Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment A new genetically tractable model for human cancer associated fibroblasts

We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cancer biology & therapy Ročník 11; číslo 4; s. 383 - 394
Hlavní autori: Trimmer, Casey, Sotgia, Federica, Whitaker-Menezes, Diana, Balliet, Renee M., Eaton, Gregory, Martinez-Outschoorn, Ubaldo E., Pavlides, Stephanos, Howell, Anthony, Iozzo, Renato V., Pestell, Richard G., Scherer, Philipp E., Capozza, Franco, Lisanti, Michael P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 15.02.2011
Landes Bioscience
Predmet:
ISSN:1538-4047, 1555-8576, 1555-8576
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome.
AbstractList We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome.
We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome.We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome.
We have recently proposed a new model for understanding tumor metabolism, termed: “The Autophagic Tumor Stroma Model of Cancer Metabolism”. In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ∼4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified >40 protein biomarkers that were upregulated, most of which were associated with (i) myofibroblast differentiation or (ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant overexpression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancerassociated fibroblasts, in promoting tumor growth, which is consistent with “The Autophagic Tumor Stroma Model of Cancer”. The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic “complementation” approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER-positive breast cancers, which are all associated with a Cav-1 deficient “lethal” tumor microenvironment, driving poor clinical outcome.
Author Capozza, Franco
Pavlides, Stephanos
Martinez-Outschoorn, Ubaldo E.
Scherer, Philipp E.
Howell, Anthony
Lisanti, Michael P.
Trimmer, Casey
Balliet, Renee M.
Eaton, Gregory
Whitaker-Menezes, Diana
Sotgia, Federica
Iozzo, Renato V.
Pestell, Richard G.
AuthorAffiliation 3 Manchester Breast Centre and Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
4 Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
6 Touchstone Diabetes Center; The University of Texas Southwestern Medical Center; Dallas, TX USA
2 Departments of Stem Cell Biology and Regenerative Medicine and/or Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
1 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Philadelphia, PA USA
5 Department of Pathology and Cell Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
AuthorAffiliation_xml – name: 6 Touchstone Diabetes Center; The University of Texas Southwestern Medical Center; Dallas, TX USA
– name: 1 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Philadelphia, PA USA
– name: 5 Department of Pathology and Cell Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 3 Manchester Breast Centre and Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
– name: 4 Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 2 Departments of Stem Cell Biology and Regenerative Medicine and/or Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
Author_xml – sequence: 1
  givenname: Casey
  surname: Trimmer
  fullname: Trimmer, Casey
– sequence: 2
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
– sequence: 3
  givenname: Diana
  surname: Whitaker-Menezes
  fullname: Whitaker-Menezes, Diana
– sequence: 4
  givenname: Renee M.
  surname: Balliet
  fullname: Balliet, Renee M.
– sequence: 5
  givenname: Gregory
  surname: Eaton
  fullname: Eaton, Gregory
– sequence: 6
  givenname: Ubaldo E.
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo E.
– sequence: 7
  givenname: Stephanos
  surname: Pavlides
  fullname: Pavlides, Stephanos
– sequence: 8
  givenname: Anthony
  surname: Howell
  fullname: Howell, Anthony
– sequence: 9
  givenname: Renato V.
  surname: Iozzo
  fullname: Iozzo, Renato V.
– sequence: 10
  givenname: Richard G.
  surname: Pestell
  fullname: Pestell, Richard G.
– sequence: 11
  givenname: Philipp E.
  surname: Scherer
  fullname: Scherer, Philipp E.
– sequence: 12
  givenname: Franco
  surname: Capozza
  fullname: Capozza, Franco
– sequence: 13
  givenname: Michael P.
  surname: Lisanti
  fullname: Lisanti, Michael P.
  email: mlisanti@KimmelCancerCenter.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21150282$$D View this record in MEDLINE/PubMed
BookMark eNqFkctvEzEQxleoiD7gyhH5Bj1s8Nje1wWppLykoh4IZ8uxZxujXTvY3qD-93ibNgKkitOM5Pl93_ib0-LIeYdF8RLoQkANb_U6LQAWYgECKDwpTqCqqrKtmvpo7nlbCiqa4-I0xh-UsobV3bPimAFUlLXspLhZqh36wboSiHKGjDZ5vfHOBKsG8u36kpE3X12u56SfnE7WO6IiSdPoA4nTdhswRh8isY6kDZKYgh8zOVodPLqdDd6N6NLz4mmvhogv7utZ8f3jh9Xyc3l1_enL8uKq1KKtU6lpS7mAltewNr0B04OuBa8aFL1quzr_zojGNHWT11dr1mkULSCrOQeOQPlZ8W6vu53WIxqdrYMa5DbYUYVb6ZWVf784u5E3fid5jglolwVe3wsE_3PCmORoo8ZhUA79FGVbsY5yymarV39aHTwews0DYj-Qo4gxYC-1TWqOMDvbQQKV8w1lvqEEkELe3TBji3-wB-VHAdgDeUeDcW191BadxgM4Ayokqwc8MOI_DGWr3I0Ylu9Xd2Zb02es22PW9T6M6pcPg5FJ3Q4-9EE5baPkj6z5GyMq13k
CitedBy_id crossref_primary_10_3390_cells11050792
crossref_primary_10_1016_j_canlet_2014_07_028
crossref_primary_10_1016_j_semcancer_2014_01_005
crossref_primary_10_1177_1758834014521111
crossref_primary_10_1002_jbt_22643
crossref_primary_10_3390_cancers12061697
crossref_primary_10_1155_2017_7454031
crossref_primary_10_1016_j_cell_2024_08_013
crossref_primary_10_1089_ars_2013_5292
crossref_primary_10_3390_ijms232415576
crossref_primary_10_1002_bdrc_21121
crossref_primary_10_4161_cc_10_15_16585
crossref_primary_10_4161_cc_10_23_18151
crossref_primary_10_1053_j_seminoncol_2014_03_002
crossref_primary_10_1371_journal_pone_0097239
crossref_primary_10_1002_mas_21362
crossref_primary_10_1146_annurev_pathol_011811_120856
crossref_primary_10_3389_fonc_2021_629614
crossref_primary_10_1038_nrc3915
crossref_primary_10_2174_0929867331666230719142202
crossref_primary_10_1016_j_job_2016_11_002
crossref_primary_10_1186_s12885_016_2614_5
crossref_primary_10_1007_s10555_020_09899_2
crossref_primary_10_1007_s10555_012_9415_3
crossref_primary_10_3389_fcell_2020_581732
crossref_primary_10_3390_ijms18112321
crossref_primary_10_4161_cc_10_13_16233
crossref_primary_10_1155_2016_4502846
crossref_primary_10_1053_j_seminoncol_2013_04_016
crossref_primary_10_1016_j_yexcr_2023_113736
crossref_primary_10_3892_ijmm_2017_2980
crossref_primary_10_4103_2045_8932_105030
crossref_primary_10_1016_j_canlet_2018_04_043
crossref_primary_10_1089_ars_2011_4367
crossref_primary_10_1186_1741_7015_9_62
crossref_primary_10_1002_j_2040_4603_2015_tb00627_x
crossref_primary_10_1002_jcp_28629
crossref_primary_10_1002_pmic_201700167
crossref_primary_10_1002_j_2040_4603_2020_tb00125_x
crossref_primary_10_1016_j_bbadis_2020_165846
crossref_primary_10_3892_etm_2017_5038
crossref_primary_10_1016_j_biomaterials_2013_10_027
crossref_primary_10_1007_s11684_016_0431_5
crossref_primary_10_1158_0008_5472_CAN_15_3079
crossref_primary_10_4161_cc_11_6_19530
crossref_primary_10_3390_ijms20194899
crossref_primary_10_1371_journal_pone_0024605
crossref_primary_10_4161_cc_19841
crossref_primary_10_1016_j_freeradbiomed_2014_04_029
crossref_primary_10_1002_ijc_27664
crossref_primary_10_1007_s13225_011_0137_6
crossref_primary_10_3390_cancers8020019
crossref_primary_10_3892_ol_2021_12881
crossref_primary_10_1186_s12943_025_02297_8
crossref_primary_10_1016_j_biopha_2023_114762
crossref_primary_10_1186_s12964_021_00711_4
crossref_primary_10_3390_antiox11061121
crossref_primary_10_1016_j_ajpath_2012_03_017
crossref_primary_10_3389_fonc_2023_1194835
crossref_primary_10_4161_cc_10_23_18254
crossref_primary_10_1186_s11658_022_00356_2
crossref_primary_10_1038_onc_2012_270
crossref_primary_10_1089_ars_2015_6546
crossref_primary_10_4161_cc_10_12_16002
crossref_primary_10_3892_mmr_2017_7497
crossref_primary_10_1186_1475_2867_12_6
crossref_primary_10_1016_j_ajpath_2012_11_008
crossref_primary_10_1016_j_canlet_2011_12_029
crossref_primary_10_1089_ars_2013_5185
crossref_primary_10_4161_cc_10_15_16870
crossref_primary_10_3892_ol_2014_2385
crossref_primary_10_3390_cancers13030401
crossref_primary_10_1371_journal_pone_0070960
crossref_primary_10_3389_fonc_2022_1028664
crossref_primary_10_4161_cc_10_11_15674
crossref_primary_10_1016_j_pathol_2016_08_003
crossref_primary_10_1172_JCI99974
crossref_primary_10_1016_j_cmet_2012_01_004
crossref_primary_10_4161_cc_10_17_16574
crossref_primary_10_4161_cc_10_11_15675
crossref_primary_10_1007_s11010_012_1319_6
crossref_primary_10_1186_gm529
Cites_doi 10.1074/jbc.M008340200
10.18632/aging.100134
10.4161/cc.9.17.12928
10.2174/0929867043365297
10.1172/JCI23424
10.1016/j.biopha.2005.03.004
10.4161/cc.9.17.12731
10.4161/cc.9.17.12908
10.4161/cc.9.11.11848
10.1152/ajpgi.00272.2007
10.1016/j.biopha.2005.03.006
10.1681/ASN.2009020146
10.4161/cbt.10.4.12449
10.1046/j.1432-0436.2002.700907.x
10.1038/nm1764
10.1046/j.1523-1747.2001.15211.x
10.1016/0098-2997(93)90012-3
10.2353/ajpath.2009.080873
10.1089/152308603770310356
10.1016/j.bbabio.2010.05.005
10.1128/MCB.00192-09
10.1038/sj.onc.1208145
10.1016/j.mad.2010.05.003
10.1016/j.bbabio.2010.02.005
10.2353/ajpath.2009.080924
10.1038/35094059
10.1016/S0168-8278(01)00260-4
10.4161/cbt.8.11.8874
10.4161/cc.9.12.11989
10.4161/cc.9.17.12721
10.1161/01.RES.0000187457.24338.3D
10.1038/sj.onc.1200852
10.4161/cc.8.11.8544
10.1080/13550280290100978
10.1038/nature07762
10.4161/cc.9.10.11601
10.4161/cc.8.23.10238
10.1007/BF00931598
10.1038/sj.onc.1206737
10.1016/j.molmed.2008.11.001
10.4161/cbt.10.2.11983
10.1002/ijc.2910510323
10.1007/s00216-005-3126-3
10.4161/cc.9.16.12553
10.4161/cc.5.15.3112
10.1038/nm.2005
10.4161/cbt.7.8.6220
10.1210/jc.2009-0947
10.1074/jbc.272.41.25437
10.1002/emmm.201000073
10.4161/cc.9.12.12048
10.1089/15230860152409095
10.4161/cc.8.15.9116
10.4161/cbt.10.6.13370
10.1128/MCB.01300-08
10.4161/cc.9.21.13817
10.1016/j.cell.2005.02.034
10.1128/MCB.25.17.7758-7769.2005
ContentType Journal Article
Copyright Copyright © 2011 Landes Bioscience 2011
Copyright_xml – notice: Copyright © 2011 Landes Bioscience 2011
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4161/cbt.11.4.14101
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1555-8576
EndPage 394
ExternalDocumentID PMC3047109
21150282
10_4161_cbt_11_4_14101
10914101
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR055660
– fundername: NCI NIH HHS
  grantid: R01 CA120876
– fundername: NCI NIH HHS
  grantid: R01 CA080250
– fundername: NCI NIH HHS
  grantid: R01 CA075503
– fundername: NCI NIH HHS
  grantid: P30 CA056036
– fundername: NCI NIH HHS
  grantid: R01-CA-75503
– fundername: NCI NIH HHS
  grantid: R01-CA-86072
– fundername: NCI NIH HHS
  grantid: P30-CA-56036
– fundername: NCI NIH HHS
  grantid: R01-CA-120876
– fundername: NCI NIH HHS
  grantid: R01-CA-080250
GroupedDBID ---
00X
0VX
0YH
29B
30N
53G
5GY
6J9
AAFWJ
ABCCY
ABEIZ
ABFIM
ACGFO
ACGFS
ACTIO
ADBBV
ADCVX
AECIN
AEISY
AENEX
AFPKN
AGYJP
AIJEM
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
BABNJ
BAWUL
BLEHA
C1A
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EMOBN
F5P
H13
HYE
IH2
KSSTO
KYCEM
M4Z
O9-
OK1
P2P
P6G
RPM
SJN
TDBHL
TFL
TFW
TR2
TTHFI
-
0R
AAAVI
ABJVF
ACENM
AEGYZ
AGCAB
AIRBT
AIRXU
AWQZV
RNANH
ROSJB
RTWRZ
TFT
TQWBC
AAYXX
CITATION
AEXWM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c486t-c0803418361bdfd1df1c64357e4fa896155d47d767028ab29ce481e263313e103
IEDL.DBID 0YH
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287358500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4047
1555-8576
IngestDate Tue Nov 04 01:48:27 EST 2025
Fri Jul 11 09:41:59 EDT 2025
Thu Jan 02 23:03:03 EST 2025
Tue Nov 18 22:32:18 EST 2025
Sat Nov 29 05:34:26 EST 2025
Fri Jan 15 03:37:24 EST 2021
Tue May 21 11:32:50 EDT 2019
Mon Oct 20 23:45:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-c0803418361bdfd1df1c64357e4fa896155d47d767028ab29ce481e263313e103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.4161/cbt.11.4.14101
PMID 21150282
PQID 852903020
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_852903020
landesbioscience_primary_cbt_article_14101
pubmed_primary_21150282
informaworld_taylorfrancis_310_4161_cbt_11_4_14101
crossref_citationtrail_10_4161_cbt_11_4_14101
crossref_primary_10_4161_cbt_11_4_14101
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3047109
PublicationCentury 2000
PublicationDate 2/15/2011
2011/02/15
2011-02-15
2011-Feb-15
20110215
PublicationDateYYYYMMDD 2011-02-15
PublicationDate_xml – month: 02
  year: 2011
  text: 2/15/2011
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer biology & therapy
PublicationTitleAlternate Cancer Biol Ther
PublicationYear 2011
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References R61
R60
R21
R20
R23
R22
R25
Yan T (R51) 1996; 56
R24
R27
R26
R29
R28
R1
R2
Pavlides S (R40) 2010; 2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
Li JJ (R52) 1995; 10
R41
R43
R42
R45
R44
R47
R49
R48
R50
R10
R54
R53
R12
Tsanou E (R46) 2004; 19
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R37
  doi: 10.1074/jbc.M008340200
– volume: 56
  start-page: 2864
  year: 1996
  ident: R51
  publication-title: Cancer Res
– volume: 2
  start-page: 185
  year: 2010
  ident: R40
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100134
– ident: R17
  doi: 10.4161/cc.9.17.12928
– ident: R47
  doi: 10.2174/0929867043365297
– ident: R57
  doi: 10.1172/JCI23424
– ident: R43
  doi: 10.1016/j.biopha.2005.03.004
– ident: R59
  doi: 10.4161/cc.9.17.12731
– ident: R20
  doi: 10.4161/cc.9.17.12908
– ident: R19
  doi: 10.4161/cc.9.11.11848
– ident: R29
  doi: 10.1152/ajpgi.00272.2007
– ident: R44
  doi: 10.1016/j.biopha.2005.03.006
– ident: R34
  doi: 10.1681/ASN.2009020146
– ident: R22
  doi: 10.4161/cbt.10.4.12449
– ident: R2
  doi: 10.1046/j.1432-0436.2002.700907.x
– ident: R61
  doi: 10.1038/nm1764
– ident: R32
  doi: 10.1046/j.1523-1747.2001.15211.x
– ident: R53
  doi: 10.1016/0098-2997(93)90012-3
– ident: R11
  doi: 10.2353/ajpath.2009.080873
– ident: R48
  doi: 10.1089/152308603770310356
– ident: R27
  doi: 10.1016/j.bbabio.2010.05.005
– ident: R56
  doi: 10.1128/MCB.00192-09
– ident: R45
  doi: 10.1038/sj.onc.1208145
– ident: R26
  doi: 10.1016/j.mad.2010.05.003
– ident: R28
  doi: 10.1016/j.bbabio.2010.02.005
– ident: R12
  doi: 10.2353/ajpath.2009.080924
– ident: R1
  doi: 10.1038/35094059
– ident: R30
  doi: 10.1016/S0168-8278(01)00260-4
– ident: R9
  doi: 10.4161/cbt.8.11.8874
– ident: R39
  doi: 10.4161/cc.9.12.11989
– ident: R18
  doi: 10.4161/cc.9.17.12721
– ident: R31
  doi: 10.1161/01.RES.0000187457.24338.3D
– ident: R50
  doi: 10.1038/sj.onc.1200852
– ident: R8
  doi: 10.4161/cc.8.11.8544
– ident: R25
  doi: 10.1080/13550280290100978
– ident: R23
  doi: 10.1038/nature07762
– ident: R36
  doi: 10.4161/cc.9.10.11601
– ident: R35
  doi: 10.4161/cc.8.23.10238
– ident: R24
  doi: 10.1007/BF00931598
– ident: R58
  doi: 10.1038/sj.onc.1206737
– ident: R3
  doi: 10.1016/j.molmed.2008.11.001
– ident: R10
  doi: 10.4161/cbt.10.2.11983
– ident: R41
  doi: 10.1002/ijc.2910510323
– ident: R60
  doi: 10.1007/s00216-005-3126-3
– ident: R15
  doi: 10.4161/cc.9.16.12553
– volume: 19
  start-page: 807
  year: 2004
  ident: R46
  publication-title: Histol Histopathol
– ident: R5
  doi: 10.4161/cc.5.15.3112
– ident: R33
  doi: 10.1038/nm.2005
– volume: 10
  start-page: 1989
  year: 1995
  ident: R52
  publication-title: Oncogene
– ident: R7
  doi: 10.4161/cbt.7.8.6220
– ident: R55
  doi: 10.1210/jc.2009-0947
– ident: R38
  doi: 10.1074/jbc.272.41.25437
– ident: R6
  doi: 10.1002/emmm.201000073
– ident: R16
  doi: 10.4161/cc.9.12.12048
– ident: R49
  doi: 10.1089/15230860152409095
– ident: R14
  doi: 10.4161/cc.8.15.9116
– ident: R13
  doi: 10.4161/cbt.10.6.13370
– ident: R54
  doi: 10.1128/MCB.01300-08
– ident: R21
  doi: 10.4161/cc.9.21.13817
– ident: R4
  doi: 10.1016/j.cell.2005.02.034
– ident: R42
  doi: 10.1128/MCB.25.17.7758-7769.2005
SSID ssj0027269
Score 2.3037407
Snippet We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new...
We have recently proposed a new model for understanding tumor metabolism, termed: “The Autophagic Tumor Stroma Model of Cancer Metabolism”. In this new...
SourceID pubmedcentral
proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 383
SubjectTerms Animals
Binding
Biology
Bioscience
Calcium
Cancer
Caveolin 1 - genetics
Caveolin 1 - metabolism
Caveolin 1 - pharmacology
Cell
Cell Line, Transformed
Cell Line, Tumor
Cell Proliferation - drug effects
Cycle
Female
Fibroblasts - drug effects
Fibroblasts - metabolism
Gene Expression Regulation, Neoplastic - genetics
Gene Knockdown Techniques
Humans
Landes
Mice
Mice, Nude
Mitochondria - enzymology
Mitochondria - metabolism
Models, Biological
Neoplasms - genetics
Neoplasms - metabolism
Nitric Oxide Synthase Type III - genetics
Nitric Oxide Synthase Type III - metabolism
Organogenesis
Oxidative Stress - drug effects
Oxidative Stress - genetics
Proteins
Proteomics
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Recombinant Proteins - pharmacology
Research Paper
RNA, Small Interfering
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Superoxide Dismutase - pharmacology
Tumor Microenvironment - drug effects
Tumor Microenvironment - genetics
Xenograft Model Antitumor Assays
Subtitle A new genetically tractable model for human cancer associated fibroblasts
Title Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment
URI https://www.tandfonline.com/doi/abs/10.4161/cbt.11.4.14101
http://www.landesbioscience.com/journals/cbt/article/14101/
https://www.ncbi.nlm.nih.gov/pubmed/21150282
https://www.proquest.com/docview/852903020
https://pubmed.ncbi.nlm.nih.gov/PMC3047109
Volume 11
WOSCitedRecordID wos000287358500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1555-8576
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027269
  issn: 1538-4047
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQghB7YHku4SUfkHhI2Y0dO06OUKj2sgsSRZSTlTg2VCJJlaT7-5lx0tKuthe4uJVqT1V7ZjxfZvoNIa-sU4VyErEJYFWRlEVYOBiEg2jW8lxm-dBsQl1cpPN59mWsquzGskrE0G4givC-Go07L3wHEgzHT03Rg6WfiBOsUQTkc5MDJsFyrujH2V-wxX07O2_QIhJqIGy8Zv3OhbRDV3pIjrC6EBM1I7GkvS4OvVpOuXU_TY_-55fdI3fHqJS-H9ToPrlh6wfk9vmYd39Ifk7yS4vtfUJGQTitwA-A36xLVF_69fNHTt-c1_D6luJFiYdN8472q6ppabda-mrbpu3ooqYQcdKub5sKVlZYDrj1X7tH5Nv002xyFo4tGkIj0qQPkacc7sE0TlhRupKVjhmIcaSywuVphknPUqhSJQrimLzgmbEiZZYnccxiy6L4MTmom9o-IVSJzCBvspFGAmZXmSwMK0GQzJWNrAhIuD4nbUb-cmyj8VsDjsHd07B7AGi00H73AvJ6M385MHfsncm3j133_lmJGxqb6HjfovCqcmy-JuIzeFfZdvJh5lcsSxeQd3vno-TRUayF07WaaTB3zOHktW1WnU4lz8Av8yggx4PWbaRwDO4BQQdE7ejjZgIyie9-Ui9-eUZxzL2yKHv6LxvxjNwZnrPzkMnn5KBvV_YFuWUu-0XXvvRGCaOapzDOpt__AHk6PzI
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWC-JxYHkTnj4g8ZCyxI4dJ-IEhWoR24JEEXuzEsferUSSKkn39zOTpKVdbS9waSvVnij2PD3jbwh5aZ3KlJMYm0CsKqI88zMHH8KBN2t5KpO0bzahptP45CT5vkfer-7CYFklxtCuB4rodDUKNx5Go4SjP_7OZC2I-qE4xCJFCH2uSDCyWM83G__6G23xrp9dJ9EiEKpHbLxk_pZF2sIrvUkOsLwQMzUDsqS9zBG9WE-5YaDGB__1arfJrcEvpR96RrpD9mx5l1ybDJn3e-R0lJ5bbPDjMwrUaQGaADRnmSMD0x_fPnH6elLC9xuKphK3m6YNbZdFVdNmuejqbau6ofOSgs9Jm7auCphZYEHgxm27--Tn-PNsdOQPTRp8I-Ko9RGpHCxhHEYsy13OcscMeDlSWeHSOMG0Zy5UriIFnkya8cRYETPLozBkoWVB-IDsl1VpHxGqRGIQOdlIIyFqV4nMDMuBkEyVDazwiL_aKG0GBHNspPFbQySDq6dh9SCk0UJ3q-eRV-vxix67Y-dIvrnvuu1OS1zf2kSHuyb5F7lj_ZiAz-BXYevRx1k3Y5E7j7zdOR4pD6piRZyu-EyDwGMWJy1ttWx0LHkCmpkHHnnYs92aCkf3HmJoj6gthlwPQCzx7X_K-VmHKY7ZVxYkj_9lIV6Q60ezybE-_jL9-oTc6E_duc_kU7Lf1kv7jFw15-28qZ93EvoHyTBBYg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemMU3sgfFNYIAfkPiQMmLHiZNH1lGBYGUSRezNShybVSJJlaT7-7lz0tJO6wu8NJVqX1T77ny_3OV3hLwyVubSRohNAKuKuMj93MKHsBDNGp5FadY3m5CTSXJxkZ4PVZXtUFaJGNr2RBHOV6NxzwuLBo7h-Hudd2Dpx-IYaxQB-dxyrFigy9Pxz79gi7t2ds6gRSBkT9h4w_yNA2mDrvSAHGJ1ISZqBmJJc1Mcer2ccu18Gh_-zz-7S-4MUSn90KvRPbJjqvtk_2zIuz8gv0bZlcH2Pj6jIJyW4AfAb1YFqi_9_u2U0zdnFVzfUjwocbNp1tJuUdYNbRdzV21bNy2dVRQiTtp2TV3CzBLLAdfetXtIfow_Tkef_KFFg69FEnc-8pTDOZiEMcsLW7DCMg0xTiSNsFmSYtKzELKQsYQ4Jst5qo1ImOFxGLLQsCB8RHarujJPCJUi1cibrCMdAWaXaZRrVoCgKJMmMMIj_nKflB74y7GNxm8FOAZXT8HqAaBRQrnV88jr1fh5z9yxdSRf33bVuWcltm9sosJtk_zryrG6TcCn8K00zehk6mbAHnvk3dbxKHlwFEvhdKlmCswdczhZZepFq5KIp-CXeeCRx73WraRwDO4BQXtEbujjagAyiW_-Us0uHaM45l5ZkD79l4V4SfbPT8fq6-fJl2fkdv_InfssOiK7XbMwz8mevupmbfPC2ecftkVABg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caveolin-1+and+mitochondrial+SOD2+%28MnSOD%29+function+as+tumor+suppressors+in+the+stromal+microenvironment%3A+a+new+genetically+tractable+model+for+human+cancer+associated+fibroblasts&rft.jtitle=Cancer+biology+%26+therapy&rft.au=Trimmer%2C+Casey&rft.au=Sotgia%2C+Federica&rft.au=Whitaker-Menezes%2C+Diana&rft.au=Balliet%2C+Renee+M&rft.date=2011-02-15&rft.issn=1555-8576&rft.eissn=1555-8576&rft.volume=11&rft.issue=4&rft.spage=383&rft_id=info:doi/10.4161%2Fcbt.11.4.14101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4047&client=summon