Stochasticity of convection in Giga-LES data

The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Climate dynamics Ročník 47; číslo 5-6; s. 1845 - 1861
Hlavní autoři: De La Chevrotière, Michèle, Khouider, Boualem, Majda, Andrew J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2016
Springer
Springer Nature B.V
Témata:
ISSN:0930-7575, 1432-0894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187–216, 2010 ) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009 ) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation.
AbstractList The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187-216, 2010 (See CR16)) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009 (See CR13)) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation.
The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187–216, 2010) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation.
The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187–216, 2010 ) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009 ) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation.
Audience Academic
Author Majda, Andrew J.
De La Chevrotière, Michèle
Khouider, Boualem
Author_xml – sequence: 1
  givenname: Michèle
  surname: De La Chevrotière
  fullname: De La Chevrotière, Michèle
  organization: Department of Mathematics and Statistics, University of Victoria, Department of Mathematics, Pennsylvania State University
– sequence: 2
  givenname: Boualem
  surname: Khouider
  fullname: Khouider, Boualem
  email: khouider@uvic.ca
  organization: Department of Mathematics and Statistics, University of Victoria
– sequence: 3
  givenname: Andrew J.
  surname: Majda
  fullname: Majda, Andrew J.
  organization: Department of Mathematics and Center for Atmosphere and Ocean Sciences, Courant Institute of Mathematical Sciences, New York University
BookMark eNqFkU9r3DAQxUVJoJttP0BvhkJpoE5HfyzZxxDSNLBQyLZnMStLuwpeK7Xk0uTTR8Y9ZANppINg-L0ZzXsn5KgPvSXkA4UzCqC-RgBesxJoVbKGy_LhDVlQwXOlbsQRWUDDoVSVqt6SkxhvAaiQii3Il3UKZocxeePTfRFcYUL_x5rkQ1_4vrjyWyxXl-uixYTvyLHDLtr3_94l-fXt8ufF93L14-r64nxVGlHLVNoGzUYKh6qSTSs3qpFiI1G0ba47jgyVQ9puwBrHHFcoecWtdcBcDZIpviSf5753Q_g92pj03kdjuw57G8aoGeT_gwAmXkVpTStFWT4Z_fgMvQ3j0OdFJorJRqrs0pKczdQWO6t970Ia0OTb2r3P3ljnc_1cKBCcqqrKgtMDQWaS_Zu2OMaor9c3h-ynJ-zOYpd2MXTj5HY8BOkMmiHEOFin7wa_x-FeU9BT4HoOXOfA9RS4fsga9UyTI8Wpdd7Ad_9VslkZ85R-a4cnzrwoegQn4r3V
CitedBy_id crossref_primary_10_1029_2022MS003391
crossref_primary_10_1007_s00382_019_05025_3
crossref_primary_10_1175_MWR_D_17_0381_1
crossref_primary_10_1175_JAS_D_17_0113_1
crossref_primary_10_1002_2016MS000809
crossref_primary_10_1002_2017MS001048
crossref_primary_10_1002_2016JD026183
crossref_primary_10_1029_2020EA001455
crossref_primary_10_1002_2017MS001014
crossref_primary_10_1029_2018MS001537
Cites_doi 10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
10.1175/JAS-D-13-065.1
10.1175/JCLI3735.1
10.1175/JAS-D-11-0148.1
10.1175/JCLI-D-12-00541.1
10.1073/pnas.1634951100
10.4310/CMS.2014.v12.n8.a1
10.1175/BAMS-D-12-00157.1
10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
10.1073/pnas.242741499
10.1175/JAS-D-13-031.1
10.4310/CMS.2010.v8.n1.a10
10.1137/13094267X
10.1002/qj.49712354002
10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2
10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2
10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
10.1175/1520-0493(1967)095<0155:SCOAGC>2.3.CO;2
10.1016/j.dynatmoce.2006.03.003
10.1002/qj.49712556006
10.3894/JAMES.2009.1.15
10.1093/oso/9780195066302.001.0001
10.1007/s00162-016-0407-8
10.1029/2002GL016203
10.1029/2008GM000838
10.1175/JAS-D-15-0178.1
10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
COPYRIGHT 2016 Springer
Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: COPYRIGHT 2016 Springer
– notice: Springer-Verlag Berlin Heidelberg 2016
DBID AAYXX
CITATION
ISR
3V.
7TG
7TN
7UA
7XB
88F
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M1Q
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7S9
L.6
DOI 10.1007/s00382-015-2936-z
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (New)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Military Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Military Collection (Alumni Edition)
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1432-0894
EndPage 1861
ExternalDocumentID 4153407421
A470431755
10_1007_s00382_015_2936_z
Genre Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NSERC
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEP
IFM
IHE
IHR
IHW
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c486t-e9acb64fa7569d6b7964b6a4ddacbf3a2a7fa1db0ecf2f37a6353eef02f806273
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382112000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0930-7575
IngestDate Wed Oct 01 14:07:39 EDT 2025
Tue Oct 07 09:19:58 EDT 2025
Sat Jul 26 00:27:26 EDT 2025
Sun Nov 23 09:04:26 EST 2025
Wed Nov 26 09:27:19 EST 2025
Thu May 22 21:19:41 EDT 2025
Tue Nov 18 21:35:40 EST 2025
Sat Nov 29 05:58:20 EST 2025
Fri Feb 21 02:33:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Parameter estimation
Parallel and high performance computing
General circulation models
Stochastic cumulus parameterization
Giga-LES
Markov Chain Monte Carlo
Bayesian inference
Tropical convection
Stochastic multicloud model
Large matrix exponential
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-e9acb64fa7569d6b7964b6a4ddacbf3a2a7fa1db0ecf2f37a6353eef02f806273
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1812696709
PQPubID 54165
PageCount 17
ParticipantIDs proquest_miscellaneous_2000104024
proquest_miscellaneous_1815712222
proquest_journals_1812696709
gale_infotracacademiconefile_A470431755
gale_incontextgauss_ISR_A470431755
gale_healthsolutions_A470431755
crossref_primary_10_1007_s00382_015_2936_z
crossref_citationtrail_10_1007_s00382_015_2936_z
springer_journals_10_1007_s00382_015_2936_z
PublicationCentury 2000
PublicationDate 20160900
2016-9-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 9
  year: 2016
  text: 20160900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Observational, Theoretical and Computational Research on the Climate System
PublicationTitle Climate dynamics
PublicationTitleAbbrev Clim Dyn
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Khouider, Majda, Katsoulakis (CR15) 2003; 100
Gillespie (CR8) 1975; 32
Moncrieff, Klinker (CR24) 1997; 123
CR19
Buizza, Milleer, Palmer (CR2) 1999; 125
Khouider (CR14) 2014; 12
Khouider, Biello, Majda (CR16) 2010; 8
Yoneyama, Zhang, Long (CR28) 2013; 94
Frenkel, Majda, Khouider (CR7) 2012; 69
CR13
De La Chevrotière, Khouider, Majda (CR4) 2014; 36
Manabe, Smagorinsky (CR21) 1967; 95
Katsoulakis, Majda, Vlachos (CR12) 2003; 100
Johnson, Ciesielski (CR10) 2013; 70
Johnson, Rickenbach, Rutledge, Ciesielski, Schubert (CR11) 1999; 12
Webster, Lukas (CR27) 1992; 73
Robert (CR26) 2007
CR3
CR5
Kuo (CR17) 1974; 31
Peters, Jakob, Davies, Khouider, Majda (CR25) 2013; 70
Lin, Kiladis, Mapes, Weickmann, Sperber, Lin, Wheeler, Schubert, Del Genio, Donner, Emori, Gueremy, Hourdin, Rasch, Roeckner, Scinocca (CR18) 2006; 19
CR23
Mapes, Tulich, Lin, Zuidema (CR22) 2006; 42
Madden, Julian (CR20) 1972; 29
Arakawa, Schubert (CR1) 1974; 31
Hung, Lin, Wang, Kim, Shinoda, Weaver (CR9) 2013; 26
Emanuel (CR6) 1994
Y Frenkel (2936_CR7) 2012; 69
PJ Webster (2936_CR27) 1992; 73
HL Kuo (2936_CR17) 1974; 31
2936_CR19
B Khouider (2936_CR14) 2014; 12
RH Johnson (2936_CR11) 1999; 12
2936_CR13
MW Moncrieff (2936_CR24) 1997; 123
R Buizza (2936_CR2) 1999; 125
R Johnson (2936_CR10) 2013; 70
K Yoneyama (2936_CR28) 2013; 94
B Khouider (2936_CR15) 2003; 100
DT Gillespie (2936_CR8) 1975; 32
MA Katsoulakis (2936_CR12) 2003; 100
2936_CR3
KA Emanuel (2936_CR6) 1994
B Mapes (2936_CR22) 2006; 42
A Arakawa (2936_CR1) 1974; 31
JL Lin (2936_CR18) 2006; 19
B Khouider (2936_CR16) 2010; 8
RA Madden (2936_CR20) 1972; 29
M Chevrotière De La (2936_CR4) 2014; 36
C Robert (2936_CR26) 2007
S Manabe (2936_CR21) 1967; 95
2936_CR5
2936_CR23
MP Hung (2936_CR9) 2013; 26
K Peters (2936_CR25) 2013; 70
References_xml – volume: 12
  start-page: 2397
  issue: 8
  year: 1999
  end-page: 2418
  ident: CR11
  article-title: Trimodal characteristics of tropical convection
  publication-title: J Clim
  doi: 10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
– volume: 70
  start-page: 3157
  year: 2013
  end-page: 3179
  ident: CR10
  article-title: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays
  publication-title: J Atmos Sci
  doi: 10.1175/JAS-D-13-065.1
– volume: 19
  start-page: 2665
  year: 2006
  end-page: 2690
  ident: CR18
  article-title: Tropical intraseasonal variability in 14 IPCC AR4 climate models part I: convective signals
  publication-title: J Clim
  doi: 10.1175/JCLI3735.1
– volume: 69
  start-page: 1080
  issue: 3
  year: 2012
  end-page: 1105
  ident: CR7
  article-title: Using the stochastic multicloud model to improve tropical convective parameterization: a paradigm example
  publication-title: J Atmos Sci
  doi: 10.1175/JAS-D-11-0148.1
– volume: 26
  start-page: 6185
  year: 2013
  end-page: 6214
  ident: CR9
  article-title: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00541.1
– volume: 100
  start-page: 11,941
  issue: 21
  year: 2003
  end-page: 11,946
  ident: CR15
  article-title: Coarse-grained stochastic models for tropical convection and climate
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1634951100
– volume: 12
  start-page: 1379
  issue: 8
  year: 2014
  end-page: 1407
  ident: CR14
  article-title: A coarse grained stochastic multi-type particle interacting model for tropical convection: nearest neighbour interactions
  publication-title: Commun Math Sci
  doi: 10.4310/CMS.2014.v12.n8.a1
– ident: CR23
– volume: 94
  start-page: 1871
  year: 2013
  end-page: 1891
  ident: CR28
  article-title: Tracking pulses of the Madden–Julian oscillation
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-12-00157.1
– volume: 29
  start-page: 1109
  issue: 6
  year: 1972
  end-page: 1123
  ident: CR20
  article-title: Description of global-scale circulation cells in the tropics with a 40–50 day period
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
– ident: CR19
– volume: 100
  start-page: 782
  issue: 3
  year: 2003
  end-page: 787
  ident: CR12
  article-title: Coarse-grained stochastic processes for microscopic lattice systems
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.242741499
– volume: 70
  start-page: 3556
  year: 2013
  end-page: 3575
  ident: CR25
  article-title: Stochastic behavior of tropical convection in observations and a multicloud model
  publication-title: J Atmos Sci
  doi: 10.1175/JAS-D-13-031.1
– ident: CR3
– volume: 8
  start-page: 187
  issue: 1
  year: 2010
  end-page: 216
  ident: CR16
  article-title: A stochastic multicloud model for tropical convection
  publication-title: Commun Math Sci
  doi: 10.4310/CMS.2010.v8.n1.a10
– ident: CR13
– volume: 36
  start-page: B538
  issue: 3
  year: 2014
  end-page: B560
  ident: CR4
  article-title: Calibration of the stochastic multicloud model using bayesian inference
  publication-title: SIAM J Sci Comput
  doi: 10.1137/13094267X
– volume: 123
  start-page: 805
  issue: 540
  year: 1997
  end-page: 827
  ident: CR24
  article-title: Organized convective systems in the tropical western pacific as a process in general circulation models: a toga coare case-study
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49712354002
– volume: 73
  start-page: 1377
  year: 1992
  end-page: 1416
  ident: CR27
  article-title: TOGA COARE: the coupled ocean-atmosphere response experiment
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2
– year: 1994
  ident: CR6
  publication-title: Atmospheric convection
– year: 2007
  ident: CR26
  publication-title: The Bayesian choice: from decision-theoretic foundations to computational implementation
– ident: CR5
– volume: 32
  start-page: 1977
  issue: 10
  year: 1975
  end-page: 1989
  ident: CR8
  article-title: An exact method for numerically simulating the stochastic coalescence process in a cloud
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2
– volume: 31
  start-page: 674
  issue: 3
  year: 1974
  end-page: 701
  ident: CR1
  article-title: Interaction of a cumulus cloud ensemble with the large-scale environment, part I
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
– volume: 31
  start-page: 1232
  issue: 5
  year: 1974
  end-page: 1240
  ident: CR17
  article-title: Further studies of the parameterization of the influence of cumulus convection on large-scale flow
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
– volume: 95
  start-page: 769
  year: 1967
  end-page: 798
  ident: CR21
  article-title: Simulated climatology of a general circulation model with a hydrologic cycle
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1967)095<0155:SCOAGC>2.3.CO;2
– volume: 42
  start-page: 3
  issue: 1
  year: 2006
  end-page: 29
  ident: CR22
  article-title: The mesoscale convection life cycle: building block or prototype for large-scale tropical waves?
  publication-title: Dyn Atmos Oceans
  doi: 10.1016/j.dynatmoce.2006.03.003
– volume: 125
  start-page: 2887
  issue: 560
  year: 1999
  end-page: 2908
  ident: CR2
  article-title: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49712556006
– volume: 42
  start-page: 3
  issue: 1
  year: 2006
  ident: 2936_CR22
  publication-title: Dyn Atmos Oceans
  doi: 10.1016/j.dynatmoce.2006.03.003
– ident: 2936_CR13
  doi: 10.3894/JAMES.2009.1.15
– volume: 125
  start-page: 2887
  issue: 560
  year: 1999
  ident: 2936_CR2
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49712556006
– volume: 12
  start-page: 1379
  issue: 8
  year: 2014
  ident: 2936_CR14
  publication-title: Commun Math Sci
  doi: 10.4310/CMS.2014.v12.n8.a1
– volume: 123
  start-page: 805
  issue: 540
  year: 1997
  ident: 2936_CR24
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49712354002
– volume: 70
  start-page: 3157
  year: 2013
  ident: 2936_CR10
  publication-title: J Atmos Sci
  doi: 10.1175/JAS-D-13-065.1
– volume: 100
  start-page: 782
  issue: 3
  year: 2003
  ident: 2936_CR12
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.242741499
– volume: 19
  start-page: 2665
  year: 2006
  ident: 2936_CR18
  publication-title: J Clim
  doi: 10.1175/JCLI3735.1
– volume: 73
  start-page: 1377
  year: 1992
  ident: 2936_CR27
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2
– volume: 70
  start-page: 3556
  year: 2013
  ident: 2936_CR25
  publication-title: J Atmos Sci
  doi: 10.1175/JAS-D-13-031.1
– volume-title: Atmospheric convection
  year: 1994
  ident: 2936_CR6
  doi: 10.1093/oso/9780195066302.001.0001
– volume: 12
  start-page: 2397
  issue: 8
  year: 1999
  ident: 2936_CR11
  publication-title: J Clim
  doi: 10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
– ident: 2936_CR3
  doi: 10.1007/s00162-016-0407-8
– volume: 100
  start-page: 11,941
  issue: 21
  year: 2003
  ident: 2936_CR15
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1634951100
– volume: 8
  start-page: 187
  issue: 1
  year: 2010
  ident: 2936_CR16
  publication-title: Commun Math Sci
  doi: 10.4310/CMS.2010.v8.n1.a10
– ident: 2936_CR19
  doi: 10.1029/2002GL016203
– volume: 29
  start-page: 1109
  issue: 6
  year: 1972
  ident: 2936_CR20
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
– ident: 2936_CR23
  doi: 10.1029/2008GM000838
– volume: 69
  start-page: 1080
  issue: 3
  year: 2012
  ident: 2936_CR7
  publication-title: J Atmos Sci
  doi: 10.1175/JAS-D-11-0148.1
– volume: 31
  start-page: 674
  issue: 3
  year: 1974
  ident: 2936_CR1
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
– volume: 94
  start-page: 1871
  year: 2013
  ident: 2936_CR28
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-12-00157.1
– volume-title: The Bayesian choice: from decision-theoretic foundations to computational implementation
  year: 2007
  ident: 2936_CR26
– ident: 2936_CR5
  doi: 10.1175/JAS-D-15-0178.1
– volume: 95
  start-page: 769
  year: 1967
  ident: 2936_CR21
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2
– volume: 31
  start-page: 1232
  issue: 5
  year: 1974
  ident: 2936_CR17
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
– volume: 36
  start-page: B538
  issue: 3
  year: 2014
  ident: 2936_CR4
  publication-title: SIAM J Sci Comput
  doi: 10.1137/13094267X
– volume: 32
  start-page: 1977
  issue: 10
  year: 1975
  ident: 2936_CR8
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2
– volume: 26
  start-page: 6185
  year: 2013
  ident: 2936_CR9
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00541.1
SSID ssj0014672
Score 2.2604003
Snippet The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1845
SubjectTerms Atmospheric circulation
Atmospheric models
Bayesian statistical decision theory
Brackish
Climate
Climatology
Convection
Convection (Meteorology)
data collection
Earth and Environmental Science
Earth Sciences
Eddies
General Circulation Models
Geophysics/Geodesy
Marine
Oceanography
Parameter estimation
prediction
simulation models
Stochastic models
stochastic processes
Time series
Time-series analysis
Tropical environments
tropics
uncertainty
weather
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAC5SUCbTEIgQS1yMOxk1NVVS0gtVXFAurN8rOsVCVls8uhv54ZbxJYUHvhmGSiOB7b89kz8w0hr0IlvHGCsypYwzhsKpgOmWHBeO6M01mIR9nfDuXxcXV6Wp_0B25dH1Y5rIlxoXatxTPy92iJRI1sYzsXPxhWjULval9C4ya5Bcgmw5Cuo_xk9CLAIhC9CHWRMgm4ZPBqppFEtKgwKKFkYPAEu1yxS3-vzv-4SaP1Obj3v-1eJ3d73El3lwPlPrnhmwckOQLI3M7iyTp9TffOp4Bf49VDsj2Zt_a7RhpnAOq0DTQGqMc0CDpt6IfpmWaH-xOKMaaPyNeD_S97H1lfWoFZXok587W2RvCgZSlqJwwmpBqhuXNwPxQ61zLozJnU25CHQmrAJYX3Ic1DhcTGxWOy1rSNf0KoNNryPMcCHjU3malLr7MaTF4uvXBlmpB06Fhle95xLH9xrkbG5KgLBbpQqAt1mZC34ysXS9KN64Sfo7bUMm90nLBql8s0oqMyIS-jBNJdNBhPc6YXXac-TT6vCL3phUILzbO6T0-An0SGrBXJjUHTqp_wnfqt5oS8GB_DVEX_i258u4gypcwAkOVXy2DmFOyQATkl5N0w5v74zFW98PT6Rj0jdwDpiWVw3AZZm88WfpPctj_n0262FWfNL5O8HBk
  priority: 102
  providerName: ProQuest
Title Stochasticity of convection in Giga-LES data
URI https://link.springer.com/article/10.1007/s00382-015-2936-z
https://www.proquest.com/docview/1812696709
https://www.proquest.com/docview/1815712222
https://www.proquest.com/docview/2000104024
Volume 47
WOSCitedRecordID wos000382112000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1432-0894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014672
  issn: 0930-7575
  databaseCode: PCBAR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1432-0894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014672
  issn: 0930-7575
  databaseCode: PATMY
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1432-0894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014672
  issn: 0930-7575
  databaseCode: M1Q
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014672
  issn: 0930-7575
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1432-0894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014672
  issn: 0930-7575
  databaseCode: M2P
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014672
  issn: 0930-7575
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQeExMcAEdhKQAgkhqV8OsnjNnWAtJXSwrQ3y3bsUWlKUNPysL-eOzeJ1sGQ4CVSkkviXHy5n313PwO8tjk3quQJy61WLMFBBZM2VMwqk5SqlKF1U9mnx9lolJ-dFeO2jrvpst27kKT7U_fFbhTEojSClKGL4uxyA7bQ2-W0XsNketqHDtDyXeigiAOWIRjpQpl_usWaM7r-S_4tNupcztH9_2rsA7jXIkx_f9UlHsItU22Dd4LguJ67OXT_jX94MUOk6va24e5nbWTVUlc_gvfTRa2_S-JvRoTu19Z3memu_sGfVf6H2blkx8OpT8mlj-Hb0fDr4UfWrqnAdJLzBTOF1IonVmYpL0quqBJVcZmUJR63sYxkZmVYqsBoG9k4kwhIYmNsENmcGI3jJ7BZ1ZV5Cn6mpE6iiFbuKBIVqiI1MizQ10WZ4WUaeBB0yhW6JRyndS8uRE-V7LQkUEuCtCQuPXjXX_JjxbbxN-EX9MXEqmC0t1Sxn2SBg0WpB6-cBPFcVJRIcy6XTSM-TSdrQm9bIVtj87Rs6xLwJYkaa01yp-sborX0RhBC4gWx4Hnwsj-NNkqBF1mZeulk0ixEJBbdLEMlUzg0RsjkwV7Xp6485iYtPPsn6edwBxEfXyXJ7cDmYr40u3Bb_1zMmvkAtg6Go_FkABsn4RfaRuOBM65fZZwauQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQX3qiBQgPiIUEtEsdxkgNCVWnpqttVxRbUm7ETu6xUJWWzC6I_it-Ix3nAgtpbDxyTTBLHM5kZe2a-AXhqUq5VwRlJTa4Is4sKIk2oiFGaFaqQoXFb2Z-GyWiUHh5m-0vws6uFwbTKTic6RV1UOe6Rv0ZLxDNEG3t78pVg1yiMrnYtNBqx2NU_vtslW_1m8M7y9xml21sHmzuk7SpAcpbyGdGZzBVnRiYxzwqusBZTccmKwp43kaQyMTIsVKBzQ02USGuSI61NQE2KmL6Rfe4luMwQWQxTBel-H7WwSsdFLbIoIIn1g7ooauBAS6MUkyBiYg0sJ6cLdvBva_BPWNZZu-0b_9s83YTrrV_tbzQ_wi1Y0uVt8PbskqCausiB_9zfPJ5Y_9wd3YH18azKv0iEqbYLEb8yvkvAd2Ue_qT030-OJBlujX3Mob0LHy9k8PdguaxKvQJ-omTOKMUGJRlTocpiLcPMmnSaaF7EgQdBx0iRt7jq2N7jWPSI0I73wvJeIO_FqQcv-1tOGlCR84jXUDpEUxfbKySxwZLAeX-xB08cBcJ5lJgvdCTndS0G4w8LRC9aIlPZ4eWyLb-wH4kIYAuUq51kiVah1eK3WHnwuL9sVRHGl2Spq7mjiZPQOpz0bBqsDAut4aDMg1edjP_xmrNm4f75g1qDqzsHe0MxHIx2H8A169XyJhFwFZZn07l-CFfyb7NJPX3k_lgfPl-06P8CJNR8sg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceCMChQbEQwKs5uE4yQGh0u7Cqstq1QXUm7ETu6xUJWWzC6I_jV_H2HnAgtpbDxyTTBIn_jIzzsx8A_BYJ0zJnFGS6EwSiosKIrQviZaK5jIXvra_sj-N4vE4OThIJ2vws62FMWmVrU60ijovM_OPfMtYIpYatrEt3aRFTHYHr4-_EtNBykRa23YaNUT21I_vuHyrXg13ca6fBMGg_2HnHWk6DJCMJmxBVCoyyagWccTSnElTlymZoHmO-3UoAhFr4efSU5kOdBgLNM-hUtoLdGL4fUO87gVYj9HJoD1Yf9MfT_a7GAaqIBvDSEOPxOgVtTFVz1KYholJiYgImltGTlas4t-24Z8grbV9g6v_81u7Blcaj9vdrj-R67CmihvgvMfFQjm3MQX3qbtzNEPP3W7dhJfTRZl9EYbAGpcobqldm5pvC0DcWeG-nR0KMupPXZNdews-nsvgb0OvKAt1B9xYiowGgWldklLpyzRSwk_R2AexYnnkOeC1k8qzhnHdNP444h1XtMUBRxxwgwN-4sDz7pTjmm7kLOFNgxReV8x2qopv09izfmHkwCMrYYg-CjP5h2JZVXw43V8RetYI6RKHl4mmMAMf0nCDrUhutCjjjaqr-G-IOfCwO4xKykSeRKHKpZWJYh9d0eB0GVMz5qNJCagDL1q8_3Gb097C3bMHtQmXEPF8NBzv3YPL6O6yOkNwA3qL-VLdh4vZt8Wsmj9oPl8XPp839n8BKOyGzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochasticity+of+convection+in+Giga-LES+data&rft.jtitle=Climate+dynamics&rft.au=De+La+Chevrotiere%2C+Michele&rft.au=Khouider%2C+Boualem&rft.au=Majda%2C+Andrew+J&rft.date=2016-09-01&rft.pub=Springer&rft.issn=0930-7575&rft.volume=47&rft.issue=5-6&rft.spage=1845&rft_id=info:doi/10.1007%2Fs00382-015-2936-z&rft.externalDBID=ISR&rft.externalDocID=A470431755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon