Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G

The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is cons...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of virology Ročník 74; číslo 8; s. 3740
Hlavní autori: Jeeninga, R E, Hoogenkamp, M, Armand-Ugon, M, de Baar, M, Verhoef, K, Berkhout, B
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.04.2000
Predmet:
ISSN:0022-538X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes.
AbstractList The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes.
The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes.The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at least two subtypes. Although no biological differences have been described so far for viruses that belong to different subtypes, there is considerable sequence variation between the different HIV-1 subtypes. The HIV-1 long terminal repeat (LTR) encodes the transcriptional promoter, and the LTR of subtypes A through G was cloned and analyzed to test if there are subtype-specific differences in gene expression. Sequence analysis demonstrated a unique LTR enhancer-promoter configuration for each subtype. Transcription assays with luciferase reporter constructs showed that all subtype LTRs are functional promoters with a low basal transcriptional activity and a high activity in the presence of the viral Tat transcriptional activator protein. All subtype LTRs responded equally well to the Tat trans activator protein of subtype B. This result suggests that there are no major differences in the mechanism of Tat-mediated trans activation among the subtypes. Nevertheless, subtype-specific differences in the activity of the basal LTR promoter were measured in different cell types. Furthermore, we measured a differential response to tumor necrosis factor alpha treatment, and the induction level correlated with the number of NF-kappaB sites in the respective LTRs, which varies from one (subtype E) to three (subtype C). In general, subtype E was found to encode the most potent LTR, and we therefore inserted the core promoter elements of subtype E in the infectious molecular clone of the LAI isolate (subtype B). This recombinant LAI-E virus exhibited a profound replication advantage compared with the original LAI virus in the SupT1 T-cell line, indicating that subtle differences in LTR promoter activity can have a significant impact on viral replication kinetics. These results suggest that there may be considerable biological differences among the HIV-1 subtypes.
Author Armand-Ugon, M
de Baar, M
Berkhout, B
Hoogenkamp, M
Jeeninga, R E
Verhoef, K
Author_xml – sequence: 1
  givenname: R E
  surname: Jeeninga
  fullname: Jeeninga, R E
  organization: Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
– sequence: 2
  givenname: M
  surname: Hoogenkamp
  fullname: Hoogenkamp, M
– sequence: 3
  givenname: M
  surname: Armand-Ugon
  fullname: Armand-Ugon, M
– sequence: 4
  givenname: M
  surname: de Baar
  fullname: de Baar, M
– sequence: 5
  givenname: K
  surname: Verhoef
  fullname: Verhoef, K
– sequence: 6
  givenname: B
  surname: Berkhout
  fullname: Berkhout, B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10729149$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtOwzAQRb0oAgr8AnjFLsF2HDtZIkRLERIbQOwq251Qo8QOfoD6EfwzQZTVncWZM6M7RzPnHSB0QUlJKWuu7l9WpeRlU1aSk6KSNS0ZIWSGjglhrKir5vUIzWN8J4RyLvghOqJEspby9hh9L7IzyXqneryxXQcBnIGINaQvAIfTFnDv3RtOEAb7SwUYQSWcgnLRBDvul8fgBz9BEfsOb_OgHLbDkJ3fQGeNnaw7_GlDjjjtRsAUx6x_p4ivpyPB57ctXp6ig071Ec72eYKeF7dPN3fFw-NydXP9UBjeiFRobrgAqQwRmlYcGqiFbpmpaxCSUKn4BpRudaU1l6RmomKm44w3kjCthGQn6PLPO339kSGm9WCjgb5XDnyOa0laKSrJJvB8D2Y9wGY9BjuosFv_F8h-AL2Gd3c
CitedBy_id crossref_primary_10_1006_viro_2001_1059
crossref_primary_10_1038_s41598_020_70170_3
crossref_primary_10_1089_aid_2009_0152
crossref_primary_10_1128_AAC_02991_14
crossref_primary_10_1006_viro_2001_0888
crossref_primary_10_1089_088922202760265614
crossref_primary_10_1111_j_1348_0421_2002_tb02766_x
crossref_primary_10_1074_jbc_M109_004416
crossref_primary_10_1111_j_1365_2567_2010_03375_x
crossref_primary_10_1128_JCM_42_6_2742_2751_2004
crossref_primary_10_1128_JVI_76_6_3084_3088_2002
crossref_primary_10_1021_jo035290r
crossref_primary_10_1097_QAD_0b013e3283217f9f
crossref_primary_10_1097_00002030_200307250_00011
crossref_primary_10_1016_j_jmb_2008_06_041
crossref_primary_10_1038_s41598_020_70083_1
crossref_primary_10_1089_aid_2007_0152
crossref_primary_10_1371_journal_pone_0128618
crossref_primary_10_3390_microorganisms12081707
crossref_primary_10_1016_j_virol_2005_11_047
crossref_primary_10_1016_j_virol_2011_08_013
crossref_primary_10_1089_aid_2006_0305
crossref_primary_10_1074_jbc_M112_397158
crossref_primary_10_1016_j_virol_2012_06_007
crossref_primary_10_1038_s42003_020_1103_1
crossref_primary_10_1006_viro_2001_1397
crossref_primary_10_1038_mt_2009_176
crossref_primary_10_1016_j_cytogfr_2012_05_003
crossref_primary_10_1089_aid_2005_21_901
crossref_primary_10_1186_1743_422X_10_358
crossref_primary_10_1128_JVI_79_7_4396_4406_2005
crossref_primary_10_1002_ana_21292
crossref_primary_10_1172_JCI200522873
crossref_primary_10_1111_j_1600_0463_2008_00024_x
crossref_primary_10_1016_j_omtm_2020_10_018
crossref_primary_10_1006_viro_2000_0466
crossref_primary_10_1128_AAC_00820_08
crossref_primary_10_1074_jbc_M301939200
crossref_primary_10_1021_bi0270034
crossref_primary_10_1016_j_antiviral_2006_06_008
crossref_primary_10_3390_biology1030668
crossref_primary_10_1371_journal_pone_0030574
crossref_primary_10_3390_v11121104
crossref_primary_10_1039_D4SC01755B
crossref_primary_10_1128_JVI_00571_15
crossref_primary_10_1371_journal_pone_0301809
crossref_primary_10_1128_JVI_01404_08
crossref_primary_10_1038_srep16777
crossref_primary_10_1189_jlb_0403180
crossref_primary_10_1091_mbc_e08_07_0670
crossref_primary_10_1186_1742_4690_10_93
crossref_primary_10_1099_vir_0_059642_0
crossref_primary_10_1128_JVI_01354_07
crossref_primary_10_1155_2012_508967
crossref_primary_10_1128_JVI_00308_16
crossref_primary_10_1128_JVI_75_11_4964_4972_2001
crossref_primary_10_1016_j_virusres_2021_198370
crossref_primary_10_1186_1742_4690_5_37
crossref_primary_10_1371_journal_ppat_1011194
crossref_primary_10_1128_JVI_00558_06
crossref_primary_10_2478_jvetres_2022_0064
crossref_primary_10_1038_mt_2008_268
crossref_primary_10_3390_v8020047
crossref_primary_10_1371_journal_pone_0092145
crossref_primary_10_1016_j_ejca_2005_08_011
crossref_primary_10_1089_aid_2006_0184
crossref_primary_10_1186_s12985_016_0667_3
crossref_primary_10_1016_j_biopha_2010_09_007
crossref_primary_10_1172_JCI11918
crossref_primary_10_1016_j_virusres_2006_10_010
crossref_primary_10_1186_1742_4690_4_59
crossref_primary_10_1186_s12985_018_1062_z
crossref_primary_10_1128_JVI_02547_05
crossref_primary_10_1086_339547
crossref_primary_10_1023_A_1011171027134
crossref_primary_10_1093_nar_gkw432
crossref_primary_10_1016_j_omtn_2020_07_016
crossref_primary_10_1128_JVI_78_6_2841_2852_2004
crossref_primary_10_1089_aid_2020_0055
crossref_primary_10_1016_j_jmb_2024_168690
crossref_primary_10_1093_nar_gkz117
crossref_primary_10_1016_j_virol_2017_09_024
crossref_primary_10_1097_00042560_200206010_00013
crossref_primary_10_3390_v15020302
crossref_primary_10_1097_00002030_200207260_00007
crossref_primary_10_1089_oli_2007_0095
crossref_primary_10_1089_0889222041524544
crossref_primary_10_1165_rcmb_2011_0186TR
crossref_primary_10_1128_JVI_77_2_1021_1038_2003
crossref_primary_10_1371_journal_pone_0017865
crossref_primary_10_3390_v9100309
crossref_primary_10_1074_jbc_M116_731836
crossref_primary_10_1128_JVI_78_24_14066_14069_2004
crossref_primary_10_1016_j_virol_2011_07_002
crossref_primary_10_1128_JVI_02051_08
crossref_primary_10_1128_JVI_00253_17
crossref_primary_10_1016_S0272_2712_02_00015_X
crossref_primary_10_1371_journal_pone_0000730
crossref_primary_10_1128_JVI_75_2_979_987_2001
crossref_primary_10_1089_aid_2020_0195
crossref_primary_10_1186_s12977_016_0279_4
crossref_primary_10_1186_1742_4690_8_73
crossref_primary_10_3390_pathogens10010016
crossref_primary_10_1007_s13365_014_0304_0
crossref_primary_10_1097_COH_0000000000000835
crossref_primary_10_1016_j_antiviral_2018_02_017
crossref_primary_10_1155_2012_123605
crossref_primary_10_1128_JVI_79_21_13250_13261_2005
crossref_primary_10_1089_08892220252779656
crossref_primary_10_1128_JVI_76_21_11091_11103_2002
crossref_primary_10_1016_j_virusres_2018_04_008
crossref_primary_10_1016_j_virol_2015_09_007
crossref_primary_10_1093_jac_dkt348
crossref_primary_10_1186_1742_4690_4_15
crossref_primary_10_1186_s12977_021_00572_2
crossref_primary_10_3390_v12080868
crossref_primary_10_1091_mbc_e07_12_1282
crossref_primary_10_1089_aid_2011_0388
crossref_primary_10_1128_JVI_00392_07
crossref_primary_10_1128_JVI_79_14_9180_9191_2005
crossref_primary_10_1186_1742_4690_3_53
crossref_primary_10_1128_JVI_02319_06
crossref_primary_10_1016_j_ebiom_2020_102682
crossref_primary_10_1038_srep17808
crossref_primary_10_1128_JVI_77_5_3020_3030_2003
crossref_primary_10_1089_aid_2013_0026
crossref_primary_10_1371_journal_pone_0000271
crossref_primary_10_1186_1743_422X_7_74
crossref_primary_10_1134_S0006297909020011
crossref_primary_10_1016_j_virol_2008_07_035
crossref_primary_10_1038_sj_gt_3302786
crossref_primary_10_1073_pnas_1304288110
crossref_primary_10_1016_j_coviro_2013_07_006
crossref_primary_10_1128_JVI_00254_11
crossref_primary_10_1186_1756_3305_7_204
crossref_primary_10_1016_j_bmcl_2009_10_078
crossref_primary_10_1097_01_aids_0000216365_38572_2f
crossref_primary_10_1371_journal_pone_0195661
crossref_primary_10_1186_1742_4690_2_9
crossref_primary_10_1016_j_virusres_2006_03_007
crossref_primary_10_1093_infdis_jiac100
crossref_primary_10_1128_JVI_74_18_8767_8770_2000
crossref_primary_10_1038_ncomms15006
crossref_primary_10_1089_aid_2005_21_965
crossref_primary_10_1016_j_virol_2019_11_010
crossref_primary_10_1186_1742_4690_3_14
crossref_primary_10_1089_088922203322493094
crossref_primary_10_1016_S1074_7613_01_00158_3
crossref_primary_10_3390_v8100281
crossref_primary_10_1038_sj_onc_1206392
crossref_primary_10_1038_srep12442
crossref_primary_10_1186_1742_4690_10_100
crossref_primary_10_1089_aid_2022_0175
crossref_primary_10_2217_fvl_15_22
crossref_primary_10_1016_j_antiviral_2010_08_007
crossref_primary_10_1016_j_bbrc_2016_05_065
crossref_primary_10_1128_JVI_00650_11
crossref_primary_10_1007_s10577_010_9133_z
crossref_primary_10_1016_j_antiviral_2012_03_010
crossref_primary_10_1093_nar_gkp644
crossref_primary_10_1093_nar_gkn109
crossref_primary_10_1080_13550280590922838
crossref_primary_10_1128_JVI_03478_12
crossref_primary_10_3390_pathogens14010015
crossref_primary_10_1016_j_clp_2010_08_003
crossref_primary_10_1089_aid_2011_0228
crossref_primary_10_1074_jbc_M409896200
crossref_primary_10_1186_1742_4690_1_3
crossref_primary_10_1007_s11262_015_1267_9
crossref_primary_10_1186_1742_4690_6_81
crossref_primary_10_1097_QAD_0b013e3280117f7f
crossref_primary_10_1261_rna_5161304
crossref_primary_10_1016_j_jmb_2009_08_023
crossref_primary_10_1309_LMB66MQ8JIXDCCQJ
crossref_primary_10_1089_aid_2005_21_949
crossref_primary_10_1097_00002030_200104130_00003
crossref_primary_10_1523_JNEUROSCI_1208_16_2016
crossref_primary_10_1128_JVI_01594_12
crossref_primary_10_1128_JVI_78_13_6883_6890_2004
crossref_primary_10_1128_JVI_02682_13
crossref_primary_10_1371_journal_ppat_1002620
crossref_primary_10_1128_JVI_01830_16
crossref_primary_10_1016_j_micinf_2006_05_005
crossref_primary_10_1073_pnas_111031498
crossref_primary_10_1074_jbc_M210470200
crossref_primary_10_1093_nar_gkm596
crossref_primary_10_1086_499952
crossref_primary_10_1016_j_gene_2003_10_018
crossref_primary_10_1371_journal_pone_0144229
crossref_primary_10_1016_j_tig_2024_05_004
crossref_primary_10_1016_j_virol_2007_08_024
crossref_primary_10_1016_S0042_6822_03_00453_7
crossref_primary_10_1016_j_str_2008_01_020
crossref_primary_10_1189_jlb_0607405
crossref_primary_10_1016_j_bbrc_2007_12_104
crossref_primary_10_1128_JVI_02665_08
crossref_primary_10_1128_JVI_80_6_2873_2883_2006
crossref_primary_10_1006_viro_2002_1439
crossref_primary_10_1128_JVI_78_7_3675_3683_2004
crossref_primary_10_1074_jbc_M511773200
crossref_primary_10_4049_jimmunol_176_2_999
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/JVI.74.8.3740-3751.2000
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 10729149
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAYJJ
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
NPM
O9-
OHT
OK1
P2P
PKN
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
7X8
AAFWJ
AAGFI
ID FETCH-LOGICAL-c486t-b4c46e7ac06b134e8e56b92c55e67017a4deab9b3bb47052632cf4248702ba672
IEDL.DBID 7X8
ISICitedReferencesCount 263
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000086048000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-538X
IngestDate Thu Sep 04 19:54:05 EDT 2025
Wed Feb 19 02:36:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-b4c46e7ac06b134e8e56b92c55e67017a4deab9b3bb47052632cf4248702ba672
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 10729149
PQID 70976372
PQPubID 23479
ParticipantIDs proquest_miscellaneous_70976372
pubmed_primary_10729149
PublicationCentury 2000
PublicationDate 2000-04-01
PublicationDateYYYYMMDD 2000-04-01
PublicationDate_xml – month: 04
  year: 2000
  text: 2000-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2000
SSID ssj0014464
Score 2.1389644
Snippet The current human immunodeficiency virus type 1 (HIV-1) shows an increasing number of distinct viral subtypes, as well as viruses that are recombinants of at...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3740
SubjectTerms Base Sequence
Cell Line
Gene Expression Regulation, Viral
Gene Products, tat - metabolism
HIV Infections - virology
HIV Long Terminal Repeat - genetics
HIV-1 - classification
HIV-1 - genetics
HIV-1 - metabolism
HIV-1 - physiology
Humans
Lymphocyte Activation
Molecular Sequence Data
Nucleic Acid Conformation
Phylogeny
Promoter Regions, Genetic
T-Lymphocytes - virology
tat Gene Products, Human Immunodeficiency Virus
TATA Box
Transcription, Genetic
Tumor Necrosis Factor-alpha - pharmacology
Virus Replication
Title Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G
URI https://www.ncbi.nlm.nih.gov/pubmed/10729149
https://www.proquest.com/docview/70976372
Volume 74
WOSCitedRecordID wos000086048000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qVfDi-1Gfc_Camm422Q0IUsTqQUsPKrmF3c1GKiWpTVvwR_ifnc0DT-LBSwiBhbA7881jZ-Yj5FIYpVTPY45kJnWY1NQJhRaOm2K85fqJ9su-tddHPhyKKApHLXLd9MLYssoGE0ugTnJtc-RX3EXD6XF6M_1wLGeUvVutCTRWSNtDR8bKNI9-7hAw0GHNrHBU66iu7kJAvnpfjrucdUXX4wxhiPtlpOj-7mWW1maw9b__3CabtZcJ_UosdkjLZLtkveKd_NwjXwO0ZlUSEBqGFMQLqIu2AJ1CmOTZG9SlMhOYmSmCNsytZWtwBj9Py2I-9CAhT6Gk-4OxbTjJE2MnU9i2TliOZ4sCbKoXelAslH0roA81QxDc75OXwd3z7YNT8zI4molg7iimWWC41G5gj9kI4wcqpNr3TcBRwyVLjFSh8pRi3M6T8ahOGcXQyKVKBpwekNUsz8wRAen56GFKHhqaMk_7SsqEcqETzlLaC0SHXDS7HKPc28sMmZl8UcTNPnfIYXVQ8bQazxH37DB0DPyO_1x7QjaqznpbiHNK2ilqvDkja3o5Hxez81Kc8DkcPX0DDDjXgw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+differences+between+the+long+terminal+repeat+transcriptional+promoters+of+human+immunodeficiency+virus+type+1+subtypes+A+through+G&rft.jtitle=Journal+of+virology&rft.au=Jeeninga%2C+R+E&rft.au=Hoogenkamp%2C+M&rft.au=Armand-Ugon%2C+M&rft.au=de+Baar%2C+M&rft.date=2000-04-01&rft.issn=0022-538X&rft.volume=74&rft.issue=8&rft.spage=3740&rft_id=info:doi/10.1128%2Fjvi.74.8.3740-3751.2000&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon