Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy
Brain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon known to occur with ERPs such as the P300 response. The objective of this work was to investigate the role that latency jitter plays in BCI...
Saved in:
| Published in: | Journal of neural engineering Vol. 10; no. 1; p. 016006 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.02.2013
|
| Subjects: | |
| ISSN: | 1741-2552, 1741-2552 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Brain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon known to occur with ERPs such as the P300 response. The objective of this work was to investigate the role that latency jitter plays in BCI classification.
We developed a novel method, classifier-based latency estimation (CBLE), based on a generalization of Woody filtering. The technique works by presenting the time-shifted data to the classifier, and using the time shift that corresponds to the maximal classifier score.
The variance of CBLE estimates correlates significantly (p < 10(-42)) with BCI accuracy in the Farwell-Donchin BCI paradigm. Additionally, CBLE predicts same-day accuracy, even from small datasets or datasets that have already been used for classifier training, better than the accuracy on the small dataset (p < 0.05). The technique should be relatively classifier-independent, and the results were confirmed on two linear classifiers.
The results suggest that latency jitter may be an important cause of poor BCI performance, and methods that correct for latency jitter may improve that performance. CBLE can also be used to decrease the amount of data needed for accuracy estimation, allowing research on effects with shorter timescales. |
|---|---|
| AbstractList | Brain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon known to occur with ERPs such as the P300 response. The objective of this work was to investigate the role that latency jitter plays in BCI classification.OBJECTIVEBrain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon known to occur with ERPs such as the P300 response. The objective of this work was to investigate the role that latency jitter plays in BCI classification.We developed a novel method, classifier-based latency estimation (CBLE), based on a generalization of Woody filtering. The technique works by presenting the time-shifted data to the classifier, and using the time shift that corresponds to the maximal classifier score.APPROACHWe developed a novel method, classifier-based latency estimation (CBLE), based on a generalization of Woody filtering. The technique works by presenting the time-shifted data to the classifier, and using the time shift that corresponds to the maximal classifier score.The variance of CBLE estimates correlates significantly (p < 10(-42)) with BCI accuracy in the Farwell-Donchin BCI paradigm. Additionally, CBLE predicts same-day accuracy, even from small datasets or datasets that have already been used for classifier training, better than the accuracy on the small dataset (p < 0.05). The technique should be relatively classifier-independent, and the results were confirmed on two linear classifiers.MAIN RESULTSThe variance of CBLE estimates correlates significantly (p < 10(-42)) with BCI accuracy in the Farwell-Donchin BCI paradigm. Additionally, CBLE predicts same-day accuracy, even from small datasets or datasets that have already been used for classifier training, better than the accuracy on the small dataset (p < 0.05). The technique should be relatively classifier-independent, and the results were confirmed on two linear classifiers.The results suggest that latency jitter may be an important cause of poor BCI performance, and methods that correct for latency jitter may improve that performance. CBLE can also be used to decrease the amount of data needed for accuracy estimation, allowing research on effects with shorter timescales.SIGNIFICANCEThe results suggest that latency jitter may be an important cause of poor BCI performance, and methods that correct for latency jitter may improve that performance. CBLE can also be used to decrease the amount of data needed for accuracy estimation, allowing research on effects with shorter timescales. Brain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon known to occur with ERPs such as the P300 response. The objective of this work was to investigate the role that latency jitter plays in BCI classification. We developed a novel method, classifier-based latency estimation (CBLE), based on a generalization of Woody filtering. The technique works by presenting the time-shifted data to the classifier, and using the time shift that corresponds to the maximal classifier score. The variance of CBLE estimates correlates significantly (p < 10(-42)) with BCI accuracy in the Farwell-Donchin BCI paradigm. Additionally, CBLE predicts same-day accuracy, even from small datasets or datasets that have already been used for classifier training, better than the accuracy on the small dataset (p < 0.05). The technique should be relatively classifier-independent, and the results were confirmed on two linear classifiers. The results suggest that latency jitter may be an important cause of poor BCI performance, and methods that correct for latency jitter may improve that performance. CBLE can also be used to decrease the amount of data needed for accuracy estimation, allowing research on effects with shorter timescales. |
| Author | Warschausky, Seth Huggins, Jane E Thompson, David E |
| Author_xml | – sequence: 1 givenname: David E surname: Thompson fullname: Thompson, David E email: dthomp@umich.edu organization: Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. dthomp@umich.edu – sequence: 2 givenname: Seth surname: Warschausky fullname: Warschausky, Seth – sequence: 3 givenname: Jane E surname: Huggins fullname: Huggins, Jane E |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23234797$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUMtqwzAQFCWlebSf0KJjL270sCW7t9b0EQj00pzNSlqBiyOnlt3iv4-hCRQWdpgZhp1dklloAxJyy9kDZ3m-5jrlicgUW_Np1owrxtQFWZz4TMz-4TlZxvjFmOS6YFdkLqSQqS70guzKBmKsfY1dYiCiow30GOxIMfb1Hvq6DY8UaGh_sKG_MNK-PUtIITh66NDVtqfP5YaCtUMHdrwmlx6aiDenvSK715fP8j3ZfrxtyqdtYtNc9YkRmDMupHJOm4JLAOs0ypR5o4CDLIRzrii8Ql2ozEtvMiaQe2Mty_LciRW5_8s9dO33MJ1V7etosWkgYDvEik-F8yxLhZ6sdyfrYPboqkM3VejG6vwKcQR7J2NJ |
| CitedBy_id | crossref_primary_10_1088_1741_2560_11_3_035008 crossref_primary_10_3390_brainsci10100734 crossref_primary_10_1109_JBHI_2018_2883458 crossref_primary_10_1080_2326263X_2020_1734401 crossref_primary_10_1088_1741_2552_ad5ec0 crossref_primary_10_1080_01621459_2025_2498088 crossref_primary_10_1080_2326263X_2017_1338010 crossref_primary_10_1080_2326263X_2021_2014678 crossref_primary_10_3389_fnhum_2022_930433 crossref_primary_10_3390_signals5010002 crossref_primary_10_1016_j_compbiomed_2023_107658 crossref_primary_10_1109_ACCESS_2020_3000187 crossref_primary_10_1016_j_neuroimage_2019_04_049 crossref_primary_10_1088_1741_2552_aa8416 crossref_primary_10_1080_2326263X_2016_1203629 crossref_primary_10_1088_1741_2560_13_6_066007 crossref_primary_10_1016_j_neuroimage_2016_01_019 crossref_primary_10_3389_fnhum_2018_00165 crossref_primary_10_1016_j_neucom_2014_07_043 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/1741-2560/10/1/016006 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 23234797 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R21 HD054697 – fundername: NICHD NIH HHS grantid: R21HD054697 |
| GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACARI ACGFS ACHIP ADEQX AEFHF AENEX AERVB AFYNE AGQPQ AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ARNYC ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CGR CJUJL CRLBU CS3 CUY CVF DU5 EBS ECM EDWGO EIF EJD EMSAF EPQRW EQZZN F5P FEDTE HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP 7X8 AEINN |
| ID | FETCH-LOGICAL-c486t-b2e801236dd7b913aacd7e340fb6a1a392ddd99f6e7965f3fb502e1fbcc0588d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316245500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1741-2552 |
| IngestDate | Thu Oct 02 06:34:18 EDT 2025 Mon Jul 21 05:38:39 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-b2e801236dd7b913aacd7e340fb6a1a392ddd99f6e7965f3fb502e1fbcc0588d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3650625 |
| PMID | 23234797 |
| PQID | 1317855427 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1317855427 pubmed_primary_23234797 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02-01 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAlternate | J Neural Eng |
| PublicationYear | 2013 |
| References | 19041343 - J Neurosci Methods. 2009 Mar 15;177(2):488-96 4695775 - Exp Brain Res. 1973 Mar 19;16(5):455-65 10731765 - Psychophysiology. 2000 Mar;37(2):127-52 20405196 - Brain Topogr. 2010 Jun;23(2):180-5 1464675 - J Clin Neurophysiol. 1992 Oct;9(4):456-79 19545601 - Neurosci Lett. 2009 Oct 2;462(1):94-8 17573239 - Clin Neurophysiol. 2007 Oct;118(10):2128-48 22143614 - J Neurol. 2012 Jun;259(6):1191-8 20509913 - Behav Brain Funct. 2010;6:28 20214929 - Neurosci Res. 2010 Jun;67(2):172-80 22030141 - Clin Neurophysiol. 2012 Jun;123(6):1123-30 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 20923728 - IEEE Trans Biomed Eng. 2011 Jan;58(1):132-43 21439324 - J Neurosci Methods. 2011 May 15;198(1):114-24 17601190 - IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):207-16 18339453 - Neurobiol Aging. 2009 Dec;30(12):2065-79 3809365 - Psychophysiology. 1986 Sep;23(5):590-7 18179351 - Psychol Methods. 2007 Dec;12(4):399-413 2461285 - Electroencephalogr Clin Neurophysiol. 1988 Dec;70(6):510-23 22208120 - Clin EEG Neurosci. 2011 Oct;42(4):230-5 |
| References_xml | – reference: 19545601 - Neurosci Lett. 2009 Oct 2;462(1):94-8 – reference: 2461285 - Electroencephalogr Clin Neurophysiol. 1988 Dec;70(6):510-23 – reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 – reference: 4695775 - Exp Brain Res. 1973 Mar 19;16(5):455-65 – reference: 20923728 - IEEE Trans Biomed Eng. 2011 Jan;58(1):132-43 – reference: 10731765 - Psychophysiology. 2000 Mar;37(2):127-52 – reference: 17601190 - IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):207-16 – reference: 20509913 - Behav Brain Funct. 2010;6:28 – reference: 21439324 - J Neurosci Methods. 2011 May 15;198(1):114-24 – reference: 20214929 - Neurosci Res. 2010 Jun;67(2):172-80 – reference: 1464675 - J Clin Neurophysiol. 1992 Oct;9(4):456-79 – reference: 19041343 - J Neurosci Methods. 2009 Mar 15;177(2):488-96 – reference: 17573239 - Clin Neurophysiol. 2007 Oct;118(10):2128-48 – reference: 18179351 - Psychol Methods. 2007 Dec;12(4):399-413 – reference: 22030141 - Clin Neurophysiol. 2012 Jun;123(6):1123-30 – reference: 22143614 - J Neurol. 2012 Jun;259(6):1191-8 – reference: 18339453 - Neurobiol Aging. 2009 Dec;30(12):2065-79 – reference: 20405196 - Brain Topogr. 2010 Jun;23(2):180-5 – reference: 22208120 - Clin EEG Neurosci. 2011 Oct;42(4):230-5 – reference: 3809365 - Psychophysiology. 1986 Sep;23(5):590-7 |
| SSID | ssj0031790 |
| Score | 2.1687748 |
| Snippet | Brain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 016006 |
| SubjectTerms | Adolescent Adult Aged Brain - physiology Brain-Computer Interfaces - classification Brain-Computer Interfaces - standards Female Humans Male Middle Aged Predictive Value of Tests Reaction Time - physiology Young Adult |
| Title | Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23234797 https://www.proquest.com/docview/1317855427 |
| Volume | 10 |
| WOSCitedRecordID | wos000316245500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qPHjxNR_zRQTxFpakj7ReZA6HHhw7ONhtfE1SGGg7t27S_94kbfUkCF56SAkN6Zfv--V7_RC6kSIEoOARBgDEj7QiIM25UgYtKBZLyZlyZBNiOIwmk3hUO9yWdVploxOdola5tD7yLvMsj3zgc3E__yCWNcpGV2sKjU3U8gyUsVItJt9RBM92n6oKIhkx0Jk3FTzm0lePhdSojS7r2j5rNPwdZTprM9j77zr30W6NM3GvEowDtKGzQ9TuZeaO_V7iW-wyP51LvY3GjhlzlhoLSaxVU_gNLJQusW3BUdU23mHAWb7Wb_gTSlzkzSuNIVN4vrDxngI_9J8xSLlagCyP0Hjw-Np_IjXdApF-FBYk4TpyHd2UEknMPACphPZ8miYhMDBASikVx2moRRwGqZcmAeWapYmUNIgixY_RVpZn-hRhQXlCPS649qkvUmUmUV_6TJtPgIx4B103mzc14mxjFJDpfLWc_mxfB51Uf2A6r_puTA34s3Wv4uwPs8_RDnfEFTbx5AK1UnOY9SXalutitlxcOTkxz-Ho5QvTYMcK |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifier-based+latency+estimation%3A+a+novel+way+to+estimate+and+predict+BCI+accuracy&rft.jtitle=Journal+of+neural+engineering&rft.au=Thompson%2C+David+E&rft.au=Warschausky%2C+Seth&rft.au=Huggins%2C+Jane+E&rft.date=2013-02-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=10&rft.issue=1&rft.spage=016006&rft_id=info:doi/10.1088%2F1741-2560%2F10%2F1%2F016006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon |