, Patrick
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 01.01.2018
Schlagworte:
ISSN:0960-7412, 1365-313X, 1365-313X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. Significance Statement Growth and development are controlled by a few regulatory proteins, which sense environmental conditions and translate this information into intracellular molecular responses. Target of Rapamycin is one of the central regulatory proteins controlling several metabolic, especially biosynthetic, processes. In the current study, we elucidate the influence of Target of Rapamycin activity on biomass accumulation, cellular growth, cell cycle and central carbon and nitrogen metabolism in the photoautotrophically growing alga Chlamydomonas reinhardtii.
AbstractList Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression.
Summary Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. Significance Statement Growth and development are controlled by a few regulatory proteins, which sense environmental conditions and translate this information into intracellular molecular responses. Target of Rapamycin is one of the central regulatory proteins controlling several metabolic, especially biosynthetic, processes. In the current study, we elucidate the influence of Target of Rapamycin activity on biomass accumulation, cellular growth, cell cycle and central carbon and nitrogen metabolism in the photoautotrophically growing alga Chlamydomonas reinhardtii.
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra- and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time-resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non-linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time-resolved analysis illustrated that metabolic processes including amino acid-, starch- and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen-containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression.Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra- and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time-resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non-linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time-resolved analysis illustrated that metabolic processes including amino acid-, starch- and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen-containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression.
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin ( TOR ) kinase is known to integrate intra‐ and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time‐resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non‐linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time‐resolved analysis illustrated that metabolic processes including amino acid‐, starch‐ and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen‐containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. Growth and development are controlled by a few regulatory proteins, which sense environmental conditions and translate this information into intracellular molecular responses. Target of Rapamycin is one of the central regulatory proteins controlling several metabolic, especially biosynthetic, processes. In the current study, we elucidate the influence of Target of Rapamycin activity on biomass accumulation, cellular growth, cell cycle and central carbon and nitrogen metabolism in the photoautotrophically growing alga Chlamydomonas reinhardtii .
Author Jüppner, Jessica
Mubeen, Umarah
Leisse, Andrea
Giavalisco, Patrick
Steinhauser, Dirk
Wiszniewski, Andrew
Caldana, Camila
Author_xml – sequence: 1
  givenname: Jessica
  surname: Jüppner
  fullname: Jüppner, Jessica
  organization: Max Planck Institute of Molecular Plant Physiology
– sequence: 2
  givenname: Umarah
  surname: Mubeen
  fullname: Mubeen, Umarah
  organization: Max Planck Institute of Molecular Plant Physiology
– sequence: 3
  givenname: Andrea
  surname: Leisse
  fullname: Leisse, Andrea
  organization: Max Planck Institute of Molecular Plant Physiology
– sequence: 4
  givenname: Camila
  surname: Caldana
  fullname: Caldana, Camila
  organization: Brazilian Bioethanol Science and Technology Laboratory/CNPEM
– sequence: 5
  givenname: Andrew
  surname: Wiszniewski
  fullname: Wiszniewski, Andrew
  organization: Max Planck Institute of Molecular Plant Physiology
– sequence: 6
  givenname: Dirk
  surname: Steinhauser
  fullname: Steinhauser, Dirk
  organization: Max Planck Institute of Molecular Plant Physiology
– sequence: 7
  givenname: Patrick
  surname: Giavalisco
  fullname: Giavalisco, Patrick
  email: Giavalisco@mpimp-golm.mpg.de
  organization: Max Planck Institute of Molecular Plant Physiology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29172247$$D View this record in MEDLINE/PubMed
BookMark eNqFks-O0zAQxi20iO0uHHgBZIkLHLqN7cR2jqjir1aCQ5G4RRNn3LokdrETofBIPCVuu3BYCZjLHOY3881ovity4YNHQp6y4oblWI2H_Q0TSqsHZMGErJaCiS8XZFHUsliqkvFLcpXSviiYErJ8RC55zRTnpVqQn5sd0hHiFkcaLI1wgGE2ztOvzkNCCtaiGRNtXRggJQrGTMPUw-iCp-A7arDvqZlNj_QQwzZiSsdSO1PoR4zOb6mB2Aa_8m7MAOYa9OAN0qySZm92MXj3Azu63vVZvAtDyNI0ovM7iN3o3EkkPSYPLfQJn9zla_L5zevN-t3y9uPb9-tXt0tTaqWWJWvLykqtu1YqLC0HwU1b1hoUF6wVxlQIPCeLaAWWxkAlWwW65lxbK8U1eXGem-_5NmEam8Gl4wbgMUyp4QUvtNKy0v9FWS3rWkiuqow-v4fuwxR9PiRTWkghlCoy9eyOmtoBu-YQ3QBxbn4_LAMvz4CJIaWI9g_CiuZohiaboTmZIbOre6xx4-lzYwTX_6vju-tx_vvoZvPpw7njFxqyycg
CitedBy_id crossref_primary_10_1080_01904167_2021_1994598
crossref_primary_10_1093_jxb_erz378
crossref_primary_10_1093_pcp_pcaa023
crossref_primary_10_1111_tpj_16684
crossref_primary_10_3390_microorganisms8081195
crossref_primary_10_3390_microorganisms12122574
crossref_primary_10_1186_s13068_019_1635_0
crossref_primary_10_3389_fpls_2021_637508
crossref_primary_10_3389_fpls_2021_758933
crossref_primary_10_1016_j_plantsci_2022_111390
crossref_primary_10_3389_fgene_2020_00186
crossref_primary_10_1002_1873_3468_13888
crossref_primary_10_1093_jxb_erz140
crossref_primary_10_1126_sciadv_adu1240
crossref_primary_10_3390_genes11111285
crossref_primary_10_3390_ijms231911309
crossref_primary_10_1093_jxb_ery459
crossref_primary_10_1016_j_biochi_2019_06_016
crossref_primary_10_1093_jxb_erac401
crossref_primary_10_1016_j_jksus_2022_102292
crossref_primary_10_3390_biom12030387
crossref_primary_10_3390_ijms21218259
crossref_primary_10_1186_s12870_019_2085_3
crossref_primary_10_3390_microorganisms10030503
crossref_primary_10_1016_j_biortech_2024_132004
crossref_primary_10_1016_j_pbi_2018_08_003
crossref_primary_10_3389_fmicb_2019_00501
crossref_primary_10_1091_mbc_E24_09_0425
crossref_primary_10_3390_ijms23137451
crossref_primary_10_1007_s00253_022_11931_0
crossref_primary_10_1007_s00418_025_02354_9
crossref_primary_10_3389_fpls_2025_1622214
crossref_primary_10_1016_j_plaphy_2024_108661
crossref_primary_10_1093_jxb_eraf338
crossref_primary_10_1073_pnas_2115261119
crossref_primary_10_1093_jxb_erz125
crossref_primary_10_1093_plphys_kiae254
crossref_primary_10_1007_s10529_025_03614_3
crossref_primary_10_3389_fpls_2018_01590
crossref_primary_10_1093_jxb_erac264
crossref_primary_10_1002_pld3_184
crossref_primary_10_1016_j_algal_2024_103419
crossref_primary_10_1111_tpj_14136
crossref_primary_10_1186_s13068_025_02617_6
crossref_primary_10_1093_plphys_kiaf106
crossref_primary_10_3390_cells10010062
crossref_primary_10_1080_15592324_2019_1670595
crossref_primary_10_1038_s41598_018_30809_8
crossref_primary_10_1093_jxb_erz053
Cites_doi 10.1016/S0092-8674(02)00808-5
10.1038/embor.2013.5
10.1007/s11103-015-0370-6
10.1016/j.copbio.2011.12.001
10.1073/pnas.0903478106
10.1105/tpc.112.105106
10.1083/jcb.201306041
10.1016/j.ceb.2017.02.012
10.1146/annurev-arplant-043014-114648
10.1371/journal.pgen.0020167
10.1186/s13007-016-0146-2
10.1128/EC.00268-12
10.1104/pp.109.152520
10.1093/aob/mcp259
10.1104/pp.113.229948
10.1038/nature12030
10.1016/j.cub.2004.06.054
10.1128/EC.00280-13
10.1104/pp.111.179861
10.3389/fpls.2016.01611
10.1093/jxb/ert466
10.1038/sj.embor.7401043
10.1016/j.bpj.2012.07.026
10.1016/j.jchromb.2009.07.006
10.1007/s10592-005-9073-x
10.1093/genetics/40.4.476
10.1016/S0960-9822(00)00866-6
10.1016/j.tibs.2013.01.004
10.1016/S0076-6879(80)69036-3
10.1016/j.cell.2015.02.041
10.1126/science.1228792
10.3389/fpls.2017.01204
10.3389/fpls.2011.00054
10.1126/science.1715094
10.1104/pp.105.070847
10.1104/pp.010896
10.1016/j.devcel.2005.07.004
10.1091/mbc.7.1.25
10.1111/tpj.13642
10.1016/j.ceb.2009.08.007
10.1006/abbi.1995.1141
10.1042/bj20021266
10.1038/nrm2672
10.1111/tpj.12080
10.1016/j.ymben.2010.02.002
10.1016/j.tibs.2016.04.001
10.1371/journal.pone.0017806
10.1016/j.cub.2004.11.027
10.1146/annurev.arplant.57.032905.105421
10.15252/embj.201696010
10.1073/pnas.73.5.1664
10.1016/j.febslet.2011.05.018
10.1111/tpj.12787
10.3390/biom7030054
10.1242/jcs.54.1.173
10.1093/pcp/pcs082
10.1105/tpc.112.107144
10.7164/antibiotics.28.727
10.1073/pnas.092141899
10.1111/tpj.12795
10.1139/y77-007
10.1371/journal.pone.0011883
10.1016/j.cell.2006.01.016
10.1007/BF02932138
10.1128/MCB.24.1.338-351.2004
10.1186/1471-2229-7-26
10.1007/s11103-012-9939-5
10.1105/tpc.16.00351
10.1016/j.cell.2017.02.004
10.1128/EC.00318-12
10.1126/science.1228771
10.1101/gad.892101
10.7164/antibiotics.28.721
10.1016/S0092-8674(02)00833-4
10.1073/pnas.1521919112
10.1038/cr.2013.166
10.1016/j.cmet.2009.11.010
10.1016/0277-5379(83)90012-3
10.1105/tpc.110.074005
10.1080/15592324.2016.1149285
10.1016/S1097-2765(02)00636-6
10.4014/jmb.1304.04057
10.1111/tpj.12763
10.1007/s00425-008-0772-7
10.1128/JB.183.3.1069-1077.2001
ContentType Journal Article
Copyright 2017 The Authors. published by John Wiley & Sons Ltd and Society for Experimental Biology.
2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2017 The Authors. published by John Wiley & Sons Ltd and Society for Experimental Biology.
– notice: 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
– notice: Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID 24P
AAYXX
CITATION
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.13787
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Genetics Abstracts
AGRICOLA

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 376
ExternalDocumentID 29172247
10_1111_tpj_13787
TPJ13787
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4877-41b45f688db67e4f2a32cb498a7231b3cc5ea23ccfeef3e4cca56b7a89228ff63
IEDL.DBID DRFUL
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419139400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:22:21 EDT 2025
Fri Jul 11 08:32:54 EDT 2025
Fri Jul 25 10:56:50 EDT 2025
Wed Feb 19 02:44:22 EST 2025
Sat Nov 29 06:05:31 EST 2025
Tue Nov 18 22:37:48 EST 2025
Wed Jan 22 16:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords systems biology
carbon partitioning
photoautotrophic growth
cell cycle
metabolomics
Chlamydomonas reinhardtii
amino acids
synchronized cell cultures
target of rapamycin
lipidomics
Language English
License Attribution-NonCommercial
2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4877-41b45f688db67e4f2a32cb498a7231b3cc5ea23ccfeef3e4cca56b7a89228ff63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13787
PMID 29172247
PQID 1983633770
PQPubID 31702
PageCount 22
ParticipantIDs proquest_miscellaneous_2020878658
proquest_miscellaneous_1969936275
proquest_journals_1983633770
pubmed_primary_29172247
crossref_primary_10_1111_tpj_13787
crossref_citationtrail_10_1111_tpj_13787
wiley_primary_10_1111_tpj_13787_TPJ13787
PublicationCentury 2000
PublicationDate January 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 12
2010; 11
2017; 7
2011; 157
2017; 8
2001; 183
1983; 19
2002; 110
2010; 105
2013; 23
2013; 203
1982; 54
2002; 10
2017; 45
2005; 139
2002; 99
2004; 24
2008; 228
2014; 24
2009; 877
1955; 40
2016a; 67
2012; 53
2014; 65
2015; 89
1976; 73
2013; 14
2009; 10
2015; 82
2017; 36
2015; 81
2013; 12
2000; 10
2007; 8
2016; 41
2010; 152
2014; 13
2007; 7
2001; 15
2011; 23
2012; 24
2016b; 7
2010; 5
2012; 23
2017; 168
2014; 164
1996; 7
2006; 124
1991; 253
1980; 69
2015; 161
2012; 80
2011; 2
2009; 21
2006; 57
1995; 317
2009
2012b; 24
2006; 2
2007; 52
2012; 103
1987; 19
2011; 6
2016; 12
2003; 372
2016; 11
2013; 38
2017; 92
2013; 339
2013; 73
2004; 14
2012a; 11
1975; 28
2005; 9
2015; 112
2002; 128
2013; 496
1977; 55
2016; 171
2016; 28
2011; 585
2009; 106
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
Harris E.H. (e_1_2_7_31_1) 2009
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Craigie R.A. (e_1_2_7_15_1) 1982; 54
e_1_2_7_6_1
e_1_2_7_4_1
Juergens M.T. (e_1_2_7_40_1) 2016; 171
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 28
  start-page: 2026
  year: 2016
  end-page: 2042
  article-title: Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas
  publication-title: Plant Cell
– volume: 585
  start-page: 1985
  year: 2011
  end-page: 1991
  article-title: A chloroplast pathway for the de novo biosynthesis of triacylglycerol in
  publication-title: FEBS Lett.
– volume: 23
  start-page: 185
  year: 2011
  end-page: 209
  article-title: The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants
  publication-title: Plant Cell
– volume: 65
  start-page: 2585
  year: 2014
  end-page: 2602
  article-title: Cell‐cycle regulation in green algae dividing by multiple fission
  publication-title: J. Exp. Bot.
– volume: 228
  start-page: 367
  year: 2008
  end-page: 381
  article-title: Polyamines: essential factors for growth and survival
  publication-title: Planta
– volume: 23
  start-page: 352
  year: 2012
  end-page: 363
  article-title: TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation
  publication-title: Curr. Opin. Biotechnol.
– volume: 40
  start-page: 476
  year: 1955
  end-page: 489
  article-title: Inheritance in the green alga
  publication-title: Genetics
– volume: 69
  start-page: 363
  year: 1980
  end-page: 374
  article-title: [34] Chloroplast membrane polypeptides
  publication-title: Methods Enzymol.
– volume: 5
  start-page: e11883
  year: 2010
  article-title: TOR is a negative regulator of autophagy in
  publication-title: PLoS ONE
– volume: 36
  start-page: 397
  year: 2017
  end-page: 408
  article-title: Nutrient sensing and TOR signaling in yeast and mammals
  publication-title: EMBO J.
– volume: 82
  start-page: 370
  year: 2015
  end-page: 392
  article-title: The Chlamydomonas cell cycle
  publication-title: Plant J.
– volume: 110
  start-page: 163
  year: 2002
  end-page: 175
  article-title: mTOR interacts with raptor to form a nutrient‐sensitive complex that signals to the cell growth machinery
  publication-title: Cell
– volume: 9
  start-page: 271
  year: 2005
  end-page: 281
  article-title: Drosophila Melted modulates FOXO and TOR activity
  publication-title: Dev. Cell
– volume: 317
  start-page: 103
  year: 1995
  end-page: 111
  article-title: Accumulation of a novel glycolipid and a betaine lipid in cells of grown under phosphate limitation
  publication-title: Arch. Biochem. Biophys.
– volume: 339
  start-page: 1320
  year: 2013
  end-page: 1323
  article-title: Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
  publication-title: Science
– volume: 11
  start-page: 1451
  year: 2012a
  end-page: 1462
  article-title: Rapid triacylglycerol turnover in requires a lipase with broad substrate specificity
  publication-title: Eukaryot. Cell
– volume: 10
  start-page: 307
  year: 2009
  end-page: 318
  article-title: Molecular mechanisms of mTOR‐mediated translational control
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 80
  start-page: 189
  year: 2012
  end-page: 202
  article-title: The purification of the chloroplast ClpP complex: additional subunits and structural features
  publication-title: Plant Mol. Biol.
– volume: 339
  start-page: 1323
  year: 2013
  end-page: 1328
  article-title: Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
  publication-title: Science
– volume: 23
  start-page: 923
  year: 2013
  end-page: 931
  article-title: Metabolomic response of to the inhibition of target of rapamycin (TOR) by rapamycin
  publication-title: J. Microbiol. Biotechnol.
– volume: 10
  start-page: 457
  year: 2002
  end-page: 468
  article-title: Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
  publication-title: Mol. Cell
– volume: 67
  start-page: 261
  year: 2016a
  end-page: 285
  article-title: TOR signaling and nutrient sensing
  publication-title: Annu. Rev. Plant Biol.
– volume: 55
  start-page: 48
  year: 1977
  end-page: 51
  article-title: Inhibition of the immune response by rapamycin, a new antifungal antibiotic
  publication-title: Can. J. Physiol. Pharmacol.
– volume: 13
  start-page: 256
  year: 2014
  end-page: 266
  article-title: Detailed identification of fatty acid isomers sheds light on the probable precursors of triacylglycerol accumulation in photoautotrophically grown
  publication-title: Eukaryot. Cell
– volume: 12
  start-page: 45
  year: 2016
  article-title: Protocol: a fast, comprehensive and reproducible one‐step extraction method for the rapid preparation of polar and semi‐polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample
  publication-title: Plant Methods
– volume: 152
  start-page: 1874
  year: 2010
  end-page: 1888
  article-title: Inhibition of target of rapamycin signaling and stress activate autophagy in
  publication-title: Plant Physiol.
– volume: 164
  start-page: 499
  year: 2014
  end-page: 512
  article-title: The role of target of rapamycin signaling networks in plant growth and metabolism
  publication-title: Plant Physiol.
– volume: 24
  start-page: 42
  year: 2014
  end-page: 57
  article-title: Autophagy regulation by nutrient signaling
  publication-title: Cell Res.
– volume: 8
  start-page: 864
  year: 2007
  end-page: 870
  article-title: The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation
  publication-title: EMBO Rep.
– volume: 183
  start-page: 1069
  year: 2001
  end-page: 1077
  article-title: Starchless mutants of lack the small subunit of a heterotetrameric ADP‐glucose pyrophosphorylase
  publication-title: J. Bacteriol.
– volume: 52
  start-page: 53
  year: 2007
  end-page: 60
  article-title: The cell cycle of : the role of the commitment point
  publication-title: Folia Microbiol. (Praha)
– volume: 139
  start-page: 1736
  year: 2005
  end-page: 1749
  article-title: Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga
  publication-title: Plant Physiol.
– volume: 11
  start-page: e1149285
  year: 2016
  article-title: TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae
  publication-title: Plant Signal. Behav.
– volume: 19
  start-page: 799
  year: 1983
  end-page: 805
  article-title: Human brain tumor xenografts in nude mice as a chemotherapy model
  publication-title: Eur. J. Cancer Clin. Oncol.
– volume: 53
  start-page: 1380
  year: 2012
  end-page: 1390
  article-title: Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in
  publication-title: Plant Cell Physiol.
– volume: 54
  start-page: 173
  year: 1982
  end-page: 191
  article-title: Cell‐volume and the control of the Chlamydomonas cell‐cycle
  publication-title: J. Cell Sci.
– volume: 45
  start-page: 72
  year: 2017
  end-page: 82
  article-title: mTORC1 signaling and the metabolic control of cell growth
  publication-title: Curr. Opin. Cell Biol.
– volume: 24
  start-page: 338
  year: 2004
  end-page: 351
  article-title: Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast
  publication-title: Mol. Cell. Biol.
– volume: 14
  start-page: 242
  year: 2013
  end-page: 251
  article-title: The multifaceted role of mTORC1 in the control of lipid metabolism
  publication-title: EMBO Rep.
– volume: 73
  start-page: 897
  year: 2013
  end-page: 909
  article-title: Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in
  publication-title: Plant J.
– volume: 89
  start-page: 309
  year: 2015
  end-page: 318
  article-title: Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae
  publication-title: Plant Mol. Biol.
– volume: 11
  start-page: 35
  year: 2010
  end-page: 46
  article-title: Mechanisms of life span extension by rapamycin in the fruit fly
  publication-title: Cell Metab.
– volume: 21
  start-page: 825
  year: 2009
  end-page: 836
  article-title: TOR signaling in invertebrates
  publication-title: Curr. Opin. Cell Biol.
– volume: 81
  start-page: 822
  year: 2015
  end-page: 835
  article-title: Integration of transcriptomics and metabolomics data specifies the metabolic response of Chlamydomonas to rapamycin treatment
  publication-title: Plant J.
– volume: 15
  start-page: 1652
  year: 2001
  end-page: 1661
  article-title: Control of cell division by a retinoblastoma protein homolog in Chlamydomonas
  publication-title: Genes Dev.
– volume: 19
  start-page: 11
  year: 1987
  end-page: 15
  article-title: A rapid DNA isolation procedure for small quantities of fresh leaf tissue
  publication-title: Phytochem. Bulletin
– volume: 128
  start-page: 1470
  year: 2002
  end-page: 1479
  article-title: Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga
  publication-title: Plant Physiol.
– volume: 2
  start-page: e167
  year: 2006
  article-title: Cell size checkpoint control by the retinoblastoma tumor suppressor pathway
  publication-title: PLoS Genet.
– volume: 496
  start-page: 181
  year: 2013
  end-page: 186
  article-title: Glucose‐TOR signalling reprograms the transcriptome and activates meristems
  publication-title: Nature
– volume: 7
  start-page: 1611
  year: 2016b
  article-title: The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6
  publication-title: Front. Plant Sci.
– volume: 253
  start-page: 905
  year: 1991
  end-page: 909
  article-title: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
  publication-title: Science
– volume: 73
  start-page: 1664
  year: 1976
  end-page: 1668
  article-title: Control of cell division in by methionyl‐tRNA
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 161
  start-page: 67
  year: 2015
  end-page: 83
  article-title: Nutrient‐sensing mechanisms across evolution
  publication-title: Cell
– volume: 168
  start-page: 960
  year: 2017
  end-page: 976
  article-title: mTOR signaling in growth, metabolism, and disease
  publication-title: Cell
– volume: 12
  start-page: 387
  year: 2010
  end-page: 391
  article-title: Chlamydomonas starchless mutant defective in ADP‐glucose pyrophosphorylase hyper‐accumulates triacylglycerol
  publication-title: Metab. Eng.
– volume: 112
  start-page: 15790
  year: 2015
  end-page: 15797
  article-title: mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 82
  start-page: 504
  year: 2015
  end-page: 522
  article-title: Metabolism of acyl‐lipids in
  publication-title: Plant J.
– volume: 57
  start-page: 805
  year: 2006
  end-page: 836
  article-title: Pyrimidine and purine biosynthesis and degradation in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 203
  start-page: 563
  year: 2013
  end-page: 574
  article-title: Where is mTOR and what is it doing there?
  publication-title: J. Cell Biol.
– volume: 372
  start-page: 555
  year: 2003
  end-page: 566
  article-title: Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
  publication-title: Biochem. J.
– volume: 41
  start-page: 532
  year: 2016
  end-page: 545
  article-title: TORC2 structure and function
  publication-title: Trends Biochem. Sci.
– volume: 14
  start-page: R1014
  year: 2004
  end-page: R1027
  article-title: How cells coordinate growth and division
  publication-title: Curr. Biol.
– volume: 7
  start-page: 26
  year: 2007
  article-title: FKBP12 binds TOR and its expression in plants leads to rapamycin susceptibility
  publication-title: BMC Plant Biol.
– volume: 171
  start-page: 2445
  year: 2016
  end-page: 2457
  article-title: The relationship of triacylglycerol and starch accumulation to carbon and energy flows during nutrient deprivation in
  publication-title: Plant Physiol.
– volume: 6
  start-page: e17806
  year: 2011
  article-title: A topological map of the compartmentalized leaf metabolome
  publication-title: PLoS ONE
– start-page: 241
  year: 2009
  end-page: 302
– volume: 92
  start-page: 331
  year: 2017
  end-page: 343
  article-title: Dynamics of lipids and metabolites during the cell cycle of
  publication-title: Plant J.
– volume: 105
  start-page: 1
  year: 2010
  end-page: 6
  article-title: Polyamines: ubiquitous polycations with unique roles in growth and stress responses
  publication-title: Ann. Bot.
– volume: 12
  start-page: 776
  year: 2013
  end-page: 793
  article-title: Central carbon metabolism and electron transport in : metabolic constraints for carbon partitioning between oil and starch
  publication-title: Eukaryot. Cell
– volume: 99
  start-page: 6422
  year: 2002
  end-page: 6427
  article-title: Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 4850
  year: 2012
  end-page: 4874
  article-title: Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis
  publication-title: Plant Cell
– volume: 14
  start-page: 1296
  year: 2004
  end-page: 1302
  article-title: Rictor, a novel binding partner of mTOR, defines a rapamycin‐insensitive and raptor‐independent pathway that regulates the cytoskeleton
  publication-title: Curr. Biol.
– volume: 28
  start-page: 721
  year: 1975
  end-page: 726
  article-title: Rapamycin (AY‐22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
  publication-title: J. Antibiot. (Tokyo)
– volume: 877
  start-page: 2952
  year: 2009
  end-page: 2960
  article-title: Assessment of sampling strategies for gas chromatography‐mass spectrometry (GC‐MS) based metabolomics of cyanobacteria
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
– volume: 7
  start-page: 54
  year: 2017
  article-title: The TOR signaling network in the model unicellular green alga
  publication-title: Biomolecules
– volume: 110
  start-page: 177
  year: 2002
  end-page: 189
  article-title: Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
  publication-title: Cell
– volume: 2
  start-page: 54
  year: 2011
  article-title: Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids
  publication-title: Front. Plant Sci.
– volume: 8
  start-page: 1204
  year: 2017
  article-title: TOR‐dependent and ‐independent pathways regulate autophagy in
  publication-title: Front. Plant Sci.
– volume: 38
  start-page: 233
  year: 2013
  end-page: 242
  article-title: Nutrient signaling to mTOR and cell growth
  publication-title: Trends Biochem. Sci.
– volume: 106
  start-page: 10348
  year: 2009
  end-page: 10353
  article-title: Starch as a major integrator in the regulation of plant growth
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 157
  start-page: 730
  year: 2011
  end-page: 741
  article-title: Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas
  publication-title: Plant Physiol.
– volume: 10
  start-page: 1574
  year: 2000
  end-page: 1581
  article-title: Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins
  publication-title: Curr. Biol.
– volume: 124
  start-page: 471
  year: 2006
  end-page: 484
  article-title: TOR signaling in growth and metabolism
  publication-title: Cell
– volume: 28
  start-page: 727
  year: 1975
  end-page: 732
  article-title: Rapamycin (AY‐22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization
  publication-title: J. Antibiot. (Tokyo)
– volume: 7
  start-page: 25
  year: 1996
  end-page: 42
  article-title: TOR controls translation initiation and early G1 progression in yeast
  publication-title: Mol. Biol. Cell
– volume: 103
  start-page: 1078
  year: 2012
  end-page: 1086
  article-title: Cell‐to‐cell diversity in a synchronized Chlamydomonas culture as revealed by single‐cell analyses
  publication-title: Biophys. J .
– volume: 24
  start-page: 4670
  year: 2012b
  end-page: 4686
  article-title: A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in
  publication-title: Plant Cell
– ident: e_1_2_7_42_1
  doi: 10.1016/S0092-8674(02)00808-5
– ident: e_1_2_7_63_1
  doi: 10.1038/embor.2013.5
– ident: e_1_2_7_35_1
  doi: 10.1007/s11103-015-0370-6
– ident: e_1_2_7_57_1
  doi: 10.1016/j.copbio.2011.12.001
– ident: e_1_2_7_76_1
  doi: 10.1073/pnas.0903478106
– ident: e_1_2_7_50_1
  doi: 10.1105/tpc.112.105106
– ident: e_1_2_7_8_1
  doi: 10.1083/jcb.201306041
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ceb.2017.02.012
– ident: e_1_2_7_21_1
  doi: 10.1146/annurev-arplant-043014-114648
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pgen.0020167
– ident: e_1_2_7_68_1
  doi: 10.1186/s13007-016-0146-2
– ident: e_1_2_7_49_1
  doi: 10.1128/EC.00268-12
– ident: e_1_2_7_59_1
  doi: 10.1104/pp.109.152520
– ident: e_1_2_7_77_1
  doi: 10.1093/aob/mcp259
– ident: e_1_2_7_84_1
  doi: 10.1104/pp.113.229948
– ident: e_1_2_7_85_1
  doi: 10.1038/nature12030
– ident: e_1_2_7_69_1
  doi: 10.1016/j.cub.2004.06.054
– ident: e_1_2_7_67_1
  doi: 10.1128/EC.00280-13
– ident: e_1_2_7_20_1
  doi: 10.1104/pp.111.179861
– ident: e_1_2_7_22_1
  doi: 10.3389/fpls.2016.01611
– ident: e_1_2_7_10_1
  doi: 10.1093/jxb/ert466
– ident: e_1_2_7_18_1
  doi: 10.1038/sj.embor.7401043
– ident: e_1_2_7_27_1
  doi: 10.1016/j.bpj.2012.07.026
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jchromb.2009.07.006
– ident: e_1_2_7_23_1
  doi: 10.1007/s10592-005-9073-x
– ident: e_1_2_7_66_1
  doi: 10.1093/genetics/40.4.476
– ident: e_1_2_7_73_1
  doi: 10.1016/S0960-9822(00)00866-6
– ident: e_1_2_7_37_1
  doi: 10.1016/j.tibs.2013.01.004
– ident: e_1_2_7_4_1
  doi: 10.1016/S0076-6879(80)69036-3
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cell.2015.02.041
– start-page: 241
  volume-title: The Chlamydomonas Sourcebook
  year: 2009
  ident: e_1_2_7_31_1
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1228792
– ident: e_1_2_7_61_1
  doi: 10.3389/fpls.2017.01204
– ident: e_1_2_7_34_1
  doi: 10.3389/fpls.2011.00054
– ident: e_1_2_7_32_1
  doi: 10.1126/science.1715094
– ident: e_1_2_7_16_1
  doi: 10.1104/pp.105.070847
– ident: e_1_2_7_79_1
  doi: 10.1104/pp.010896
– ident: e_1_2_7_78_1
  doi: 10.1016/j.devcel.2005.07.004
– ident: e_1_2_7_3_1
  doi: 10.1091/mbc.7.1.25
– ident: e_1_2_7_41_1
  doi: 10.1111/tpj.13642
– ident: e_1_2_7_75_1
  doi: 10.1016/j.ceb.2009.08.007
– ident: e_1_2_7_5_1
  doi: 10.1006/abbi.1995.1141
– ident: e_1_2_7_9_1
  doi: 10.1042/bj20021266
– ident: e_1_2_7_54_1
  doi: 10.1038/nrm2672
– ident: e_1_2_7_12_1
  doi: 10.1111/tpj.12080
– ident: e_1_2_7_48_1
  doi: 10.1016/j.ymben.2010.02.002
– ident: e_1_2_7_28_1
  doi: 10.1016/j.tibs.2016.04.001
– ident: e_1_2_7_45_1
  doi: 10.1371/journal.pone.0017806
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cub.2004.11.027
– ident: e_1_2_7_88_1
  doi: 10.1146/annurev.arplant.57.032905.105421
– ident: e_1_2_7_29_1
  doi: 10.15252/embj.201696010
– ident: e_1_2_7_81_1
  doi: 10.1073/pnas.73.5.1664
– ident: e_1_2_7_24_1
  doi: 10.1016/j.febslet.2011.05.018
– ident: e_1_2_7_51_1
  doi: 10.1111/tpj.12787
– ident: e_1_2_7_60_1
  doi: 10.3390/biom7030054
– volume: 54
  start-page: 173
  year: 1982
  ident: e_1_2_7_15_1
  article-title: Cell‐volume and the control of the Chlamydomonas cell‐cycle
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.54.1.173
– ident: e_1_2_7_25_1
  doi: 10.1093/pcp/pcs082
– ident: e_1_2_7_62_1
  doi: 10.1105/tpc.112.107144
– ident: e_1_2_7_72_1
  doi: 10.7164/antibiotics.28.727
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.092141899
– ident: e_1_2_7_17_1
  doi: 10.1111/tpj.12795
– ident: e_1_2_7_55_1
  doi: 10.1139/y77-007
– ident: e_1_2_7_52_1
  doi: 10.1371/journal.pone.0011883
– ident: e_1_2_7_83_1
  doi: 10.1016/j.cell.2006.01.016
– ident: e_1_2_7_58_1
  doi: 10.1007/BF02932138
– ident: e_1_2_7_71_1
  doi: 10.1128/MCB.24.1.338-351.2004
– ident: e_1_2_7_74_1
  doi: 10.1186/1471-2229-7-26
– ident: e_1_2_7_19_1
  doi: 10.1007/s11103-012-9939-5
– ident: e_1_2_7_14_1
  doi: 10.1105/tpc.16.00351
– ident: e_1_2_7_70_1
  doi: 10.1016/j.cell.2017.02.004
– ident: e_1_2_7_38_1
  doi: 10.1128/EC.00318-12
– ident: e_1_2_7_64_1
  doi: 10.1126/science.1228771
– ident: e_1_2_7_80_1
  doi: 10.1101/gad.892101
– ident: e_1_2_7_82_1
  doi: 10.7164/antibiotics.28.721
– ident: e_1_2_7_30_1
  doi: 10.1016/S0092-8674(02)00833-4
– ident: e_1_2_7_87_1
  doi: 10.1073/pnas.1521919112
– ident: e_1_2_7_65_1
  doi: 10.1038/cr.2013.166
– ident: e_1_2_7_11_1
  doi: 10.1016/j.cmet.2009.11.010
– ident: e_1_2_7_33_1
  doi: 10.1016/0277-5379(83)90012-3
– volume: 171
  start-page: 2445
  year: 2016
  ident: e_1_2_7_40_1
  article-title: The relationship of triacylglycerol and starch accumulation to carbon and energy flows during nutrient deprivation in Chlamydomonas reinhardtii
  publication-title: Plant Physiol.
– ident: e_1_2_7_2_1
  doi: 10.1105/tpc.110.074005
– ident: e_1_2_7_36_1
  doi: 10.1080/15592324.2016.1149285
– ident: e_1_2_7_53_1
  doi: 10.1016/S1097-2765(02)00636-6
– ident: e_1_2_7_47_1
  doi: 10.4014/jmb.1304.04057
– ident: e_1_2_7_43_1
  doi: 10.1111/tpj.12763
– ident: e_1_2_7_46_1
  doi: 10.1007/s00425-008-0772-7
– ident: e_1_2_7_86_1
  doi: 10.1128/JB.183.3.1069-1077.2001
SSID ssj0017364
Score 2.4611337
Snippet Summary Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin...
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin ( TOR )...
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355
SubjectTerms Accumulation
Active control
algae
Amino acids
autotrophs
Biodegradation
Biomass
biomass production
Carbon
Carbon cycle
carbon partitioning
Cell cycle
Chlamydomonas reinhardtii
Diurnal
Diurnal variations
Environmental conditions
Eukaryotes
eukaryotic cells
lipidomics
Metabolism
Metabolomics
Nitrogen
Nitrogen balance
Nitrogen metabolism
photoautotrophic growth
Photosynthesis
Proteins
Rapamycin
Regulatory proteins
Ribonucleic acid
RNA
Starch
synchronized cell cultures
systems biology
target of rapamycin
target of rapamycin proteins
TOR protein
Transcription
triacylglycerols
Title The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13787
https://www.ncbi.nlm.nih.gov/pubmed/29172247
https://www.proquest.com/docview/1983633770
https://www.proquest.com/docview/1969936275
https://www.proquest.com/docview/2020878658
Volume 93
WOSCitedRecordID wos000419139400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Journals (OA)
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB71euCF-1golUE89CUi6xx2xBMUVoDQaoVasW-RTzWCOtVmFyn8JH4lYzsbUUElJF5yyJN45MxkPttzALyorJDcqipJvQtVbgXqXGpVwrXRaa5TH-cTik2w-Zwvl9ViB15tY2Fifohxwc1rRvhfewUXsvtNydeX3kcL5W0X9n1QFc689t9-np19GjcRWBazRyFIT9Bw0iGxkHfkGR--ao7-wJhXIWuwObNb_8Xtbbg5QE3yOsrGHdgx7i4cvGkRDvb34CcKCIl-4KS1xBdCv-hV48jXxqFlIyI6ehAfn48AmwilNhdDrS8inCZ-yZ-oHl9NgpNXTPBBZE_CDjyaRKLESrbuJf41kMBgm_ejVIZgL13vVMjL-8NocnKOctnrFlVCdGRlGudjwdZNEzrp7sPZ7N3pyftkKNyQKJz_sCSfyrywJedalszkloqMKplXXDCEkzJTqjCC4skaYzOToxQVpWSCV5Rya8vsAey51plHQDTTtjR2yg3iVKqsLDQrbF4iErWSV3YCx9vvV6shq7kvrvGt3s5ucOTrMPITeD6SXsZUHn8jOtwKQT1oc1dPK56VWcZYOoFnYzPqoR8E4Uy78TQlQj2f8_l6GuorojKOoG8CD6OAjZxQnDcjnEIGjoMcXc9ifbr4GC4e_zvpE7iBSI_HtaND2FuvNuYpHKjv66ZbHcEuzRd4ZEt-NCgR3n35MP8FUF4kRw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VUgkulDcLBQzi0EtE1nFiR-JSKqoCZbWHReot8lNEUKfa7CKlP6m_krGTjaigEhKnRPIkGTkzns_jeQC8KZ1UwukySUMIFXMSdS51OhHGmpSZNOT5xGYTfDYTp6flfAvebXJh-voQo8MtaEZcr4OCB4f0b1q-Og9BWihwN-AmQ6sUAvoom49nCDzri0chRk_QbtKhrlCI4xkfvWqN_oCYVxFrNDlHu__H7F24M0BNctDLxj3Ysv4-7LxvEA52D-ASBYT0ceCkcSQ0Qj_rdO3J99qjZSOyD_QgIT8fATaRWq_Phl5fRHpDgsuf6A5fTWKQV1_gg6iOxBN4NIlEy6Vq_FtcNZDA4liIo9SW4FfazutYl_fCGnL4DeWyMw2qhGzJ0tY-5IKt6jp-pH0IX48-LA6Pk6FxQ6Jx_8MTNlUsd4UQRhXcMkdlRrVipZAc4aTKtM6tpHhx1rrMMpSivFBcipJS4VyRPYJt33j7BIjhxhXWTYVFnEq1U7nhuWMFIlGnROkmsL_5gZUeqpqH5ho_qs3uBme-ijM_gdcj6XlfyuNvRHsbKagGbW6raSmyIss4TyfwahxGPQyTIL1t1oGmQKgXaj5fT0NDR1QuEPRN4HEvYSMnFPfNCKeQgf0oSNezWC3mn-LN038nfQm3jhdfTqqTj7PPz-A2oj7R-5H2YHu1XNvnsKN_rup2-SLq0C_aoSPO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VUiEulFdhoYBBHHqJyDpO7EhcSmHFS6s9FKm3yE8RlTqrzS5S-En8SsZONqKCSkicEsmTZOTM5_lsj2cAXpZOKuF0maQhhIo5iZhLnU6EsSZlJg3nfGKxCT6fi7OzcrEDr7dnYfr8EOOCW0BGHK8DwO3SuN9Qvl6GIC00uGtwneU8wpKyxbiHwLM-eRRy9AT9Jh3yCoU4nvHRy97oD4p5mbFGlzPb_z9lb8OtgWqS49427sCO9Xdh702DdLC7Bz_RQEgfB04aR0Ih9ItO156c1x49G5F9oAcJ5_ORYBOp9eZiqPVFpDckLPkT3eGrSQzy6hN8ENWRuAOPLpFouVKNf4WjBgpYbAtxlNoS_ErbeR3z8v6whpx8RbvsTIOQkC1Z2dqHs2Druo4fae_Dl9m705P3yVC4IdE4_-EJmyqWu0IIowpumaMyo1qxUkiOdFJlWudWUrw4a11mGVpRXiguRUmpcK7IDmDXN94-BGK4cYV1U2GRp1LtVG547liBTNQpUboJHG1_YKWHrOahuMa3aju7wZ6vYs9P4MUouuxTefxN6HBrBdWA5raaliIrsozzdALPx2bEYegE6W2zCTIFUr2Q8_lqGRoqonKBpG8CD3oLGzWhOG9GOoUKHEVDulrF6nTxMd48-nfRZ3Bj8XZWff4w__QYbiLpE_0y0iHsrlcb-wT29Pd13a6eRgj9AjOVI0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+target+of+rapamycin+kinase+affects+biomass+accumulation+and+cell+cycle+progression+by+altering+carbon%2Fnitrogen+balance+in+synchronized+Chlamydomonas+reinhardtii+cells&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=J%C3%BCppner%2C+Jessica&rft.au=Mubeen%2C+Umarah&rft.au=Leisse%2C+Andrea&rft.au=Caldana%2C+Camila&rft.date=2018-01-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=93&rft.issue=2&rft.spage=355&rft.epage=376&rft_id=info:doi/10.1111%2Ftpj.13787&rft.externalDBID=10.1111%252Ftpj.13787&rft.externalDocID=TPJ13787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon