Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G
The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is cons...
Uložené v:
| Vydané v: | Journal of virology Ročník 74; číslo 8; s. 3740 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.04.2000
|
| Predmet: | |
| ISSN: | 0022-538X |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes. |
|---|---|
| AbstractList | The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes. The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes.The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes. |
| Author | Armand-Ugon, M de Baar, M Berkhout, B Hoogenkamp, M Jeeninga, R E Verhoef, K |
| Author_xml | – sequence: 1 givenname: R E surname: Jeeninga fullname: Jeeninga, R E organization: Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands – sequence: 2 givenname: M surname: Hoogenkamp fullname: Hoogenkamp, M – sequence: 3 givenname: M surname: Armand-Ugon fullname: Armand-Ugon, M – sequence: 4 givenname: M surname: de Baar fullname: de Baar, M – sequence: 5 givenname: K surname: Verhoef fullname: Verhoef, K – sequence: 6 givenname: B surname: Berkhout fullname: Berkhout, B |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10729149$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kMtOwzAQRb0oAgr8AnjFLsF2HDtZIkRLERIbQOwq251Qo8QOfoD6EfwzQZTVncWZM6M7RzPnHSB0QUlJKWuu7l9WpeRlU1aSk6KSNS0ZIWSGjglhrKir5vUIzWN8J4RyLvghOqJEspby9hh9L7IzyXqneryxXQcBnIGINaQvAIfTFnDv3RtOEAb7SwUYQSWcgnLRBDvul8fgBz9BEfsOb_OgHLbDkJ3fQGeNnaw7_GlDjjjtRsAUx6x_p4ivpyPB57ctXp6ig071Ec72eYKeF7dPN3fFw-NydXP9UBjeiFRobrgAqQwRmlYcGqiFbpmpaxCSUKn4BpRudaU1l6RmomKm44w3kjCthGQn6PLPO339kSGm9WCjgb5XDnyOa0laKSrJJvB8D2Y9wGY9BjuosFv_F8h-AL2Gd3c |
| CitedBy_id | crossref_primary_10_1006_viro_2001_1059 crossref_primary_10_1038_s41598_020_70170_3 crossref_primary_10_1089_aid_2009_0152 crossref_primary_10_1128_AAC_02991_14 crossref_primary_10_1006_viro_2001_0888 crossref_primary_10_1089_088922202760265614 crossref_primary_10_1111_j_1348_0421_2002_tb02766_x crossref_primary_10_1074_jbc_M109_004416 crossref_primary_10_1111_j_1365_2567_2010_03375_x crossref_primary_10_1128_JCM_42_6_2742_2751_2004 crossref_primary_10_1128_JVI_76_6_3084_3088_2002 crossref_primary_10_1021_jo035290r crossref_primary_10_1097_QAD_0b013e3283217f9f crossref_primary_10_1097_00002030_200307250_00011 crossref_primary_10_1016_j_jmb_2008_06_041 crossref_primary_10_1038_s41598_020_70083_1 crossref_primary_10_1089_aid_2007_0152 crossref_primary_10_1371_journal_pone_0128618 crossref_primary_10_3390_microorganisms12081707 crossref_primary_10_1016_j_virol_2005_11_047 crossref_primary_10_1016_j_virol_2011_08_013 crossref_primary_10_1089_aid_2006_0305 crossref_primary_10_1074_jbc_M112_397158 crossref_primary_10_1016_j_virol_2012_06_007 crossref_primary_10_1038_s42003_020_1103_1 crossref_primary_10_1006_viro_2001_1397 crossref_primary_10_1038_mt_2009_176 crossref_primary_10_1016_j_cytogfr_2012_05_003 crossref_primary_10_1089_aid_2005_21_901 crossref_primary_10_1186_1743_422X_10_358 crossref_primary_10_1128_JVI_79_7_4396_4406_2005 crossref_primary_10_1002_ana_21292 crossref_primary_10_1172_JCI200522873 crossref_primary_10_1111_j_1600_0463_2008_00024_x crossref_primary_10_1016_j_omtm_2020_10_018 crossref_primary_10_1006_viro_2000_0466 crossref_primary_10_1128_AAC_00820_08 crossref_primary_10_1074_jbc_M301939200 crossref_primary_10_1021_bi0270034 crossref_primary_10_1016_j_antiviral_2006_06_008 crossref_primary_10_3390_biology1030668 crossref_primary_10_1371_journal_pone_0030574 crossref_primary_10_3390_v11121104 crossref_primary_10_1039_D4SC01755B crossref_primary_10_1128_JVI_00571_15 crossref_primary_10_1371_journal_pone_0301809 crossref_primary_10_1128_JVI_01404_08 crossref_primary_10_1038_srep16777 crossref_primary_10_1189_jlb_0403180 crossref_primary_10_1091_mbc_e08_07_0670 crossref_primary_10_1186_1742_4690_10_93 crossref_primary_10_1099_vir_0_059642_0 crossref_primary_10_1128_JVI_01354_07 crossref_primary_10_1155_2012_508967 crossref_primary_10_1128_JVI_00308_16 crossref_primary_10_1128_JVI_75_11_4964_4972_2001 crossref_primary_10_1016_j_virusres_2021_198370 crossref_primary_10_1186_1742_4690_5_37 crossref_primary_10_1371_journal_ppat_1011194 crossref_primary_10_1128_JVI_00558_06 crossref_primary_10_2478_jvetres_2022_0064 crossref_primary_10_1038_mt_2008_268 crossref_primary_10_3390_v8020047 crossref_primary_10_1371_journal_pone_0092145 crossref_primary_10_1016_j_ejca_2005_08_011 crossref_primary_10_1089_aid_2006_0184 crossref_primary_10_1186_s12985_016_0667_3 crossref_primary_10_1016_j_biopha_2010_09_007 crossref_primary_10_1172_JCI11918 crossref_primary_10_1016_j_virusres_2006_10_010 crossref_primary_10_1186_1742_4690_4_59 crossref_primary_10_1186_s12985_018_1062_z crossref_primary_10_1128_JVI_02547_05 crossref_primary_10_1086_339547 crossref_primary_10_1023_A_1011171027134 crossref_primary_10_1093_nar_gkw432 crossref_primary_10_1016_j_omtn_2020_07_016 crossref_primary_10_1128_JVI_78_6_2841_2852_2004 crossref_primary_10_1089_aid_2020_0055 crossref_primary_10_1016_j_jmb_2024_168690 crossref_primary_10_1093_nar_gkz117 crossref_primary_10_1016_j_virol_2017_09_024 crossref_primary_10_1097_00042560_200206010_00013 crossref_primary_10_3390_v15020302 crossref_primary_10_1097_00002030_200207260_00007 crossref_primary_10_1089_oli_2007_0095 crossref_primary_10_1089_0889222041524544 crossref_primary_10_1165_rcmb_2011_0186TR crossref_primary_10_1128_JVI_77_2_1021_1038_2003 crossref_primary_10_1371_journal_pone_0017865 crossref_primary_10_3390_v9100309 crossref_primary_10_1074_jbc_M116_731836 crossref_primary_10_1128_JVI_78_24_14066_14069_2004 crossref_primary_10_1016_j_virol_2011_07_002 crossref_primary_10_1128_JVI_02051_08 crossref_primary_10_1128_JVI_00253_17 crossref_primary_10_1016_S0272_2712_02_00015_X crossref_primary_10_1371_journal_pone_0000730 crossref_primary_10_1128_JVI_75_2_979_987_2001 crossref_primary_10_1089_aid_2020_0195 crossref_primary_10_1186_s12977_016_0279_4 crossref_primary_10_1186_1742_4690_8_73 crossref_primary_10_3390_pathogens10010016 crossref_primary_10_1007_s13365_014_0304_0 crossref_primary_10_1097_COH_0000000000000835 crossref_primary_10_1016_j_antiviral_2018_02_017 crossref_primary_10_1155_2012_123605 crossref_primary_10_1128_JVI_79_21_13250_13261_2005 crossref_primary_10_1089_08892220252779656 crossref_primary_10_1128_JVI_76_21_11091_11103_2002 crossref_primary_10_1016_j_virusres_2018_04_008 crossref_primary_10_1016_j_virol_2015_09_007 crossref_primary_10_1093_jac_dkt348 crossref_primary_10_1186_1742_4690_4_15 crossref_primary_10_1186_s12977_021_00572_2 crossref_primary_10_3390_v12080868 crossref_primary_10_1091_mbc_e07_12_1282 crossref_primary_10_1089_aid_2011_0388 crossref_primary_10_1128_JVI_00392_07 crossref_primary_10_1128_JVI_79_14_9180_9191_2005 crossref_primary_10_1186_1742_4690_3_53 crossref_primary_10_1128_JVI_02319_06 crossref_primary_10_1016_j_ebiom_2020_102682 crossref_primary_10_1038_srep17808 crossref_primary_10_1128_JVI_77_5_3020_3030_2003 crossref_primary_10_1089_aid_2013_0026 crossref_primary_10_1371_journal_pone_0000271 crossref_primary_10_1186_1743_422X_7_74 crossref_primary_10_1134_S0006297909020011 crossref_primary_10_1016_j_virol_2008_07_035 crossref_primary_10_1038_sj_gt_3302786 crossref_primary_10_1073_pnas_1304288110 crossref_primary_10_1016_j_coviro_2013_07_006 crossref_primary_10_1128_JVI_00254_11 crossref_primary_10_1186_1756_3305_7_204 crossref_primary_10_1016_j_bmcl_2009_10_078 crossref_primary_10_1097_01_aids_0000216365_38572_2f crossref_primary_10_1371_journal_pone_0195661 crossref_primary_10_1186_1742_4690_2_9 crossref_primary_10_1016_j_virusres_2006_03_007 crossref_primary_10_1093_infdis_jiac100 crossref_primary_10_1128_JVI_74_18_8767_8770_2000 crossref_primary_10_1038_ncomms15006 crossref_primary_10_1089_aid_2005_21_965 crossref_primary_10_1016_j_virol_2019_11_010 crossref_primary_10_1186_1742_4690_3_14 crossref_primary_10_1089_088922203322493094 crossref_primary_10_1016_S1074_7613_01_00158_3 crossref_primary_10_3390_v8100281 crossref_primary_10_1038_sj_onc_1206392 crossref_primary_10_1038_srep12442 crossref_primary_10_1186_1742_4690_10_100 crossref_primary_10_1089_aid_2022_0175 crossref_primary_10_2217_fvl_15_22 crossref_primary_10_1016_j_antiviral_2010_08_007 crossref_primary_10_1016_j_bbrc_2016_05_065 crossref_primary_10_1128_JVI_00650_11 crossref_primary_10_1007_s10577_010_9133_z crossref_primary_10_1016_j_antiviral_2012_03_010 crossref_primary_10_1093_nar_gkp644 crossref_primary_10_1093_nar_gkn109 crossref_primary_10_1080_13550280590922838 crossref_primary_10_1128_JVI_03478_12 crossref_primary_10_3390_pathogens14010015 crossref_primary_10_1016_j_clp_2010_08_003 crossref_primary_10_1089_aid_2011_0228 crossref_primary_10_1074_jbc_M409896200 crossref_primary_10_1186_1742_4690_1_3 crossref_primary_10_1007_s11262_015_1267_9 crossref_primary_10_1186_1742_4690_6_81 crossref_primary_10_1097_QAD_0b013e3280117f7f crossref_primary_10_1261_rna_5161304 crossref_primary_10_1016_j_jmb_2009_08_023 crossref_primary_10_1309_LMB66MQ8JIXDCCQJ crossref_primary_10_1089_aid_2005_21_949 crossref_primary_10_1097_00002030_200104130_00003 crossref_primary_10_1523_JNEUROSCI_1208_16_2016 crossref_primary_10_1128_JVI_01594_12 crossref_primary_10_1128_JVI_78_13_6883_6890_2004 crossref_primary_10_1128_JVI_02682_13 crossref_primary_10_1371_journal_ppat_1002620 crossref_primary_10_1128_JVI_01830_16 crossref_primary_10_1016_j_micinf_2006_05_005 crossref_primary_10_1073_pnas_111031498 crossref_primary_10_1074_jbc_M210470200 crossref_primary_10_1093_nar_gkm596 crossref_primary_10_1086_499952 crossref_primary_10_1016_j_gene_2003_10_018 crossref_primary_10_1371_journal_pone_0144229 crossref_primary_10_1016_j_tig_2024_05_004 crossref_primary_10_1016_j_virol_2007_08_024 crossref_primary_10_1016_S0042_6822_03_00453_7 crossref_primary_10_1016_j_str_2008_01_020 crossref_primary_10_1189_jlb_0607405 crossref_primary_10_1016_j_bbrc_2007_12_104 crossref_primary_10_1128_JVI_02665_08 crossref_primary_10_1128_JVI_80_6_2873_2883_2006 crossref_primary_10_1006_viro_2002_1439 crossref_primary_10_1128_JVI_78_7_3675_3683_2004 crossref_primary_10_1074_jbc_M511773200 crossref_primary_10_4049_jimmunol_176_2_999 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/JVI.74.8.3740-3751.2000 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| ExternalDocumentID | 10729149 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAYJJ ABPPZ ACGFO ACNCT ADBBV AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A NPM O9- OHT OK1 P2P PKN RHF RHI RNS RPM RSF TR2 UCJ UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM 7X8 AAFWJ AAGFI |
| ID | FETCH-LOGICAL-c486t-b4c46e7ac06b134e8e56b92c55e67017a4deab9b3bb47052632cf4248702ba672 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 263 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000086048000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-538X |
| IngestDate | Thu Sep 04 19:54:05 EDT 2025 Wed Feb 19 02:36:30 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-b4c46e7ac06b134e8e56b92c55e67017a4deab9b3bb47052632cf4248702ba672 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 10729149 |
| PQID | 70976372 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_70976372 pubmed_primary_10729149 |
| PublicationCentury | 2000 |
| PublicationDate | 2000-04-01 |
| PublicationDateYYYYMMDD | 2000-04-01 |
| PublicationDate_xml | – month: 04 year: 2000 text: 2000-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of virology |
| PublicationTitleAlternate | J Virol |
| PublicationYear | 2000 |
| SSID | ssj0014464 |
| Score | 2.1389644 |
| Snippet | The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3740 |
| SubjectTerms | Base Sequence Cell Line Gene Expression Regulation, Viral Gene Products, tat - metabolism HIV Infections - virology HIV Long Terminal Repeat - genetics HIV-1 - classification HIV-1 - genetics HIV-1 - metabolism HIV-1 - physiology Humans Lymphocyte Activation Molecular Sequence Data Nucleic Acid Conformation Phylogeny Promoter Regions, Genetic T-Lymphocytes - virology tat Gene Products, Human Immunodeficiency Virus TATA Box Transcription, Genetic Tumor Necrosis Factor-alpha - pharmacology Virus Replication |
| Title | Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/10729149 https://www.proquest.com/docview/70976372 |
| Volume | 74 |
| WOSCitedRecordID | wos000086048000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qVfDi-1Gfc_Camm422Q0IUsTqQUsPKrmF3c1GKiWpTVvwR_ifnc0DT-LBSwiBhbA7881jZ-Yj5FIYpVTPY45kJnWY1NQJhRaOm2K85fqJ9su-tddHPhyKKApHLXLd9MLYssoGE0ugTnJtc-RX3EXD6XF6M_1wLGeUvVutCTRWSNtDR8bKNI9-7hAw0GHNrHBU66iu7kJAvnpfjrucdUXX4wxhiPtlpOj-7mWW1maw9b__3CabtZcJ_UosdkjLZLtkveKd_NwjXwO0ZlUSEBqGFMQLqIu2AJ1CmOTZG9SlMhOYmSmCNsytZWtwBj9Py2I-9CAhT6Gk-4OxbTjJE2MnU9i2TliOZ4sCbKoXelAslH0roA81QxDc75OXwd3z7YNT8zI4molg7iimWWC41G5gj9kI4wcqpNr3TcBRwyVLjFSh8pRi3M6T8ahOGcXQyKVKBpwekNUsz8wRAen56GFKHhqaMk_7SsqEcqETzlLaC0SHXDS7HKPc28sMmZl8UcTNPnfIYXVQ8bQazxH37DB0DPyO_1x7QjaqznpbiHNK2ilqvDkja3o5Hxez81Kc8DkcPX0DDDjXgw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+differences+between+the+long+terminal+repeat+transcriptional+promoters+of+human+immunodeficiency+virus+type+1+subtypes+A+through+G&rft.jtitle=Journal+of+virology&rft.au=Jeeninga%2C+R+E&rft.au=Hoogenkamp%2C+M&rft.au=Armand-Ugon%2C+M&rft.au=de+Baar%2C+M&rft.date=2000-04-01&rft.issn=0022-538X&rft.volume=74&rft.issue=8&rft.spage=3740&rft_id=info:doi/10.1128%2Fjvi.74.8.3740-3751.2000&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |