Comparison of phase-constrained parallel MRI approaches: Analogies and differences

Purpose Phase‐constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase‐constrained parallel MRI formulations, namely the standard phase‐constrained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 75; H. 3; S. 1086 - 1099
Hauptverfasser: Blaimer, Martin, Heim, Marius, Neumann, Daniel, Jakob, Peter M., Kannengiesser, Stephan, Breuer, Felix A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Blackwell Publishing Ltd 01.03.2016
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose Phase‐constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase‐constrained parallel MRI formulations, namely the standard phase‐constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k‐space symmetry. Methods Both formulations were combined with image‐domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k‐space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal‐to‐noise ratio by modifying the sampling scheme was implemented. Results For SENSE, the VCC concept was mathematically equivalent to the standard phase‐constrained formulation and therefore yielded identical results. In conjunction with k‐space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC‐GRAPPA reconstructed images provided spatial phase information with full resolution. Conclusions Although both phase‐constrained parallel MRI formulations are very similar conceptually, there exist important differences between image‐domain and k‐space domain reconstructions regarding the calibration robustness and the availability of high‐resolution phase information. Magn Reson Med 75:1086–1099, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry.PURPOSEPhase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry.Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented.METHODSBoth formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented.For SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution.RESULTSFor SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution.Although both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information.CONCLUSIONSAlthough both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information.
Purpose Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry. Methods Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented. Results For SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution. Conclusions Although both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information. Magn Reson Med 75:1086-1099, 2016.
Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry. Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented. For SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution. Although both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information.
Purpose Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry. Methods Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented. Results For SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution. Conclusions Although both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information. Magn Reson Med 75:1086-1099, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Phase‐constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase‐constrained parallel MRI formulations, namely the standard phase‐constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k‐space symmetry. Methods Both formulations were combined with image‐domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k‐space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal‐to‐noise ratio by modifying the sampling scheme was implemented. Results For SENSE, the VCC concept was mathematically equivalent to the standard phase‐constrained formulation and therefore yielded identical results. In conjunction with k‐space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC‐GRAPPA reconstructed images provided spatial phase information with full resolution. Conclusions Although both phase‐constrained parallel MRI formulations are very similar conceptually, there exist important differences between image‐domain and k‐space domain reconstructions regarding the calibration robustness and the availability of high‐resolution phase information. Magn Reson Med 75:1086–1099, 2016. © 2015 Wiley Periodicals, Inc.
PurposePhase‐constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase‐constrained parallel MRI formulations, namely the standard phase‐constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k‐space symmetry.MethodsBoth formulations were combined with image‐domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k‐space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal‐to‐noise ratio by modifying the sampling scheme was implemented.ResultsFor SENSE, the VCC concept was mathematically equivalent to the standard phase‐constrained formulation and therefore yielded identical results. In conjunction with k‐space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC‐GRAPPA reconstructed images provided spatial phase information with full resolution.ConclusionsAlthough both phase‐constrained parallel MRI formulations are very similar conceptually, there exist important differences between image‐domain and k‐space domain reconstructions regarding the calibration robustness and the availability of high‐resolution phase information. Magn Reson Med 75:1086–1099, 2016. © 2015 Wiley Periodicals, Inc.
Author Neumann, Daniel
Blaimer, Martin
Jakob, Peter M.
Kannengiesser, Stephan
Breuer, Felix A.
Heim, Marius
Author_xml – sequence: 1
  givenname: Martin
  surname: Blaimer
  fullname: Blaimer, Martin
  email: blaimer@mr-bavaria.de
  organization: Research Center Magnetic-Resonance-Bavaria (MRB), Würzburg, Germany
– sequence: 2
  givenname: Marius
  surname: Heim
  fullname: Heim, Marius
  organization: Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
– sequence: 3
  givenname: Daniel
  surname: Neumann
  fullname: Neumann, Daniel
  organization: Research Center Magnetic-Resonance-Bavaria (MRB), Würzburg, Germany
– sequence: 4
  givenname: Peter M.
  surname: Jakob
  fullname: Jakob, Peter M.
  organization: Research Center Magnetic-Resonance-Bavaria (MRB), Würzburg, Germany
– sequence: 5
  givenname: Stephan
  surname: Kannengiesser
  fullname: Kannengiesser, Stephan
  organization: Siemens Healthcare, Erlangen, Germany
– sequence: 6
  givenname: Felix A.
  surname: Breuer
  fullname: Breuer, Felix A.
  organization: Research Center Magnetic-Resonance-Bavaria (MRB), Würzburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25845973$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi1URKeFBS-AIrGBRVr_O2ZXjaAUdQCNQF1ajnNNXRI72BlB356UmWFRAWJ1F_ecT_b9jtBBTBEQekrwCcGYng55OKFCNuIBWhBBaU2F5gdogRXHNSOaH6KjUm4wxlor_ggdUtFwoRVboPUyDaPNoaRYJV-N17ZA7VIsU7YhQlfNS9v30Fer9UVlxzEn666hvKrOou3TlwClsrGruuA9ZIgOymP00Nu-wJPdPEaf37z-tHxbX344v1ieXdaON0rULZsncOm99C3Y1jHfaceF97phsuVdJzluhWONcx3ThDVSU90R7YkAJjw7Ri-2ufObvm2gTGYIxUHf2whpUwxRSkqFuWD_gUpBCKVKzujze-hN2uT5r8VQyiXmFAv9L2rO4o0kktOZerajNu0AnRlzGGy-Nfvzz8DpFnA5lZLBGxcmO4UU787fG4LNXcFmLtj8Kng2Xt4z9qF_Ynfp30MPt38HzWq92hv11ghlgh-_DZu_GqmYEubq_bn5eMXkqiHKvGM_Ac5kwcw
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_mri_2022_10_001
crossref_primary_10_1002_mrm_26191
crossref_primary_10_1038_s41598_019_39888_7
crossref_primary_10_1002_mrm_26890
crossref_primary_10_1002_mrm_27076
crossref_primary_10_1002_mrm_30214
crossref_primary_10_1088_1361_6560_ab274d
crossref_primary_10_1016_j_pnmrs_2017_04_002
crossref_primary_10_1109_TMI_2024_3473009
crossref_primary_10_1002_mrm_26182
crossref_primary_10_1002_mrm_29261
crossref_primary_10_1002_mrm_27813
crossref_primary_10_1002_mrm_28803
crossref_primary_10_1088_1361_6560_ac4561
crossref_primary_10_1002_mrm_28995
crossref_primary_10_1002_mrm_27784
crossref_primary_10_1007_s12190_022_01762_7
crossref_primary_10_1109_TSP_2023_3257989
crossref_primary_10_1002_mrm_28656
crossref_primary_10_1088_1361_6560_ad3e5d
crossref_primary_10_1109_ACCESS_2024_3508761
crossref_primary_10_1007_s11081_021_09604_4
crossref_primary_10_1109_TMI_2016_2645122
Cites_doi 10.1016/j.jmr.2005.06.004
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.24932
10.1002/mrm.1241
10.1002/mrm.20249
10.1002/mrm.22803
10.1002/mrm.21652
10.1002/mrm.24751
10.1002/mrm.21370
10.1002/jmri.20204
10.1002/mrm.25252
10.1002/mrm.23279
10.1002/mrm.22428
10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
10.1002/mrm.20285
10.1002/mrm.10171
10.1002/mrm.20492
10.1002/mrm.1910380414
10.1002/mrm.21284
10.1002/mrm.24896
10.1002/mrm.22066
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25685
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
MEDLINE
Biochemistry Abstracts 1

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1099
ExternalDocumentID 3951424951
25845973
10_1002_mrm_25685
MRM25685
ark_67375_WNG_PW36M817_J
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Siemens Healthcare
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4875-b3c48e46ff6fbeabc3fd9c45ff9836b4dd640b5c38ccd391386929d19f15e35f3
IEDL.DBID WIN
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370593700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Oct 07 09:30:08 EDT 2025
Thu Jul 10 21:07:25 EDT 2025
Sat Nov 29 14:32:56 EST 2025
Sat Nov 29 14:28:26 EST 2025
Thu Apr 03 07:01:09 EDT 2025
Sat Nov 29 02:37:37 EST 2025
Tue Nov 18 20:53:05 EST 2025
Tue Nov 11 03:14:00 EST 2025
Sun Sep 21 06:21:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords phase-constrained reconstruction
GRAPPA
conjugate symmetry
virtual coil
parallel MRI
ESPIRiT
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4875-b3c48e46ff6fbeabc3fd9c45ff9836b4dd640b5c38ccd391386929d19f15e35f3
Notes ark:/67375/WNG-PW36M817-J
ArticleID:MRM25685
istex:97EC7DC3DF5D24FA46C4E458717712245734C21C
Siemens Healthcare
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25685
PMID 25845973
PQID 1764861642
PQPubID 1016391
PageCount 14
ParticipantIDs proquest_miscellaneous_1776670453
proquest_miscellaneous_1765112276
proquest_journals_2246042059
proquest_journals_1764861642
pubmed_primary_25845973
crossref_citationtrail_10_1002_mrm_25685
crossref_primary_10_1002_mrm_25685
wiley_primary_10_1002_mrm_25685_MRM25685
istex_primary_ark_67375_WNG_PW36M817_J
PublicationCentury 2000
PublicationDate 2016-03
March 2016
2016-03-00
2016-Mar
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Willig-Onwuachi JD, Yeh EN, Grant AK, Ohliger MA, McKenzie CA, Sodickson DK. Phase-constrained parallel MR image reconstruction. J Magn Reson 2005; 176: 187-198.
Goldfarb JW. The SENSE ghost: field-of-view restrictions for SENSE imaging. J Magn Reson Imaging 2004; 20: 1046-1051.
Zhao T, Hu X. Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction. Magn Reson Med 2008; 59: 903-907.
Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010; 64: 457-471.
Blaimer M, Gutberlet M, Kellman P, Breuer FA, Kostler H, Griswold MA. Virtual coil concept for improved parallel MRI employing conjugate symmetric signals. Magn Reson Med 2009; 61: 93-102.
Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000; 43: 682-690.
Bauer S, Markl M, Honal M, Jung BA. The effect of reconstruction and acquisition parameters for GRAPPA-based parallel imaging on the image quality. Magn Reson Med 2011; 66: 402-409.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001.
Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591-603.
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210.
Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004; 52: 1397-1406.
Parker DL, Payne A, Todd N, Hadley JR. Phase reconstruction from multiple coil data using a virtual reference coil. Magn Reson Med 2014; 72: 563-569.
Lew C, Pineda AR, Clayton D, Spielman D, Chan F, Bammer R. SENSE phase-constrained magnitude reconstruction with iterative phase refinement. Magn Reson Med 2007; 58: 910-921.
Breuer FA, Kannengiesser SA, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn Reson Med 2009; 62: 739-46.
Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM. Field-of-view limitations in parallel imaging. Magn Reson Med 2004; 52: 1118-1126.
Blaimer M, Jakob PM, Breuer FA. Regularization method for phase-constrained parallel MRI. Magn Reson Med 2014; 72: 166-171.
Chang Y, Liang D, Ying L. Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction. Magn Reson Med 2012; 68: 730-740.
Bydder M, Robson MD. Partial Fourier partially parallel imaging. Magn Reson Med 2005; 53: 1393-1401.
Zaitsev M, Schultz G, Hennig J, Gruetter R, Gallichan D. Parallel imaging with phase scrambling. Magn Reson Med 2015;73:1407-1419.
2002; 47
2004; 52
2010; 64
2004; 20
2009; 62
2005; 176
2012
2009; 61
2015; 73
2000; 43
2008; 59
2005; 53
2011; 66
1997; 38
1999; 42
2014
2012; 68
2014; 72
2001; 46
2014; 71
2007; 58
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_24_1
e_1_2_9_12_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – reference: Chang Y, Liang D, Ying L. Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction. Magn Reson Med 2012; 68: 730-740.
– reference: Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001.
– reference: Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000; 43: 682-690.
– reference: Willig-Onwuachi JD, Yeh EN, Grant AK, Ohliger MA, McKenzie CA, Sodickson DK. Phase-constrained parallel MR image reconstruction. J Magn Reson 2005; 176: 187-198.
– reference: Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591-603.
– reference: Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
– reference: Blaimer M, Gutberlet M, Kellman P, Breuer FA, Kostler H, Griswold MA. Virtual coil concept for improved parallel MRI employing conjugate symmetric signals. Magn Reson Med 2009; 61: 93-102.
– reference: Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210.
– reference: Bydder M, Robson MD. Partial Fourier partially parallel imaging. Magn Reson Med 2005; 53: 1393-1401.
– reference: Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004; 52: 1397-1406.
– reference: Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM. Field-of-view limitations in parallel imaging. Magn Reson Med 2004; 52: 1118-1126.
– reference: Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010; 64: 457-471.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
– reference: Zhao T, Hu X. Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction. Magn Reson Med 2008; 59: 903-907.
– reference: Parker DL, Payne A, Todd N, Hadley JR. Phase reconstruction from multiple coil data using a virtual reference coil. Magn Reson Med 2014; 72: 563-569.
– reference: Blaimer M, Jakob PM, Breuer FA. Regularization method for phase-constrained parallel MRI. Magn Reson Med 2014; 72: 166-171.
– reference: Goldfarb JW. The SENSE ghost: field-of-view restrictions for SENSE imaging. J Magn Reson Imaging 2004; 20: 1046-1051.
– reference: Bauer S, Markl M, Honal M, Jung BA. The effect of reconstruction and acquisition parameters for GRAPPA-based parallel imaging on the image quality. Magn Reson Med 2011; 66: 402-409.
– reference: Lew C, Pineda AR, Clayton D, Spielman D, Chan F, Bammer R. SENSE phase-constrained magnitude reconstruction with iterative phase refinement. Magn Reson Med 2007; 58: 910-921.
– reference: Breuer FA, Kannengiesser SA, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn Reson Med 2009; 62: 739-46.
– reference: Zaitsev M, Schultz G, Hennig J, Gruetter R, Gallichan D. Parallel imaging with phase scrambling. Magn Reson Med 2015;73:1407-1419.
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 52
  start-page: 1397
  year: 2004
  end-page: 1406
  article-title: POCSENSE: POCS‐based reconstruction for sensitivity encoded magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– volume: 72
  start-page: 166
  year: 2014
  end-page: 171
  article-title: Regularization method for phase‐constrained parallel MRI
  publication-title: Magn Reson Med
– volume: 72
  start-page: 563
  year: 2014
  end-page: 569
  article-title: Phase reconstruction from multiple coil data using a virtual reference coil
  publication-title: Magn Reson Med
– volume: 53
  start-page: 1393
  year: 2005
  end-page: 1401
  article-title: Partial Fourier partially parallel imaging
  publication-title: Magn Reson Med
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT‐an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– volume: 61
  start-page: 93
  year: 2009
  end-page: 102
  article-title: Virtual coil concept for improved parallel MRI employing conjugate symmetric signals
  publication-title: Magn Reson Med
– volume: 64
  start-page: 457
  year: 2010
  end-page: 471
  article-title: SPIRiT: iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space
  publication-title: Magn Reson Med
– volume: 58
  start-page: 910
  year: 2007
  end-page: 921
  article-title: SENSE phase‐constrained magnitude reconstruction with iterative phase refinement
  publication-title: Magn Reson Med
– volume: 52
  start-page: 1118
  year: 2004
  end-page: 1126
  article-title: Field‐of‐view limitations in parallel imaging
  publication-title: Magn Reson Med
– volume: 66
  start-page: 402
  year: 2011
  end-page: 409
  article-title: The effect of reconstruction and acquisition parameters for GRAPPA‐based parallel imaging on the image quality
  publication-title: Magn Reson Med
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– volume: 59
  start-page: 903
  year: 2008
  end-page: 907
  article-title: Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction
  publication-title: Magn Reson Med
– volume: 62
  start-page: 739
  year: 2009
  end-page: 46
  article-title: General formulation for quantitative G‐factor calculation in GRAPPA reconstructions
  publication-title: Magn Reson Med
– volume: 20
  start-page: 1046
  year: 2004
  end-page: 1051
  article-title: The SENSE ghost: field‐of‐view restrictions for SENSE imaging
  publication-title: J Magn Reson Imaging
– volume: 73
  start-page: 1407
  year: 2015
  end-page: 1419
  article-title: Parallel imaging with phase scrambling
  publication-title: Magn Reson Med
– year: 2014
– volume: 176
  start-page: 187
  year: 2005
  end-page: 198
  article-title: Phase‐constrained parallel MR image reconstruction
  publication-title: J Magn Reson
– volume: 68
  start-page: 730
  year: 2012
  end-page: 740
  article-title: Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction
  publication-title: Magn Reson Med
– year: 2012
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jmr.2005.06.004
– ident: e_1_2_9_3_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_9_11_1
  doi: 10.1002/mrm.24932
– ident: e_1_2_9_14_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.20249
– ident: e_1_2_9_23_1
  doi: 10.1002/mrm.22803
– ident: e_1_2_9_9_1
  doi: 10.1002/mrm.21652
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.21370
– ident: e_1_2_9_21_1
  doi: 10.1002/jmri.20204
– ident: e_1_2_9_24_1
  doi: 10.1002/mrm.25252
– ident: e_1_2_9_10_1
  doi: 10.1002/mrm.23279
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.22428
– ident: e_1_2_9_17_1
  doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.20285
– ident: e_1_2_9_22_1
– ident: e_1_2_9_4_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.20492
– ident: e_1_2_9_16_1
– ident: e_1_2_9_2_1
  doi: 10.1002/mrm.1910380414
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.21284
– ident: e_1_2_9_18_1
  doi: 10.1002/mrm.24896
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.22066
SSID ssj0009974
Score 2.3467188
SecondaryResourceType review_article
Snippet Purpose Phase‐constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of...
Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study...
Purpose Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of...
PurposePhase‐constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1086
SubjectTerms Algorithms
Analogies
Calibration
conjugate symmetry
Conjugates
ESPIRiT
Formulations
GRAPPA
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Magnetic resonance imaging
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Mathematical analysis
parallel MRI
phase-constrained reconstruction
Robustness (mathematics)
Signal Processing, Computer-Assisted
virtual coil
Title Comparison of phase-constrained parallel MRI approaches: Analogies and differences
URI https://api.istex.fr/ark:/67375/WNG-PW36M817-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25685
https://www.ncbi.nlm.nih.gov/pubmed/25845973
https://www.proquest.com/docview/1764861642
https://www.proquest.com/docview/2246042059
https://www.proquest.com/docview/1765112276
https://www.proquest.com/docview/1776670453
Volume 75
WOSCitedRecordID wos000370593700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFhAXHuUVKCuDEOolNI4T24ETKiwUkVW1arV7s2zHFohtttq0iCM_gd_IL8F2HlWlBSFxSiRPonjsmfkmtr8BeK5dFM-xtbHkysQZM0lcJDKJlU5SxZnCMtGh2ASbTPh8XhxuwOv-LEzLDzH8cPOWEfy1N3Cpmr0L0tCT1clLF6-5P2COs2CUs4PJBeFu0TIws8z7mSLrWYWSdG948lIs2vJq_b4OaF7GrSHwjG_91yffhpsd3kRv2glyBzZMvQ3Xy25FfRuuhS2gurkLR_tDSUK0tOj0s4tvv3781B5A-joSpkKeJ3yxMAtUTg9Qz0ZumlfIU5v4os0NknWF-qIrzgXdg-Pxu6P9D3FXcyHWPnWJFXFXk1FrqVVGKk1sVegst7bghKqsqmiWqFwTrnVFCkw4dQCrwoXFuSG5Jfdhs17W5iEgSbV1CZOR1K8WYqpc5HP4QWqpKTFUR7Dba1_ojpDc92chWirlVDh9iaCvCJ4NoqctC8c6oRdhCAcJufrqt62xXMwm78XhjNCSYyY-RrDTj7HoLLYRmNGMU5c8pmubPe-e828OjEbwdGh2pujXV2RtlufhFR6-poz-TYZRyhyOJhE8aKfX8L2pA4Muv3Mtu2EW_bmropyW4ebRv4s-hhsO7NF2_9wObJ6tzs0TuKq_nX1pViO4wuZ8BFtvp-PjT6NgSr8B0oceaw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXShceJRXoIBBCPUSmsSJnSAuqLC0sFlVq63am2U7torYZqtNizjyE_iN_BLGeVWVFoTEKZE8ieLxjOcb2_kG4KXGKJ6E1voyVcaPuQn8LJCBr3QQqZSrUAa6LjbBJ5P06CjbX4O33b8wDT9Ev-DmPKOer52DuwXp7QvW0JPlyWsM2GlyBYYxmlEygOH76ehgfEG6mzUszDx2c00Wd8xCQbTdP3wpHg2dar-vApuXsWsdfEa3_u-zb8PNFnSSd42V3IE1U27Aet5uq2_AtfocqK7uwmynr0tIFpacHmOQ-_Xjp3Yo0hWTMAVxZOHzuZmTfLpHOkpyU70hjt_EVW6uiCwL0lVewXnoHhyMPsx2dv228IKvXf7iK4pXEzNrmVVGKk1tkek4sTZLKVNxUbA4UImmqdYFzUKaMkRZRZjZMDE0sfQ-DMpFaR4CkUxbzJqMZG7LMGQKwx-CCKmlZtQw7cFWp36hW1Zy15-5aPiUI4H6ErW-PHjRi542VByrhF7VY9hLyOVXd3aNJ-Jw8lHsH1KWpyEXnzzY7AZZtG5biZCzOGWYQUYrmx35Hk5yiEg9eN43oz-6TRZZmsV5_QqHYSPO_ibDGeMIpqkHDxr76r83QkSISR62bNVm9Oeuinya1zeP_l30GVzfneVjMd6bfH4MNxD9seZA3SYMzpbn5glc1d_OvlTLp60v_QZ5ZCEv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLlRceJRHUwoYhFAvoUmc2AnigloWCs1qtWrV3izbsQXqNrvatKhHfgK_kV_COK-q0oKQOCWSJ5E99sx8EzvfALzSGMWT0Fpfpsr4MTeBnwUy8JUOIpVyFcpA18Um-GiUnpxk4xV41_0L0_BD9B_cnGXU_toZuJkXdueKNfRscfYGA3aa3IBBnGQMzXKwNxkeHVyR7mYNCzOPna_J4o5ZKIh2-oevxaOBU-3lMrB5HbvWwWd49_-6fQ_utKCTvG9WyX1YMeU6rOXttvo63KrPgerqARzu9nUJycyS-VcMcr9-_NQORbpiEqYgjix8OjVTkk_2SUdJbqq3xPGbuMrNFZFlQbrKK-iHHsLR8MPh7ie_Lbzga5e_-Iri1cTMWmaVkUpTW2Q6TqzNUspUXBQsDlSiaap1QbOQpgxRVhFmNkwMTSx9BKvlrDQbQCTTFrMmI5nbMgyZwvCHIEJqqRk1THuw3alf6JaV3I1nKho-5UigvkStLw9e9qLzhopjmdDreg57Cbk4dWfXeCKORx_F-JiyPA25-OzBVjfJojXbSoScxSnDDDJa2uzI99DJISL14EXfjPboNllkaWYX9Sscho04-5sMZ4wjmKYePG7WV9_fCBEhJnnYsl0voz8PVeSTvL7Z_HfR57A23huKg_3RlydwG8Efa87TbcHq-eLCPIWb-vv5t2rxrDWl39QnIKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+phase-constrained+parallel+MRI+approaches%3A+Analogies+and+differences&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Blaimer%2C+Martin&rft.au=Heim%2C+Marius&rft.au=Neumann%2C+Daniel&rft.au=Jakob%2C+Peter+M&rft.date=2016-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=3&rft.spage=1086&rft_id=info:doi/10.1002%2Fmrm.25685&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3951424951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon