Stochasticity of convection in Giga-LES data
The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(...
Uloženo v:
| Vydáno v: | Climate dynamics Ročník 47; číslo 5-6; s. 1845 - 1861 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2016
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0930-7575, 1432-0894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187–216,
2010
) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12),
2009
) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation. |
|---|---|
| AbstractList | The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187-216, 2010 (See CR16)) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009 (See CR13)) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation. The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187–216, 2010) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation. The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187–216, 2010 ) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009 ) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation. |
| Audience | Academic |
| Author | Majda, Andrew J. De La Chevrotière, Michèle Khouider, Boualem |
| Author_xml | – sequence: 1 givenname: Michèle surname: De La Chevrotière fullname: De La Chevrotière, Michèle organization: Department of Mathematics and Statistics, University of Victoria, Department of Mathematics, Pennsylvania State University – sequence: 2 givenname: Boualem surname: Khouider fullname: Khouider, Boualem email: khouider@uvic.ca organization: Department of Mathematics and Statistics, University of Victoria – sequence: 3 givenname: Andrew J. surname: Majda fullname: Majda, Andrew J. organization: Department of Mathematics and Center for Atmosphere and Ocean Sciences, Courant Institute of Mathematical Sciences, New York University |
| BookMark | eNqFkU9r3DAQxUVJoJttP0BvhkJpoE5HfyzZxxDSNLBQyLZnMStLuwpeK7Xk0uTTR8Y9ZANppINg-L0ZzXsn5KgPvSXkA4UzCqC-RgBesxJoVbKGy_LhDVlQwXOlbsQRWUDDoVSVqt6SkxhvAaiQii3Il3UKZocxeePTfRFcYUL_x5rkQ1_4vrjyWyxXl-uixYTvyLHDLtr3_94l-fXt8ufF93L14-r64nxVGlHLVNoGzUYKh6qSTSs3qpFiI1G0ba47jgyVQ9puwBrHHFcoecWtdcBcDZIpviSf5753Q_g92pj03kdjuw57G8aoGeT_gwAmXkVpTStFWT4Z_fgMvQ3j0OdFJorJRqrs0pKczdQWO6t970Ia0OTb2r3P3ljnc_1cKBCcqqrKgtMDQWaS_Zu2OMaor9c3h-ynJ-zOYpd2MXTj5HY8BOkMmiHEOFin7wa_x-FeU9BT4HoOXOfA9RS4fsga9UyTI8Wpdd7Ad_9VslkZ85R-a4cnzrwoegQn4r3V |
| CitedBy_id | crossref_primary_10_1029_2022MS003391 crossref_primary_10_1007_s00382_019_05025_3 crossref_primary_10_1175_MWR_D_17_0381_1 crossref_primary_10_1175_JAS_D_17_0113_1 crossref_primary_10_1002_2016MS000809 crossref_primary_10_1002_2017MS001048 crossref_primary_10_1002_2016JD026183 crossref_primary_10_1029_2020EA001455 crossref_primary_10_1002_2017MS001014 crossref_primary_10_1029_2018MS001537 |
| Cites_doi | 10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2 10.1175/JAS-D-13-065.1 10.1175/JCLI3735.1 10.1175/JAS-D-11-0148.1 10.1175/JCLI-D-12-00541.1 10.1073/pnas.1634951100 10.4310/CMS.2014.v12.n8.a1 10.1175/BAMS-D-12-00157.1 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2 10.1073/pnas.242741499 10.1175/JAS-D-13-031.1 10.4310/CMS.2010.v8.n1.a10 10.1137/13094267X 10.1002/qj.49712354002 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 10.1175/1520-0493(1967)095<0155:SCOAGC>2.3.CO;2 10.1016/j.dynatmoce.2006.03.003 10.1002/qj.49712556006 10.3894/JAMES.2009.1.15 10.1093/oso/9780195066302.001.0001 10.1007/s00162-016-0407-8 10.1029/2002GL016203 10.1029/2008GM000838 10.1175/JAS-D-15-0178.1 10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2015 COPYRIGHT 2016 Springer Springer-Verlag Berlin Heidelberg 2016 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: COPYRIGHT 2016 Springer – notice: Springer-Verlag Berlin Heidelberg 2016 |
| DBID | AAYXX CITATION ISR 3V. 7TG 7TN 7UA 7XB 88F 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M1Q M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U 7S9 L.6 |
| DOI | 10.1007/s00382-015-2936-z |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (New) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Military Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Military Collection (Alumni Edition) Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Oceanography |
| EISSN | 1432-0894 |
| EndPage | 1861 |
| ExternalDocumentID | 4153407421 A470431755 10_1007_s00382_015_2936_z |
| Genre | Feature |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NSERC |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IFM IHE IHR IHW IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z92 ZMTXR ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c486t-e9acb64fa7569d6b7964b6a4ddacbf3a2a7fa1db0ecf2f37a6353eef02f806273 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382112000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0930-7575 |
| IngestDate | Wed Oct 01 14:07:39 EDT 2025 Tue Oct 07 09:19:58 EDT 2025 Sat Jul 26 00:27:26 EDT 2025 Sun Nov 23 09:04:26 EST 2025 Wed Nov 26 09:27:19 EST 2025 Thu May 22 21:19:41 EDT 2025 Tue Nov 18 21:35:40 EST 2025 Sat Nov 29 05:58:20 EST 2025 Fri Feb 21 02:33:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Keywords | Parameter estimation Parallel and high performance computing General circulation models Stochastic cumulus parameterization Giga-LES Markov Chain Monte Carlo Bayesian inference Tropical convection Stochastic multicloud model Large matrix exponential |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-e9acb64fa7569d6b7964b6a4ddacbf3a2a7fa1db0ecf2f37a6353eef02f806273 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1812696709 |
| PQPubID | 54165 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2000104024 proquest_miscellaneous_1815712222 proquest_journals_1812696709 gale_infotracacademiconefile_A470431755 gale_incontextgauss_ISR_A470431755 gale_healthsolutions_A470431755 crossref_primary_10_1007_s00382_015_2936_z crossref_citationtrail_10_1007_s00382_015_2936_z springer_journals_10_1007_s00382_015_2936_z |
| PublicationCentury | 2000 |
| PublicationDate | 20160900 2016-9-00 20160901 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 9 year: 2016 text: 20160900 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Observational, Theoretical and Computational Research on the Climate System |
| PublicationTitle | Climate dynamics |
| PublicationTitleAbbrev | Clim Dyn |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | Khouider, Majda, Katsoulakis (CR15) 2003; 100 Gillespie (CR8) 1975; 32 Moncrieff, Klinker (CR24) 1997; 123 CR19 Buizza, Milleer, Palmer (CR2) 1999; 125 Khouider (CR14) 2014; 12 Khouider, Biello, Majda (CR16) 2010; 8 Yoneyama, Zhang, Long (CR28) 2013; 94 Frenkel, Majda, Khouider (CR7) 2012; 69 CR13 De La Chevrotière, Khouider, Majda (CR4) 2014; 36 Manabe, Smagorinsky (CR21) 1967; 95 Katsoulakis, Majda, Vlachos (CR12) 2003; 100 Johnson, Ciesielski (CR10) 2013; 70 Johnson, Rickenbach, Rutledge, Ciesielski, Schubert (CR11) 1999; 12 Webster, Lukas (CR27) 1992; 73 Robert (CR26) 2007 CR3 CR5 Kuo (CR17) 1974; 31 Peters, Jakob, Davies, Khouider, Majda (CR25) 2013; 70 Lin, Kiladis, Mapes, Weickmann, Sperber, Lin, Wheeler, Schubert, Del Genio, Donner, Emori, Gueremy, Hourdin, Rasch, Roeckner, Scinocca (CR18) 2006; 19 CR23 Mapes, Tulich, Lin, Zuidema (CR22) 2006; 42 Madden, Julian (CR20) 1972; 29 Arakawa, Schubert (CR1) 1974; 31 Hung, Lin, Wang, Kim, Shinoda, Weaver (CR9) 2013; 26 Emanuel (CR6) 1994 Y Frenkel (2936_CR7) 2012; 69 PJ Webster (2936_CR27) 1992; 73 HL Kuo (2936_CR17) 1974; 31 2936_CR19 B Khouider (2936_CR14) 2014; 12 RH Johnson (2936_CR11) 1999; 12 2936_CR13 MW Moncrieff (2936_CR24) 1997; 123 R Buizza (2936_CR2) 1999; 125 R Johnson (2936_CR10) 2013; 70 K Yoneyama (2936_CR28) 2013; 94 B Khouider (2936_CR15) 2003; 100 DT Gillespie (2936_CR8) 1975; 32 MA Katsoulakis (2936_CR12) 2003; 100 2936_CR3 KA Emanuel (2936_CR6) 1994 B Mapes (2936_CR22) 2006; 42 A Arakawa (2936_CR1) 1974; 31 JL Lin (2936_CR18) 2006; 19 B Khouider (2936_CR16) 2010; 8 RA Madden (2936_CR20) 1972; 29 M Chevrotière De La (2936_CR4) 2014; 36 C Robert (2936_CR26) 2007 S Manabe (2936_CR21) 1967; 95 2936_CR5 2936_CR23 MP Hung (2936_CR9) 2013; 26 K Peters (2936_CR25) 2013; 70 |
| References_xml | – volume: 12 start-page: 2397 issue: 8 year: 1999 end-page: 2418 ident: CR11 article-title: Trimodal characteristics of tropical convection publication-title: J Clim doi: 10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2 – volume: 70 start-page: 3157 year: 2013 end-page: 3179 ident: CR10 article-title: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays publication-title: J Atmos Sci doi: 10.1175/JAS-D-13-065.1 – volume: 19 start-page: 2665 year: 2006 end-page: 2690 ident: CR18 article-title: Tropical intraseasonal variability in 14 IPCC AR4 climate models part I: convective signals publication-title: J Clim doi: 10.1175/JCLI3735.1 – volume: 69 start-page: 1080 issue: 3 year: 2012 end-page: 1105 ident: CR7 article-title: Using the stochastic multicloud model to improve tropical convective parameterization: a paradigm example publication-title: J Atmos Sci doi: 10.1175/JAS-D-11-0148.1 – volume: 26 start-page: 6185 year: 2013 end-page: 6214 ident: CR9 article-title: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models publication-title: J Clim doi: 10.1175/JCLI-D-12-00541.1 – volume: 100 start-page: 11,941 issue: 21 year: 2003 end-page: 11,946 ident: CR15 article-title: Coarse-grained stochastic models for tropical convection and climate publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1634951100 – volume: 12 start-page: 1379 issue: 8 year: 2014 end-page: 1407 ident: CR14 article-title: A coarse grained stochastic multi-type particle interacting model for tropical convection: nearest neighbour interactions publication-title: Commun Math Sci doi: 10.4310/CMS.2014.v12.n8.a1 – ident: CR23 – volume: 94 start-page: 1871 year: 2013 end-page: 1891 ident: CR28 article-title: Tracking pulses of the Madden–Julian oscillation publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-12-00157.1 – volume: 29 start-page: 1109 issue: 6 year: 1972 end-page: 1123 ident: CR20 article-title: Description of global-scale circulation cells in the tropics with a 40–50 day period publication-title: J Atmos Sci doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2 – ident: CR19 – volume: 100 start-page: 782 issue: 3 year: 2003 end-page: 787 ident: CR12 article-title: Coarse-grained stochastic processes for microscopic lattice systems publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.242741499 – volume: 70 start-page: 3556 year: 2013 end-page: 3575 ident: CR25 article-title: Stochastic behavior of tropical convection in observations and a multicloud model publication-title: J Atmos Sci doi: 10.1175/JAS-D-13-031.1 – ident: CR3 – volume: 8 start-page: 187 issue: 1 year: 2010 end-page: 216 ident: CR16 article-title: A stochastic multicloud model for tropical convection publication-title: Commun Math Sci doi: 10.4310/CMS.2010.v8.n1.a10 – ident: CR13 – volume: 36 start-page: B538 issue: 3 year: 2014 end-page: B560 ident: CR4 article-title: Calibration of the stochastic multicloud model using bayesian inference publication-title: SIAM J Sci Comput doi: 10.1137/13094267X – volume: 123 start-page: 805 issue: 540 year: 1997 end-page: 827 ident: CR24 article-title: Organized convective systems in the tropical western pacific as a process in general circulation models: a toga coare case-study publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49712354002 – volume: 73 start-page: 1377 year: 1992 end-page: 1416 ident: CR27 article-title: TOGA COARE: the coupled ocean-atmosphere response experiment publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2 – year: 1994 ident: CR6 publication-title: Atmospheric convection – year: 2007 ident: CR26 publication-title: The Bayesian choice: from decision-theoretic foundations to computational implementation – ident: CR5 – volume: 32 start-page: 1977 issue: 10 year: 1975 end-page: 1989 ident: CR8 article-title: An exact method for numerically simulating the stochastic coalescence process in a cloud publication-title: J Atmos Sci doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2 – volume: 31 start-page: 674 issue: 3 year: 1974 end-page: 701 ident: CR1 article-title: Interaction of a cumulus cloud ensemble with the large-scale environment, part I publication-title: J Atmos Sci doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 – volume: 31 start-page: 1232 issue: 5 year: 1974 end-page: 1240 ident: CR17 article-title: Further studies of the parameterization of the influence of cumulus convection on large-scale flow publication-title: J Atmos Sci doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 – volume: 95 start-page: 769 year: 1967 end-page: 798 ident: CR21 article-title: Simulated climatology of a general circulation model with a hydrologic cycle publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1967)095<0155:SCOAGC>2.3.CO;2 – volume: 42 start-page: 3 issue: 1 year: 2006 end-page: 29 ident: CR22 article-title: The mesoscale convection life cycle: building block or prototype for large-scale tropical waves? publication-title: Dyn Atmos Oceans doi: 10.1016/j.dynatmoce.2006.03.003 – volume: 125 start-page: 2887 issue: 560 year: 1999 end-page: 2908 ident: CR2 article-title: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49712556006 – volume: 42 start-page: 3 issue: 1 year: 2006 ident: 2936_CR22 publication-title: Dyn Atmos Oceans doi: 10.1016/j.dynatmoce.2006.03.003 – ident: 2936_CR13 doi: 10.3894/JAMES.2009.1.15 – volume: 125 start-page: 2887 issue: 560 year: 1999 ident: 2936_CR2 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49712556006 – volume: 12 start-page: 1379 issue: 8 year: 2014 ident: 2936_CR14 publication-title: Commun Math Sci doi: 10.4310/CMS.2014.v12.n8.a1 – volume: 123 start-page: 805 issue: 540 year: 1997 ident: 2936_CR24 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49712354002 – volume: 70 start-page: 3157 year: 2013 ident: 2936_CR10 publication-title: J Atmos Sci doi: 10.1175/JAS-D-13-065.1 – volume: 100 start-page: 782 issue: 3 year: 2003 ident: 2936_CR12 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.242741499 – volume: 19 start-page: 2665 year: 2006 ident: 2936_CR18 publication-title: J Clim doi: 10.1175/JCLI3735.1 – volume: 73 start-page: 1377 year: 1992 ident: 2936_CR27 publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2 – volume: 70 start-page: 3556 year: 2013 ident: 2936_CR25 publication-title: J Atmos Sci doi: 10.1175/JAS-D-13-031.1 – volume-title: Atmospheric convection year: 1994 ident: 2936_CR6 doi: 10.1093/oso/9780195066302.001.0001 – volume: 12 start-page: 2397 issue: 8 year: 1999 ident: 2936_CR11 publication-title: J Clim doi: 10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2 – ident: 2936_CR3 doi: 10.1007/s00162-016-0407-8 – volume: 100 start-page: 11,941 issue: 21 year: 2003 ident: 2936_CR15 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1634951100 – volume: 8 start-page: 187 issue: 1 year: 2010 ident: 2936_CR16 publication-title: Commun Math Sci doi: 10.4310/CMS.2010.v8.n1.a10 – ident: 2936_CR19 doi: 10.1029/2002GL016203 – volume: 29 start-page: 1109 issue: 6 year: 1972 ident: 2936_CR20 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2 – ident: 2936_CR23 doi: 10.1029/2008GM000838 – volume: 69 start-page: 1080 issue: 3 year: 2012 ident: 2936_CR7 publication-title: J Atmos Sci doi: 10.1175/JAS-D-11-0148.1 – volume: 31 start-page: 674 issue: 3 year: 1974 ident: 2936_CR1 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 – volume: 94 start-page: 1871 year: 2013 ident: 2936_CR28 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-12-00157.1 – volume-title: The Bayesian choice: from decision-theoretic foundations to computational implementation year: 2007 ident: 2936_CR26 – ident: 2936_CR5 doi: 10.1175/JAS-D-15-0178.1 – volume: 95 start-page: 769 year: 1967 ident: 2936_CR21 publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2 – volume: 31 start-page: 1232 issue: 5 year: 1974 ident: 2936_CR17 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 – volume: 36 start-page: B538 issue: 3 year: 2014 ident: 2936_CR4 publication-title: SIAM J Sci Comput doi: 10.1137/13094267X – volume: 32 start-page: 1977 issue: 10 year: 1975 ident: 2936_CR8 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2 – volume: 26 start-page: 6185 year: 2013 ident: 2936_CR9 publication-title: J Clim doi: 10.1175/JCLI-D-12-00541.1 |
| SSID | ssj0014672 |
| Score | 2.2604003 |
| Snippet | The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1845 |
| SubjectTerms | Atmospheric circulation Atmospheric models Bayesian statistical decision theory Brackish Climate Climatology Convection Convection (Meteorology) data collection Earth and Environmental Science Earth Sciences Eddies General Circulation Models Geophysics/Geodesy Marine Oceanography Parameter estimation prediction simulation models Stochastic models stochastic processes Time series Time-series analysis Tropical environments tropics uncertainty weather |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAC5SUCbTEIgQS1yMOxk1NVVS0gtVXFAurN8rOsVCVls8uhv54ZbxJYUHvhmGSiOB7b89kz8w0hr0IlvHGCsypYwzhsKpgOmWHBeO6M01mIR9nfDuXxcXV6Wp_0B25dH1Y5rIlxoXatxTPy92iJRI1sYzsXPxhWjULval9C4ya5Bcgmw5Cuo_xk9CLAIhC9CHWRMgm4ZPBqppFEtKgwKKFkYPAEu1yxS3-vzv-4SaP1Obj3v-1eJ3d73El3lwPlPrnhmwckOQLI3M7iyTp9TffOp4Bf49VDsj2Zt_a7RhpnAOq0DTQGqMc0CDpt6IfpmWaH-xOKMaaPyNeD_S97H1lfWoFZXok587W2RvCgZSlqJwwmpBqhuXNwPxQ61zLozJnU25CHQmrAJYX3Ic1DhcTGxWOy1rSNf0KoNNryPMcCHjU3malLr7MaTF4uvXBlmpB06Fhle95xLH9xrkbG5KgLBbpQqAt1mZC34ysXS9KN64Sfo7bUMm90nLBql8s0oqMyIS-jBNJdNBhPc6YXXac-TT6vCL3phUILzbO6T0-An0SGrBXJjUHTqp_wnfqt5oS8GB_DVEX_i258u4gypcwAkOVXy2DmFOyQATkl5N0w5v74zFW98PT6Rj0jdwDpiWVw3AZZm88WfpPctj_n0262FWfNL5O8HBk priority: 102 providerName: ProQuest |
| Title | Stochasticity of convection in Giga-LES data |
| URI | https://link.springer.com/article/10.1007/s00382-015-2936-z https://www.proquest.com/docview/1812696709 https://www.proquest.com/docview/1815712222 https://www.proquest.com/docview/2000104024 |
| Volume | 47 |
| WOSCitedRecordID | wos000382112000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1432-0894 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014672 issn: 0930-7575 databaseCode: PCBAR dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1432-0894 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014672 issn: 0930-7575 databaseCode: PATMY dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Military Database customDbUrl: eissn: 1432-0894 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014672 issn: 0930-7575 databaseCode: M1Q dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/military providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-0894 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014672 issn: 0930-7575 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1432-0894 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014672 issn: 0930-7575 databaseCode: M2P dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014672 issn: 0930-7575 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQeExMcAEdhKQAgkhqV8OsnjNnWAtJXSwrQ3y3bsUWlKUNPysL-eOzeJ1sGQ4CVSkkviXHy5n313PwO8tjk3quQJy61WLMFBBZM2VMwqk5SqlKF1U9mnx9lolJ-dFeO2jrvpst27kKT7U_fFbhTEojSClKGL4uxyA7bQ2-W0XsNketqHDtDyXeigiAOWIRjpQpl_usWaM7r-S_4tNupcztH9_2rsA7jXIkx_f9UlHsItU22Dd4LguJ67OXT_jX94MUOk6va24e5nbWTVUlc_gvfTRa2_S-JvRoTu19Z3memu_sGfVf6H2blkx8OpT8mlj-Hb0fDr4UfWrqnAdJLzBTOF1IonVmYpL0quqBJVcZmUJR63sYxkZmVYqsBoG9k4kwhIYmNsENmcGI3jJ7BZ1ZV5Cn6mpE6iiFbuKBIVqiI1MizQ10WZ4WUaeBB0yhW6JRyndS8uRE-V7LQkUEuCtCQuPXjXX_JjxbbxN-EX9MXEqmC0t1Sxn2SBg0WpB6-cBPFcVJRIcy6XTSM-TSdrQm9bIVtj87Rs6xLwJYkaa01yp-sborX0RhBC4gWx4Hnwsj-NNkqBF1mZeulk0ixEJBbdLEMlUzg0RsjkwV7Xp6485iYtPPsn6edwBxEfXyXJ7cDmYr40u3Bb_1zMmvkAtg6Go_FkABsn4RfaRuOBM65fZZwauQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQX3qiBQgPiIUEtEsdxkgNCVWnpqttVxRbUm7ETu6xUJWWzC6I_it-Ix3nAgtpbDxyTTBLHM5kZe2a-AXhqUq5VwRlJTa4Is4sKIk2oiFGaFaqQoXFb2Z-GyWiUHh5m-0vws6uFwbTKTic6RV1UOe6Rv0ZLxDNEG3t78pVg1yiMrnYtNBqx2NU_vtslW_1m8M7y9xml21sHmzuk7SpAcpbyGdGZzBVnRiYxzwqusBZTccmKwp43kaQyMTIsVKBzQ02USGuSI61NQE2KmL6Rfe4luMwQWQxTBel-H7WwSsdFLbIoIIn1g7ooauBAS6MUkyBiYg0sJ6cLdvBva_BPWNZZu-0b_9s83YTrrV_tbzQ_wi1Y0uVt8PbskqCausiB_9zfPJ5Y_9wd3YH18azKv0iEqbYLEb8yvkvAd2Ue_qT030-OJBlujX3Mob0LHy9k8PdguaxKvQJ-omTOKMUGJRlTocpiLcPMmnSaaF7EgQdBx0iRt7jq2N7jWPSI0I73wvJeIO_FqQcv-1tOGlCR84jXUDpEUxfbKySxwZLAeX-xB08cBcJ5lJgvdCTndS0G4w8LRC9aIlPZ4eWyLb-wH4kIYAuUq51kiVah1eK3WHnwuL9sVRHGl2Spq7mjiZPQOpz0bBqsDAut4aDMg1edjP_xmrNm4f75g1qDqzsHe0MxHIx2H8A169XyJhFwFZZn07l-CFfyb7NJPX3k_lgfPl-06P8CJNR8sg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceCMChQbEQwKs5uE4yQGh0u7Cqstq1QXUm7ETu6xUJWWzC6I_jV_H2HnAgtpbDxyTTBIn_jIzzsx8A_BYJ0zJnFGS6EwSiosKIrQviZaK5jIXvra_sj-N4vE4OThIJ2vws62FMWmVrU60ijovM_OPfMtYIpYatrEt3aRFTHYHr4-_EtNBykRa23YaNUT21I_vuHyrXg13ca6fBMGg_2HnHWk6DJCMJmxBVCoyyagWccTSnElTlymZoHmO-3UoAhFr4efSU5kOdBgLNM-hUtoLdGL4fUO87gVYj9HJoD1Yf9MfT_a7GAaqIBvDSEOPxOgVtTFVz1KYholJiYgImltGTlas4t-24Z8grbV9g6v_81u7Blcaj9vdrj-R67CmihvgvMfFQjm3MQX3qbtzNEPP3W7dhJfTRZl9EYbAGpcobqldm5pvC0DcWeG-nR0KMupPXZNdews-nsvgb0OvKAt1B9xYiowGgWldklLpyzRSwk_R2AexYnnkOeC1k8qzhnHdNP444h1XtMUBRxxwgwN-4sDz7pTjmm7kLOFNgxReV8x2qopv09izfmHkwCMrYYg-CjP5h2JZVXw43V8RetYI6RKHl4mmMAMf0nCDrUhutCjjjaqr-G-IOfCwO4xKykSeRKHKpZWJYh9d0eB0GVMz5qNJCagDL1q8_3Gb097C3bMHtQmXEPF8NBzv3YPL6O6yOkNwA3qL-VLdh4vZt8Wsmj9oPl8XPp839n8BKOyGzA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochasticity+of+convection+in+Giga-LES+data&rft.jtitle=Climate+dynamics&rft.au=De+La+Chevrotiere%2C+Michele&rft.au=Khouider%2C+Boualem&rft.au=Majda%2C+Andrew+J&rft.date=2016-09-01&rft.pub=Springer&rft.issn=0930-7575&rft.volume=47&rft.issue=5-6&rft.spage=1845&rft_id=info:doi/10.1007%2Fs00382-015-2936-z&rft.externalDBID=ISR&rft.externalDocID=A470431755 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon |