Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment A new genetically tractable model for human cancer associated fibroblasts
We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells in...
Uložené v:
| Vydané v: | Cancer biology & therapy Ročník 11; číslo 4; s. 383 - 394 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Taylor & Francis
15.02.2011
Landes Bioscience |
| Predmet: | |
| ISSN: | 1538-4047, 1555-8576, 1555-8576 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome. |
|---|---|
| AbstractList | We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome. We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome.We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome. We have recently proposed a new model for understanding tumor metabolism, termed: “The Autophagic Tumor Stroma Model of Cancer Metabolism”. In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ∼4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified >40 protein biomarkers that were upregulated, most of which were associated with (i) myofibroblast differentiation or (ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant overexpression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancerassociated fibroblasts, in promoting tumor growth, which is consistent with “The Autophagic Tumor Stroma Model of Cancer”. The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic “complementation” approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER-positive breast cancers, which are all associated with a Cav-1 deficient “lethal” tumor microenvironment, driving poor clinical outcome. |
| Author | Capozza, Franco Pavlides, Stephanos Martinez-Outschoorn, Ubaldo E. Scherer, Philipp E. Howell, Anthony Lisanti, Michael P. Trimmer, Casey Balliet, Renee M. Eaton, Gregory Whitaker-Menezes, Diana Sotgia, Federica Iozzo, Renato V. Pestell, Richard G. |
| AuthorAffiliation | 3 Manchester Breast Centre and Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Manchester UK 4 Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA 6 Touchstone Diabetes Center; The University of Texas Southwestern Medical Center; Dallas, TX USA 2 Departments of Stem Cell Biology and Regenerative Medicine and/or Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA 1 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Philadelphia, PA USA 5 Department of Pathology and Cell Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA |
| AuthorAffiliation_xml | – name: 6 Touchstone Diabetes Center; The University of Texas Southwestern Medical Center; Dallas, TX USA – name: 1 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Philadelphia, PA USA – name: 5 Department of Pathology and Cell Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA – name: 3 Manchester Breast Centre and Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Manchester UK – name: 4 Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA – name: 2 Departments of Stem Cell Biology and Regenerative Medicine and/or Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA |
| Author_xml | – sequence: 1 givenname: Casey surname: Trimmer fullname: Trimmer, Casey – sequence: 2 givenname: Federica surname: Sotgia fullname: Sotgia, Federica – sequence: 3 givenname: Diana surname: Whitaker-Menezes fullname: Whitaker-Menezes, Diana – sequence: 4 givenname: Renee M. surname: Balliet fullname: Balliet, Renee M. – sequence: 5 givenname: Gregory surname: Eaton fullname: Eaton, Gregory – sequence: 6 givenname: Ubaldo E. surname: Martinez-Outschoorn fullname: Martinez-Outschoorn, Ubaldo E. – sequence: 7 givenname: Stephanos surname: Pavlides fullname: Pavlides, Stephanos – sequence: 8 givenname: Anthony surname: Howell fullname: Howell, Anthony – sequence: 9 givenname: Renato V. surname: Iozzo fullname: Iozzo, Renato V. – sequence: 10 givenname: Richard G. surname: Pestell fullname: Pestell, Richard G. – sequence: 11 givenname: Philipp E. surname: Scherer fullname: Scherer, Philipp E. – sequence: 12 givenname: Franco surname: Capozza fullname: Capozza, Franco – sequence: 13 givenname: Michael P. surname: Lisanti fullname: Lisanti, Michael P. email: mlisanti@KimmelCancerCenter.org |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21150282$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctvEzEQxleoiD7gyhH5Bj1s8Nje1wWppLykoh4IZ8uxZxujXTvY3qD-93ibNgKkitOM5Pl93_ib0-LIeYdF8RLoQkANb_U6LQAWYgECKDwpTqCqqrKtmvpo7nlbCiqa4-I0xh-UsobV3bPimAFUlLXspLhZqh36wboSiHKGjDZ5vfHOBKsG8u36kpE3X12u56SfnE7WO6IiSdPoA4nTdhswRh8isY6kDZKYgh8zOVodPLqdDd6N6NLz4mmvhogv7utZ8f3jh9Xyc3l1_enL8uKq1KKtU6lpS7mAltewNr0B04OuBa8aFL1quzr_zojGNHWT11dr1mkULSCrOQeOQPlZ8W6vu53WIxqdrYMa5DbYUYVb6ZWVf784u5E3fid5jglolwVe3wsE_3PCmORoo8ZhUA79FGVbsY5yymarV39aHTwews0DYj-Qo4gxYC-1TWqOMDvbQQKV8w1lvqEEkELe3TBji3-wB-VHAdgDeUeDcW191BadxgM4Ayokqwc8MOI_DGWr3I0Ylu9Xd2Zb02es22PW9T6M6pcPg5FJ3Q4-9EE5baPkj6z5GyMq13k |
| CitedBy_id | crossref_primary_10_3390_cells11050792 crossref_primary_10_1016_j_canlet_2014_07_028 crossref_primary_10_1016_j_semcancer_2014_01_005 crossref_primary_10_1177_1758834014521111 crossref_primary_10_1002_jbt_22643 crossref_primary_10_3390_cancers12061697 crossref_primary_10_1155_2017_7454031 crossref_primary_10_1016_j_cell_2024_08_013 crossref_primary_10_1089_ars_2013_5292 crossref_primary_10_3390_ijms232415576 crossref_primary_10_1002_bdrc_21121 crossref_primary_10_4161_cc_10_15_16585 crossref_primary_10_4161_cc_10_23_18151 crossref_primary_10_1053_j_seminoncol_2014_03_002 crossref_primary_10_1371_journal_pone_0097239 crossref_primary_10_1002_mas_21362 crossref_primary_10_1146_annurev_pathol_011811_120856 crossref_primary_10_3389_fonc_2021_629614 crossref_primary_10_1038_nrc3915 crossref_primary_10_2174_0929867331666230719142202 crossref_primary_10_1016_j_job_2016_11_002 crossref_primary_10_1186_s12885_016_2614_5 crossref_primary_10_1007_s10555_020_09899_2 crossref_primary_10_1007_s10555_012_9415_3 crossref_primary_10_3389_fcell_2020_581732 crossref_primary_10_3390_ijms18112321 crossref_primary_10_4161_cc_10_13_16233 crossref_primary_10_1155_2016_4502846 crossref_primary_10_1053_j_seminoncol_2013_04_016 crossref_primary_10_1016_j_yexcr_2023_113736 crossref_primary_10_3892_ijmm_2017_2980 crossref_primary_10_4103_2045_8932_105030 crossref_primary_10_1016_j_canlet_2018_04_043 crossref_primary_10_1089_ars_2011_4367 crossref_primary_10_1186_1741_7015_9_62 crossref_primary_10_1002_j_2040_4603_2015_tb00627_x crossref_primary_10_1002_jcp_28629 crossref_primary_10_1002_pmic_201700167 crossref_primary_10_1002_j_2040_4603_2020_tb00125_x crossref_primary_10_1016_j_bbadis_2020_165846 crossref_primary_10_3892_etm_2017_5038 crossref_primary_10_1016_j_biomaterials_2013_10_027 crossref_primary_10_1007_s11684_016_0431_5 crossref_primary_10_1158_0008_5472_CAN_15_3079 crossref_primary_10_4161_cc_11_6_19530 crossref_primary_10_3390_ijms20194899 crossref_primary_10_1371_journal_pone_0024605 crossref_primary_10_4161_cc_19841 crossref_primary_10_1016_j_freeradbiomed_2014_04_029 crossref_primary_10_1002_ijc_27664 crossref_primary_10_1007_s13225_011_0137_6 crossref_primary_10_3390_cancers8020019 crossref_primary_10_3892_ol_2021_12881 crossref_primary_10_1186_s12943_025_02297_8 crossref_primary_10_1016_j_biopha_2023_114762 crossref_primary_10_1186_s12964_021_00711_4 crossref_primary_10_3390_antiox11061121 crossref_primary_10_1016_j_ajpath_2012_03_017 crossref_primary_10_3389_fonc_2023_1194835 crossref_primary_10_4161_cc_10_23_18254 crossref_primary_10_1186_s11658_022_00356_2 crossref_primary_10_1038_onc_2012_270 crossref_primary_10_1089_ars_2015_6546 crossref_primary_10_4161_cc_10_12_16002 crossref_primary_10_3892_mmr_2017_7497 crossref_primary_10_1186_1475_2867_12_6 crossref_primary_10_1016_j_ajpath_2012_11_008 crossref_primary_10_1016_j_canlet_2011_12_029 crossref_primary_10_1089_ars_2013_5185 crossref_primary_10_4161_cc_10_15_16870 crossref_primary_10_3892_ol_2014_2385 crossref_primary_10_3390_cancers13030401 crossref_primary_10_1371_journal_pone_0070960 crossref_primary_10_3389_fonc_2022_1028664 crossref_primary_10_4161_cc_10_11_15674 crossref_primary_10_1016_j_pathol_2016_08_003 crossref_primary_10_1172_JCI99974 crossref_primary_10_1016_j_cmet_2012_01_004 crossref_primary_10_4161_cc_10_17_16574 crossref_primary_10_4161_cc_10_11_15675 crossref_primary_10_1007_s11010_012_1319_6 crossref_primary_10_1186_gm529 |
| Cites_doi | 10.1074/jbc.M008340200 10.18632/aging.100134 10.4161/cc.9.17.12928 10.2174/0929867043365297 10.1172/JCI23424 10.1016/j.biopha.2005.03.004 10.4161/cc.9.17.12731 10.4161/cc.9.17.12908 10.4161/cc.9.11.11848 10.1152/ajpgi.00272.2007 10.1016/j.biopha.2005.03.006 10.1681/ASN.2009020146 10.4161/cbt.10.4.12449 10.1046/j.1432-0436.2002.700907.x 10.1038/nm1764 10.1046/j.1523-1747.2001.15211.x 10.1016/0098-2997(93)90012-3 10.2353/ajpath.2009.080873 10.1089/152308603770310356 10.1016/j.bbabio.2010.05.005 10.1128/MCB.00192-09 10.1038/sj.onc.1208145 10.1016/j.mad.2010.05.003 10.1016/j.bbabio.2010.02.005 10.2353/ajpath.2009.080924 10.1038/35094059 10.1016/S0168-8278(01)00260-4 10.4161/cbt.8.11.8874 10.4161/cc.9.12.11989 10.4161/cc.9.17.12721 10.1161/01.RES.0000187457.24338.3D 10.1038/sj.onc.1200852 10.4161/cc.8.11.8544 10.1080/13550280290100978 10.1038/nature07762 10.4161/cc.9.10.11601 10.4161/cc.8.23.10238 10.1007/BF00931598 10.1038/sj.onc.1206737 10.1016/j.molmed.2008.11.001 10.4161/cbt.10.2.11983 10.1002/ijc.2910510323 10.1007/s00216-005-3126-3 10.4161/cc.9.16.12553 10.4161/cc.5.15.3112 10.1038/nm.2005 10.4161/cbt.7.8.6220 10.1210/jc.2009-0947 10.1074/jbc.272.41.25437 10.1002/emmm.201000073 10.4161/cc.9.12.12048 10.1089/15230860152409095 10.4161/cc.8.15.9116 10.4161/cbt.10.6.13370 10.1128/MCB.01300-08 10.4161/cc.9.21.13817 10.1016/j.cell.2005.02.034 10.1128/MCB.25.17.7758-7769.2005 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 Landes Bioscience 2011 |
| Copyright_xml | – notice: Copyright © 2011 Landes Bioscience 2011 |
| DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.4161/cbt.11.4.14101 |
| DatabaseName | Taylor & Francis Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1555-8576 |
| EndPage | 394 |
| ExternalDocumentID | PMC3047109 21150282 10_4161_cbt_11_4_14101 10914101 |
| Genre | Research Article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR055660 – fundername: NCI NIH HHS grantid: R01 CA120876 – fundername: NCI NIH HHS grantid: R01 CA080250 – fundername: NCI NIH HHS grantid: R01 CA075503 – fundername: NCI NIH HHS grantid: P30 CA056036 – fundername: NCI NIH HHS grantid: R01-CA-75503 – fundername: NCI NIH HHS grantid: R01-CA-86072 – fundername: NCI NIH HHS grantid: P30-CA-56036 – fundername: NCI NIH HHS grantid: R01-CA-120876 – fundername: NCI NIH HHS grantid: R01-CA-080250 |
| GroupedDBID | --- 00X 0VX 0YH 29B 30N 53G 5GY 6J9 AAFWJ ABCCY ABEIZ ABFIM ACGFO ACGFS ACTIO ADBBV ADCVX AECIN AEISY AENEX AFPKN AGYJP AIJEM AIYEW ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AQTUD AVBZW BABNJ BAWUL BLEHA C1A CCCUG DGEBU DIK DKSSO E3Z EBS EMOBN F5P H13 HYE IH2 KSSTO KYCEM M4Z O9- OK1 P2P P6G RPM SJN TDBHL TFL TFW TR2 TTHFI - 0R AAAVI ABJVF ACENM AEGYZ AGCAB AIRBT AIRXU AWQZV RNANH ROSJB RTWRZ TFT TQWBC AAYXX CITATION AEXWM CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c486t-c0803418361bdfd1df1c64357e4fa896155d47d767028ab29ce481e263313e103 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287358500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-4047 1555-8576 |
| IngestDate | Tue Nov 04 01:48:27 EST 2025 Fri Jul 11 09:41:59 EDT 2025 Thu Jan 02 23:03:03 EST 2025 Tue Nov 18 22:32:18 EST 2025 Sat Nov 29 05:34:26 EST 2025 Fri Jan 15 03:37:24 EST 2021 Tue May 21 11:32:50 EDT 2019 Mon Oct 20 23:45:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-c0803418361bdfd1df1c64357e4fa896155d47d767028ab29ce481e263313e103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.4161/cbt.11.4.14101 |
| PMID | 21150282 |
| PQID | 852903020 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_852903020 landesbioscience_primary_cbt_article_14101 pubmed_primary_21150282 informaworld_taylorfrancis_310_4161_cbt_11_4_14101 crossref_citationtrail_10_4161_cbt_11_4_14101 crossref_primary_10_4161_cbt_11_4_14101 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3047109 |
| PublicationCentury | 2000 |
| PublicationDate | 2/15/2011 2011/02/15 2011-02-15 2011-Feb-15 20110215 |
| PublicationDateYYYYMMDD | 2011-02-15 |
| PublicationDate_xml | – month: 02 year: 2011 text: 2/15/2011 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cancer biology & therapy |
| PublicationTitleAlternate | Cancer Biol Ther |
| PublicationYear | 2011 |
| Publisher | Taylor & Francis Landes Bioscience |
| Publisher_xml | – name: Taylor & Francis – name: Landes Bioscience |
| References | R61 R60 R21 R20 R23 R22 R25 Yan T (R51) 1996; 56 R24 R27 R26 R29 R28 R1 R2 Pavlides S (R40) 2010; 2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 Li JJ (R52) 1995; 10 R41 R43 R42 R45 R44 R47 R49 R48 R50 R10 R54 R53 R12 Tsanou E (R46) 2004; 19 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 |
| References_xml | – ident: R37 doi: 10.1074/jbc.M008340200 – volume: 56 start-page: 2864 year: 1996 ident: R51 publication-title: Cancer Res – volume: 2 start-page: 185 year: 2010 ident: R40 publication-title: Aging (Albany NY) doi: 10.18632/aging.100134 – ident: R17 doi: 10.4161/cc.9.17.12928 – ident: R47 doi: 10.2174/0929867043365297 – ident: R57 doi: 10.1172/JCI23424 – ident: R43 doi: 10.1016/j.biopha.2005.03.004 – ident: R59 doi: 10.4161/cc.9.17.12731 – ident: R20 doi: 10.4161/cc.9.17.12908 – ident: R19 doi: 10.4161/cc.9.11.11848 – ident: R29 doi: 10.1152/ajpgi.00272.2007 – ident: R44 doi: 10.1016/j.biopha.2005.03.006 – ident: R34 doi: 10.1681/ASN.2009020146 – ident: R22 doi: 10.4161/cbt.10.4.12449 – ident: R2 doi: 10.1046/j.1432-0436.2002.700907.x – ident: R61 doi: 10.1038/nm1764 – ident: R32 doi: 10.1046/j.1523-1747.2001.15211.x – ident: R53 doi: 10.1016/0098-2997(93)90012-3 – ident: R11 doi: 10.2353/ajpath.2009.080873 – ident: R48 doi: 10.1089/152308603770310356 – ident: R27 doi: 10.1016/j.bbabio.2010.05.005 – ident: R56 doi: 10.1128/MCB.00192-09 – ident: R45 doi: 10.1038/sj.onc.1208145 – ident: R26 doi: 10.1016/j.mad.2010.05.003 – ident: R28 doi: 10.1016/j.bbabio.2010.02.005 – ident: R12 doi: 10.2353/ajpath.2009.080924 – ident: R1 doi: 10.1038/35094059 – ident: R30 doi: 10.1016/S0168-8278(01)00260-4 – ident: R9 doi: 10.4161/cbt.8.11.8874 – ident: R39 doi: 10.4161/cc.9.12.11989 – ident: R18 doi: 10.4161/cc.9.17.12721 – ident: R31 doi: 10.1161/01.RES.0000187457.24338.3D – ident: R50 doi: 10.1038/sj.onc.1200852 – ident: R8 doi: 10.4161/cc.8.11.8544 – ident: R25 doi: 10.1080/13550280290100978 – ident: R23 doi: 10.1038/nature07762 – ident: R36 doi: 10.4161/cc.9.10.11601 – ident: R35 doi: 10.4161/cc.8.23.10238 – ident: R24 doi: 10.1007/BF00931598 – ident: R58 doi: 10.1038/sj.onc.1206737 – ident: R3 doi: 10.1016/j.molmed.2008.11.001 – ident: R10 doi: 10.4161/cbt.10.2.11983 – ident: R41 doi: 10.1002/ijc.2910510323 – ident: R60 doi: 10.1007/s00216-005-3126-3 – ident: R15 doi: 10.4161/cc.9.16.12553 – volume: 19 start-page: 807 year: 2004 ident: R46 publication-title: Histol Histopathol – ident: R5 doi: 10.4161/cc.5.15.3112 – ident: R33 doi: 10.1038/nm.2005 – volume: 10 start-page: 1989 year: 1995 ident: R52 publication-title: Oncogene – ident: R7 doi: 10.4161/cbt.7.8.6220 – ident: R55 doi: 10.1210/jc.2009-0947 – ident: R38 doi: 10.1074/jbc.272.41.25437 – ident: R6 doi: 10.1002/emmm.201000073 – ident: R16 doi: 10.4161/cc.9.12.12048 – ident: R49 doi: 10.1089/15230860152409095 – ident: R14 doi: 10.4161/cc.8.15.9116 – ident: R13 doi: 10.4161/cbt.10.6.13370 – ident: R54 doi: 10.1128/MCB.01300-08 – ident: R21 doi: 10.4161/cc.9.21.13817 – ident: R4 doi: 10.1016/j.cell.2005.02.034 – ident: R42 doi: 10.1128/MCB.25.17.7758-7769.2005 |
| SSID | ssj0027269 |
| Score | 2.3037407 |
| Snippet | We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new... We have recently proposed a new model for understanding tumor metabolism, termed: “The Autophagic Tumor Stroma Model of Cancer Metabolism”. In this new... |
| SourceID | pubmedcentral proquest pubmed crossref landesbioscience informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 383 |
| SubjectTerms | Animals Binding Biology Bioscience Calcium Cancer Caveolin 1 - genetics Caveolin 1 - metabolism Caveolin 1 - pharmacology Cell Cell Line, Transformed Cell Line, Tumor Cell Proliferation - drug effects Cycle Female Fibroblasts - drug effects Fibroblasts - metabolism Gene Expression Regulation, Neoplastic - genetics Gene Knockdown Techniques Humans Landes Mice Mice, Nude Mitochondria - enzymology Mitochondria - metabolism Models, Biological Neoplasms - genetics Neoplasms - metabolism Nitric Oxide Synthase Type III - genetics Nitric Oxide Synthase Type III - metabolism Organogenesis Oxidative Stress - drug effects Oxidative Stress - genetics Proteins Proteomics Recombinant Proteins - genetics Recombinant Proteins - metabolism Recombinant Proteins - pharmacology Research Paper RNA, Small Interfering Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Superoxide Dismutase - pharmacology Tumor Microenvironment - drug effects Tumor Microenvironment - genetics Xenograft Model Antitumor Assays |
| Subtitle | A new genetically tractable model for human cancer associated fibroblasts |
| Title | Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment |
| URI | https://www.tandfonline.com/doi/abs/10.4161/cbt.11.4.14101 http://www.landesbioscience.com/journals/cbt/article/14101/ https://www.ncbi.nlm.nih.gov/pubmed/21150282 https://www.proquest.com/docview/852903020 https://pubmed.ncbi.nlm.nih.gov/PMC3047109 |
| Volume | 11 |
| WOSCitedRecordID | wos000287358500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1555-8576 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027269 issn: 1538-4047 databaseCode: TFW dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQghB7YHku4SUfkHhI2Y0dO06OUKj2sgsSRZSTlTg2VCJJlaT7-5lx0tKuthe4uJVqT1V7ZjxfZvoNIa-sU4VyErEJYFWRlEVYOBiEg2jW8lxm-dBsQl1cpPN59mWsquzGskrE0G4givC-Go07L3wHEgzHT03Rg6WfiBOsUQTkc5MDJsFyrujH2V-wxX07O2_QIhJqIGy8Zv3OhbRDV3pIjrC6EBM1I7GkvS4OvVpOuXU_TY_-55fdI3fHqJS-H9ToPrlh6wfk9vmYd39Ifk7yS4vtfUJGQTitwA-A36xLVF_69fNHTt-c1_D6luJFiYdN8472q6ppabda-mrbpu3ooqYQcdKub5sKVlZYDrj1X7tH5Nv002xyFo4tGkIj0qQPkacc7sE0TlhRupKVjhmIcaSywuVphknPUqhSJQrimLzgmbEiZZYnccxiy6L4MTmom9o-IVSJzCBvspFGAmZXmSwMK0GQzJWNrAhIuD4nbUb-cmyj8VsDjsHd07B7AGi00H73AvJ6M385MHfsncm3j133_lmJGxqb6HjfovCqcmy-JuIzeFfZdvJh5lcsSxeQd3vno-TRUayF07WaaTB3zOHktW1WnU4lz8Av8yggx4PWbaRwDO4BQQdE7ejjZgIyie9-Ui9-eUZxzL2yKHv6LxvxjNwZnrPzkMnn5KBvV_YFuWUu-0XXvvRGCaOapzDOpt__AHk6PzI |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWC-JxYHkTnj4g8ZCyxI4dJ-IEhWoR24JEEXuzEsferUSSKkn39zOTpKVdbS9waSvVnij2PD3jbwh5aZ3KlJMYm0CsKqI88zMHH8KBN2t5KpO0bzahptP45CT5vkfer-7CYFklxtCuB4rodDUKNx5Go4SjP_7OZC2I-qE4xCJFCH2uSDCyWM83G__6G23xrp9dJ9EiEKpHbLxk_pZF2sIrvUkOsLwQMzUDsqS9zBG9WE-5YaDGB__1arfJrcEvpR96RrpD9mx5l1ybDJn3e-R0lJ5bbPDjMwrUaQGaADRnmSMD0x_fPnH6elLC9xuKphK3m6YNbZdFVdNmuejqbau6ofOSgs9Jm7auCphZYEHgxm27--Tn-PNsdOQPTRp8I-Ko9RGpHCxhHEYsy13OcscMeDlSWeHSOMG0Zy5UriIFnkya8cRYETPLozBkoWVB-IDsl1VpHxGqRGIQOdlIIyFqV4nMDMuBkEyVDazwiL_aKG0GBHNspPFbQySDq6dh9SCk0UJ3q-eRV-vxix67Y-dIvrnvuu1OS1zf2kSHuyb5F7lj_ZiAz-BXYevRx1k3Y5E7j7zdOR4pD6piRZyu-EyDwGMWJy1ttWx0LHkCmpkHHnnYs92aCkf3HmJoj6gthlwPQCzx7X_K-VmHKY7ZVxYkj_9lIV6Q60ezybE-_jL9-oTc6E_duc_kU7Lf1kv7jFw15-28qZ93EvoHyTBBYg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemMU3sgfFNYIAfkPiQMmLHiZNH1lGBYGUSRezNShybVSJJlaT7-7lz0tJO6wu8NJVqX1T77ny_3OV3hLwyVubSRohNAKuKuMj93MKHsBDNGp5FadY3m5CTSXJxkZ4PVZXtUFaJGNr2RBHOV6NxzwuLBo7h-Hudd2Dpx-IYaxQB-dxyrFigy9Pxz79gi7t2ds6gRSBkT9h4w_yNA2mDrvSAHGJ1ISZqBmJJc1Mcer2ccu18Gh_-zz-7S-4MUSn90KvRPbJjqvtk_2zIuz8gv0bZlcH2Pj6jIJyW4AfAb1YFqi_9_u2U0zdnFVzfUjwocbNp1tJuUdYNbRdzV21bNy2dVRQiTtp2TV3CzBLLAdfetXtIfow_Tkef_KFFg69FEnc-8pTDOZiEMcsLW7DCMg0xTiSNsFmSYtKzELKQsYQ4Jst5qo1ImOFxGLLQsCB8RHarujJPCJUi1cibrCMdAWaXaZRrVoCgKJMmMMIj_nKflB74y7GNxm8FOAZXT8HqAaBRQrnV88jr1fh5z9yxdSRf33bVuWcltm9sosJtk_zryrG6TcCn8K00zehk6mbAHnvk3dbxKHlwFEvhdKlmCswdczhZZepFq5KIp-CXeeCRx73WraRwDO4BQXtEbujjagAyiW_-Us0uHaM45l5ZkD79l4V4SfbPT8fq6-fJl2fkdv_InfssOiK7XbMwz8mevupmbfPC2ecftkVABg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caveolin-1+and+mitochondrial+SOD2+%28MnSOD%29+function+as+tumor+suppressors+in+the+stromal+microenvironment%3A+a+new+genetically+tractable+model+for+human+cancer+associated+fibroblasts&rft.jtitle=Cancer+biology+%26+therapy&rft.au=Trimmer%2C+Casey&rft.au=Sotgia%2C+Federica&rft.au=Whitaker-Menezes%2C+Diana&rft.au=Balliet%2C+Renee+M&rft.date=2011-02-15&rft.issn=1555-8576&rft.eissn=1555-8576&rft.volume=11&rft.issue=4&rft.spage=383&rft_id=info:doi/10.4161%2Fcbt.11.4.14101&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4047&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4047&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4047&client=summon |