Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm

Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling bearings is a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 25; číslo 8; s. 1111
Hlavní autoři: Jiang, Wei, Shan, Yahui, Xue, Xiaoming, Ma, Jianpeng, Chen, Zhong, Zhang, Nan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 25.07.2023
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling bearings is a challenging subject. In this paper, a novel fault diagnosis method based on composite-scale-variable dispersion entropy (CSvDE) and self-optimization variational mode decomposition (SoVMD) is proposed, systematically combining the nonstationary signal analysis approach and machine learning technology. Firstly, an improved SoVMD algorithm is developed to realize adaptive parameter optimization and to further extract multiscale frequency components from original signals. Subsequently, a CSvDE-based feature learning model is established to generate the multiscale fault feature space (MsFFS) of frequency components for the improvement of fault feature learning ability. Finally, the generated MsFFS can serve as the inputs of the Softmax classifier for fault category identification. Extensive experiments on the vibration datasets collected from rolling bearings of combine harvesters are conducted, and the experimental results demonstrate the more superior and robust fault diagnosis performance of the proposed method compared to other existing approaches.
AbstractList Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling bearings is a challenging subject. In this paper, a novel fault diagnosis method based on composite-scale-variable dispersion entropy (CSvDE) and self-optimization variational mode decomposition (SoVMD) is proposed, systematically combining the nonstationary signal analysis approach and machine learning technology. Firstly, an improved SoVMD algorithm is developed to realize adaptive parameter optimization and to further extract multiscale frequency components from original signals. Subsequently, a CSvDE-based feature learning model is established to generate the multiscale fault feature space (MsFFS) of frequency components for the improvement of fault feature learning ability. Finally, the generated MsFFS can serve as the inputs of the Softmax classifier for fault category identification. Extensive experiments on the vibration datasets collected from rolling bearings of combine harvesters are conducted, and the experimental results demonstrate the more superior and robust fault diagnosis performance of the proposed method compared to other existing approaches.
Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling bearings is a challenging subject. In this paper, a novel fault diagnosis method based on composite-scale-variable dispersion entropy (CSvDE) and self-optimization variational mode decomposition (SoVMD) is proposed, systematically combining the nonstationary signal analysis approach and machine learning technology. Firstly, an improved SoVMD algorithm is developed to realize adaptive parameter optimization and to further extract multiscale frequency components from original signals. Subsequently, a CSvDE-based feature learning model is established to generate the multiscale fault feature space (MsFFS) of frequency components for the improvement of fault feature learning ability. Finally, the generated MsFFS can serve as the inputs of the Softmax classifier for fault category identification. Extensive experiments on the vibration datasets collected from rolling bearings of combine harvesters are conducted, and the experimental results demonstrate the more superior and robust fault diagnosis performance of the proposed method compared to other existing approaches.Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling bearings is a challenging subject. In this paper, a novel fault diagnosis method based on composite-scale-variable dispersion entropy (CSvDE) and self-optimization variational mode decomposition (SoVMD) is proposed, systematically combining the nonstationary signal analysis approach and machine learning technology. Firstly, an improved SoVMD algorithm is developed to realize adaptive parameter optimization and to further extract multiscale frequency components from original signals. Subsequently, a CSvDE-based feature learning model is established to generate the multiscale fault feature space (MsFFS) of frequency components for the improvement of fault feature learning ability. Finally, the generated MsFFS can serve as the inputs of the Softmax classifier for fault category identification. Extensive experiments on the vibration datasets collected from rolling bearings of combine harvesters are conducted, and the experimental results demonstrate the more superior and robust fault diagnosis performance of the proposed method compared to other existing approaches.
Audience Academic
Author Shan, Yahui
Ma, Jianpeng
Chen, Zhong
Xue, Xiaoming
Jiang, Wei
Zhang, Nan
AuthorAffiliation 2 Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
3 Aero Engine Corporation of China, Harbin Bearing Co., Ltd., Harbin 150500, China; mjp930116@163.com
1 Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003, China
AuthorAffiliation_xml – name: 3 Aero Engine Corporation of China, Harbin Bearing Co., Ltd., Harbin 150500, China; mjp930116@163.com
– name: 1 Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003, China
– name: 2 Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
Author_xml – sequence: 1
  givenname: Wei
  surname: Jiang
  fullname: Jiang, Wei
– sequence: 2
  givenname: Yahui
  surname: Shan
  fullname: Shan, Yahui
– sequence: 3
  givenname: Xiaoming
  surname: Xue
  fullname: Xue, Xiaoming
– sequence: 4
  givenname: Jianpeng
  orcidid: 0000-0002-3623-6360
  surname: Ma
  fullname: Ma, Jianpeng
– sequence: 5
  givenname: Zhong
  surname: Chen
  fullname: Chen, Zhong
– sequence: 6
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
BookMark eNplks1u1DAUhSNUJNrCgjewxAYWae3E-fEKTactrVRUiQJb6459nXrkxMHOVCrPxEPizAyIlmRxLd_znTjH9yg7GPyAWfaW0ZOyFPQUi4q2LD0vskNGhch5SenBP-tX2VGMa0qLsmD1YfbrEjZuIucWusFHG4nxgXzxztmhI2cIYa7ekKXvV3ZAcgXhAeOEgZxBRE38MLfGhE6Y3ylwmH9PEKwcJtM4Yog2aS6GKfjxkcCgyR06k9-Ok-3tT5jm7paYV-DIZ68TiWpvOrcXrvPBTvf96-ylARfxzb4eZ98uL74ur_Kb20_Xy8VNrnhbT7nQWguhUxAVNC2gYNCKVJVhpTY1LSuseGmERrFSRtQl13wOrTC0AABaHmfXO1_tYS3HYHsIj9KDldsNHzoJYbLKoSxU2eiqqYDXlFd8BbVCZhrWsLYRjInk9XHnNW5WPWqFKQlwT0yfdgZ7Lzv_IFnyK2sxn-b93iH4H5sUvuxtVOgcDOg3URZt1bS8qnmRpO-eSdd-E1KsOxWldUV5Up3sVF26LmkH49OHVXo19laleTI27S-auuANb-oZON0BKvgYAxqp7LS9sARal44q5-GTf4cvER-eEX9--H_tbx_93ck
CitedBy_id crossref_primary_10_3390_agriculture14010112
crossref_primary_10_3390_s23239441
crossref_primary_10_3390_s25133851
crossref_primary_10_3390_app131910713
crossref_primary_10_3390_agriculture14081286
crossref_primary_10_3390_e26090810
crossref_primary_10_3390_agriculture14122214
Cites_doi 10.3390/s22166281
10.1073/pnas.88.6.2297
10.1088/1361-6501/ac0034
10.1109/ACCESS.2020.2992935
10.3390/pr10040724
10.1016/j.isatra.2022.07.017
10.1016/j.measurement.2022.111360
10.1109/TSP.2013.2288675
10.1109/TIE.2021.3063979
10.1002/rnc.6660
10.1016/j.compeleceng.2021.107070
10.1016/j.isatra.2017.12.021
10.1109/ACCESS.2022.3154777
10.1016/j.measurement.2020.108569
10.1109/LSP.2016.2542881
10.1109/TIM.2020.3044517
10.1109/TIM.2022.3198479
10.1016/j.compind.2019.02.001
10.1016/j.compag.2022.106771
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.engappai.2022.105269
10.1088/1361-6501/aca217
10.3390/e24091265
10.1016/j.measurement.2019.107361
10.1016/j.ymssp.2021.108734
10.1002/cjce.24281
10.1016/j.eswa.2022.116822
10.1016/j.neucom.2020.05.040
10.1016/j.measurement.2020.108333
10.1016/j.isatra.2022.06.047
10.1016/j.measurement.2021.110348
10.1016/j.jsv.2018.08.025
10.1007/s11071-021-06728-1
10.1016/j.ymssp.2013.04.006
10.1016/j.ymssp.2016.04.028
10.3390/e24040511
10.1088/1361-6501/ac29d3
10.3390/e24040524
10.1177/1475921720986945
10.1109/TMECH.2022.3215545
10.3390/e24081139
10.1016/j.neucom.2021.01.001
10.1155/2019/1576817
10.3390/e24070927
10.1109/TIM.2020.2981220
10.1109/ACCESS.2021.3049436
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/e25081111
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_2c37d575a460454ba6ce1f7171879119
PMC10453690
A762474764
10_3390_e25081111
GrantInformation_xml – fundername: Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF)
  grantid: CX(21)3155
– fundername: Natural Science Foundation of Hubei Province of China
  grantid: 2022CFB935
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20201065
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c486t-9ddd99d5085a78ae91a898aecf13df6035e543f9de9bcf9634d408112f02aaa03
IEDL.DBID M7S
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001055842000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Mon Nov 10 04:34:24 EST 2025
Tue Nov 04 02:06:29 EST 2025
Wed Oct 01 13:34:15 EDT 2025
Fri Jul 25 12:10:43 EDT 2025
Tue Nov 04 18:43:13 EST 2025
Tue Nov 18 22:13:48 EST 2025
Sat Nov 29 07:11:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-9ddd99d5085a78ae91a898aecf13df6035e543f9de9bcf9634d408112f02aaa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3623-6360
OpenAccessLink https://www.proquest.com/docview/2857006504?pq-origsite=%requestingapplication%
PQID 2857006504
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_2c37d575a460454ba6ce1f7171879119
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10453690
proquest_miscellaneous_2857845642
proquest_journals_2857006504
gale_infotracacademiconefile_A762474764
crossref_citationtrail_10_3390_e25081111
crossref_primary_10_3390_e25081111
PublicationCentury 2000
PublicationDate 20230725
PublicationDateYYYYMMDD 2023-07-25
PublicationDate_xml – month: 7
  year: 2023
  text: 20230725
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_18) 2022; 32
Zhao (ref_19) 2023; 133
Wang (ref_23) 2022; 69
Zhao (ref_45) 2020; 152
Ma (ref_3) 2022; 169
Dragomiretskiy (ref_14) 2014; 62
Huo (ref_34) 2020; 8
Wang (ref_8) 2021; 32
Wang (ref_26) 2022; 108
Wang (ref_20) 2021; 100
Zhao (ref_21) 2022; 28
Huo (ref_25) 2020; 69
ref_17
ref_15
Li (ref_16) 2022; 198
Wang (ref_5) 2023; 133
Rostaghi (ref_36) 2018; 438
Pincus (ref_27) 1991; 6
Richman (ref_33) 2000; 278
Zhong (ref_13) 2021; 436
Cheng (ref_41) 2020; 409
Jiao (ref_44) 2021; 9
ref_24
Yang (ref_47) 2021; 92
Tian (ref_32) 2019; 114
Maldonado (ref_42) 2022; 198
Liu (ref_9) 2021; 173
Gao (ref_31) 2018; 78
Song (ref_46) 2023; 34
Zhao (ref_28) 2013; 40
ref_2
ref_29
Wang (ref_37) 2021; 20
Liu (ref_11) 2022; 187
Jiang (ref_30) 2019; 2019
Pan (ref_40) 2022; 40
Wang (ref_6) 2023; 33
Rostaghi (ref_35) 2016; 23
Ye (ref_12) 2021; 70
Zhao (ref_22) 2019; 107
Shao (ref_38) 2022; 71
Zhao (ref_39) 2021; 168
ref_4
ref_7
Qiu (ref_1) 2022; 194
Liang (ref_10) 2022; 115
Lv (ref_43) 2022; 10
References_xml – ident: ref_15
  doi: 10.3390/s22166281
– volume: 6
  start-page: 2297
  year: 1991
  ident: ref_27
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.88.6.2297
– volume: 32
  start-page: 104007
  year: 2022
  ident: ref_18
  article-title: Bearing fault diagnosis based on optimized variational mode decomposition and 1D convolutional neural networks
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac0034
– volume: 8
  start-page: 87529
  year: 2020
  ident: ref_34
  article-title: Adaptive Multiscale Weighted Permutation Entropy for Rolling Bearing Fault Diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992935
– ident: ref_4
  doi: 10.3390/pr10040724
– volume: 133
  start-page: 42
  year: 2023
  ident: ref_5
  article-title: Decentralized plant-wide monitoring based on mutual information-Louvain decomposition and support vector data description diagnosis
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.07.017
– volume: 198
  start-page: 111360
  year: 2022
  ident: ref_16
  article-title: A VME method based on the convergent tendency of VMD and its application in multi-fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111360
– volume: 62
  start-page: 531
  year: 2014
  ident: ref_14
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 69
  start-page: 3109
  year: 2022
  ident: ref_23
  article-title: Variational Embedding Multiscale Diversity Entropy for Fault Diagnosis of Large-Scale Machinery
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3063979
– volume: 33
  start-page: 5583
  year: 2023
  ident: ref_6
  article-title: An integrated design method for active fault diagnosis and control
  publication-title: Int. J. Robust Nonlinear Control.
  doi: 10.1002/rnc.6660
– volume: 92
  start-page: 107070
  year: 2021
  ident: ref_47
  article-title: Fault diagnosis of mine asynchronous motor based on MEEMD energy entropy and ANN
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107070
– volume: 78
  start-page: 98
  year: 2018
  ident: ref_31
  article-title: Spare optimistic based on improved ADMM and the minimum entropy de-convolution for the early weak fault diagnosis of bearings in marine systems
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.12.021
– volume: 10
  start-page: 23659
  year: 2022
  ident: ref_43
  article-title: A New Feature Extraction Technique for Early Degeneration Detection of Rolling Bearings
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3154777
– volume: 40
  start-page: 67
  year: 2022
  ident: ref_40
  article-title: Graph Co-Attentive Session-based Recommendation
  publication-title: ACM Trans. Inf. Syst.
– volume: 173
  start-page: 108569
  year: 2021
  ident: ref_9
  article-title: Synchrosqueezing extracting transform and its application in bearing fault diagnosis under non-stationary conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108569
– volume: 23
  start-page: 610
  year: 2016
  ident: ref_35
  article-title: Dispersion Entropy: A Measure for Time-Series Analysis
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2542881
– volume: 70
  start-page: 3507311
  year: 2021
  ident: ref_12
  article-title: An Adaptive Optimized TVF-EMD Based on a Sparsity-Impact Measure Index for Bearing Incipient Fault Diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3044517
– volume: 71
  start-page: 3520809
  year: 2022
  ident: ref_38
  article-title: Fault Detection for Wind Turbine System Using Fractional Extended Dispersion Entropy and Cumulative Sum Control Chart
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3198479
– volume: 107
  start-page: 59
  year: 2019
  ident: ref_22
  article-title: Deep convolutional neural network based planet bearing fault classification
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.02.001
– volume: 194
  start-page: 106771
  year: 2022
  ident: ref_1
  article-title: Combine harvester remote monitoring system based on multi-source information fusion
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2022.106771
– volume: 278
  start-page: H2039
  year: 2000
  ident: ref_33
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 115
  start-page: 105269
  year: 2022
  ident: ref_10
  article-title: Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105269
– volume: 34
  start-page: 035101
  year: 2023
  ident: ref_46
  article-title: Support vector machine fault diagnosis based on sparse scaling convex hull
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aca217
– ident: ref_24
  doi: 10.3390/e24091265
– volume: 152
  start-page: 107361
  year: 2020
  ident: ref_45
  article-title: Improved multi-scale entropy and it’s application in rolling bearing fault feature extraction
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107361
– volume: 169
  start-page: 108734
  year: 2022
  ident: ref_3
  article-title: Dual-impulse behavior analysis and quantitative diagnosis of the raceway fault of rolling bearing
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108734
– volume: 100
  start-page: 1814
  year: 2021
  ident: ref_20
  article-title: Improved bilayer convolution transfer learning neural network for industrial fault detection
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24281
– volume: 198
  start-page: 116822
  year: 2022
  ident: ref_42
  article-title: A review of recent approaches on wrapper feature selection for intrusion detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116822
– volume: 409
  start-page: 35
  year: 2020
  ident: ref_41
  article-title: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.040
– volume: 168
  start-page: 108333
  year: 2021
  ident: ref_39
  article-title: Parallel multi-scale entropy and it’s application in rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108333
– volume: 133
  start-page: 518
  year: 2023
  ident: ref_19
  article-title: Bearing multi-fault diagnosis with iterative generalized demodulation guided by enhanced rotational frequency matching under time-varying speed conditions
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.06.047
– volume: 187
  start-page: 110348
  year: 2022
  ident: ref_11
  article-title: An improved empirical wavelet transform and sensitive components selecting method for bearing fault
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110348
– volume: 438
  start-page: 291
  year: 2018
  ident: ref_36
  article-title: Application of dispersion entropy to status characterization of rotary machines
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.08.025
– volume: 108
  start-page: 1447
  year: 2022
  ident: ref_26
  article-title: Hierarchical diversity entropy for the early fault diagnosis of rolling bearing
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-021-06728-1
– volume: 40
  start-page: 154
  year: 2013
  ident: ref_28
  article-title: Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.04.006
– volume: 114
  start-page: 658
  year: 2019
  ident: ref_32
  article-title: Self-adaptive bearing fault diagnosis based on permutation entropy and manifold-based dynamic time warping
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.04.028
– ident: ref_7
  doi: 10.3390/e24040511
– volume: 32
  start-page: 125017
  year: 2021
  ident: ref_8
  article-title: Bearing fault diagnosis based on the active energy conversion of generalized stochastic resonance in fluctuating-frequency linear oscillator
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac29d3
– ident: ref_29
  doi: 10.3390/e24040524
– volume: 20
  start-page: 3354
  year: 2021
  ident: ref_37
  article-title: A new fault diagnosis method based on adaptive spectrum mode extraction
  publication-title: Struct. Health
  doi: 10.1177/1475921720986945
– volume: 28
  start-page: 1627
  year: 2022
  ident: ref_21
  article-title: Bearing Weak Fault Feature Extraction Under Time-Varying Speed Conditions Based on Frequency Matching Demodulation Transform
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3215545
– ident: ref_2
  doi: 10.3390/e24081139
– volume: 436
  start-page: 74
  year: 2021
  ident: ref_13
  article-title: The intermittent fault diagnosis of analog circuits based on EEMD-DBN
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.001
– volume: 2019
  start-page: 1576817
  year: 2019
  ident: ref_30
  article-title: Multistep Degradation Tendency Prediction for Aircraft Engines Based on CEEMDAN Permutation Entropy and Improved Grey-Markov Model
  publication-title: Complexity
  doi: 10.1155/2019/1576817
– ident: ref_17
  doi: 10.3390/e24070927
– volume: 69
  start-page: 2607
  year: 2020
  ident: ref_25
  article-title: Entropy Measures in Machine Fault Diagnosis: Insights and Applications
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2981220
– volume: 9
  start-page: 8444
  year: 2021
  ident: ref_44
  article-title: Multi-Scale Sample Entropy-Based Energy Moment Features Applied to Fault Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049436
SSID ssj0023216
Score 2.3706622
Snippet Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1111
SubjectTerms Agricultural machinery
Algorithms
Analysis
Artificial intelligence
Bearing strength
Bearings
combine harvester
Combine harvesters
Decomposition
Dispersion
dispersion entropy
Entropy
Farm equipment
Fault diagnosis
Machine learning
Optimization
Research methodology
Roller bearings
rolling bearing
Signal analysis
Signal processing
Vibration
VMD
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ri9QwEA5y-OCLKCpWT4ki6Eu5Nknb5HHXu8WnUziVeytpMvEW9tpjtyv4n_yRzqTZ5VYFX3xpoZOWNDOTmUkm3zD2RpmuoILbuWtA50pBmRsr8QJVVXtrOrA6Fptozs_15aX5dKvUF-WETfDA08CdCCcbjz6FVTWhxXW2dlAGDEKoTHYZAT9F0ZhdMJVCLSnKesIRkhjUnwAaek2Tw4H1iSD9f07Fv6dH3rI3iwfsfnIU-Wzq4EN2B_pH7OfCblcjP53y45Ybji4nT7jafI5CS_chcNRyjHiBU-WfCIXA52itPB96IsVELcgvkD2Qf8WX6PgUfpRAw2nxjJ9R-vrND257zy9gFfKPOLFcpxObPL4xLSFyKqXGT8GljxJ5tvo2rJfj1fVj9mVx9vn9hzzVW8id0vWYG--9MR6HqrKNtmBKqw3eXSilD3UhK6iUDMaD6VxAzVVe0bCKUAhrbSGfsKN-6OEp412pac_VoT-BAQ4QKJpqHLLfyeCddxl7t-ND6xIYOdXEWLUYlBDL2j3LMvZ63_RmQuD4W6M5MXPfgECz4wMUpTaJUvsvUcrYWxKFllQbO-NsOqGAv0QgWe0MDYfC8KtWGTveSUubdH7TilgrAD1eJL_ak1FbaQvG9jBspzaaEHxExvSBlB10_ZDSL68i7jdGzpWsTfHsf_zsc3ZPoJ7QMrWojtnRuN7CC3bXfR-Xm_XLqE2_AAhnJ0o
  priority: 102
  providerName: Directory of Open Access Journals
Title Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm
URI https://www.proquest.com/docview/2857006504
https://www.proquest.com/docview/2857845642
https://pubmed.ncbi.nlm.nih.gov/PMC10453690
https://doaj.org/article/2c37d575a460454ba6ce1f7171879119
Volume 25
WOSCitedRecordID wos001055842000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbYXQ5cWBAgsrtUBiHBJdokdhL7hFq2FRwoFQVUTpFjO7uVuknpDxIXnoiHZMZxAwXEhUsiZZzEyYxnPOPxN4Q85bKMsOB2qHMrQs5tHErF4GDTNDNKllYJV2wiH4_FbCYnPuC29mmVO53oFLVpNMbIzxOHxA7zCf5i-TnEqlG4uupLaByQI0RJiF3q3rRzuFgSZy2aEAPX_tyCuReoIvZskIPq_1Mh_54k-YvVGR3_b3_vkNt-vkn7rYDcJTdsfY98H6ntYkMv2jS7-ZrCzJV6eG46ANnHc1NRUBbgOFuKBYQcogIdgNEztKmR5PK9bDgFLtvwI9yEu7DgoYg9jjE4OsQs-OVXqmpDp3ZRhW9BP137jZ_U3dFGIilWZKMXVvuHIrm_uITP2Vxd3ycfRsP3L1-FvmxDqLnINqE0xkhp4F-nKhfKylgJCWddxcxUWcRSm3JWSWNlqStQANxw5EtSRYlSKmIPyGHd1PYhoWUscOlWA2vBT7KIrcZzDVKkWWW00QF5vmNkoT2mOZbWWBTg2yDPi47nAXnSNV22QB5_azRAaegaIPa2u9CsLgs_lItEs9zALFfxDPELS5VpG1fgFmPh9jiWAXmGslSghoDOaOU3OsAnIdZW0Qf7w8GLy3hAznayU3jVsS5-Ck5AHndkGPS4kqNq22zbNgKBgJKAiD0x3ev6PqWeXzn4cHDAU5bJ6OTfbz8ltxIYQhjHTtIzcrhZbe0jclN_2czXqx45yGeiR44Gw_HkXc9FMnpu8OHx2xAok9dvJp9-ADd9PQg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwleuAgQgQEGgeAlWmI7afyAUEtXbdooSBtob8Gxna1Sl5ReQPtPiN_IOU5aKCDe9sBLI9VO4rrnah9_H8AzqYqICLdD03FZKKWLQ6UFfrgkSa1WhdOZJ5voDIfZ8bF6vwHfl2dhqKxyaRO9oba1oTXybe6R2DGekK8nn0NijaLd1SWFRiMW--78K6Zss1d7ffx_n3M-2Dl6sxu2rAKhkVk6D5W1VimLgUmiO5l2KtaZwqspY2HLNBKJS6QolXWqMCXKp7QS_WbMy4hrrSOBz70ElzGM4MqXCh6uEjzB47RBLxJCRdsOw4uMTNKaz_PUAH86gN-LMn_xcoMb_9v83ITrbTzNuo0C3IINV92GbwO9GM9ZvykjHM0YRuashR9nPRwkXeuSoTEsMMpmRJDkESNYD526ZXVFTb6ezYWHKMUu_Ig30SkzfChhq9MaI9uhKv_JOdOVZYduXIbv0P6etQdbmb-jWWllxDjH-s60D6Xm7vgEp29-enYHPlzIBN2Fzaqu3D1gRZzR1rTBsAvzQEfYcbJjUEuMKK2xJoCXS8HJTYvZTtQh4xxzN5KxfCVjATxddZ00QCV_69Qj6Vt1IGxx_0U9PclbU5VzIzoWo3gtU8JnLHRqXFxi2k_E9HGsAnhBspuTBcTBGN0e5MCfRFhieRf9q8QsNZUBbC1lNW9N4yz_KagBPFk1o1GjnSpduXrR9MkI6IgHkK2pxdrQ11uq0amHR49x1CJV0f1_v_0xXN09enuQH-wN9x_ANY7qS2v2PNmCzfl04R7CFfNlPppNH3klZ_DporXmB-aclLA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGDkJseAgQgQEMAsEmavzIwwuEWjoV1UCpNICGVXBsZ6ZSJyltCpp_4gv4Ou5N0kIBsZsFm0aqHcdxzn3Yvj6XkMdSZQEm3PZN7BJfSsd8pQX8uDCMrFaZ00mdbCIej5OjIzXZId_XZ2EwrHKtE2tFbUuDa-RdXjOxgz8hu3kbFjEZDF_MP_uYQQp3WtfpNBqIHLizrzB9Wz4fDeBbP-F8uP_u5Su_zTDgG5lEla-stUpZcFJCHSfaKaYTBVeTM2HzKBChC6XIlXUqMzlgVVoJNpTxPOBa60BAuxfILrjkknfI7mT0ZvJxM90TnEUNl5EQKug6cDYSVFBbFrBOFPCnOfg9RPMXmze8-j-P1jVypfW0aa8RjetkxxU3yLehXs0qOmgCDKdLCj47bYnJaR86idcyp6AmM_C_KaZOqrkkaB_MvaVlgUV1pJvzDwHfzv8AN-H5M2gUWddx9ZHuY_z__IzqwtJDN8v9t6CZT9sjr7S-o1mDpZiLjg6caRvF4t7sGIavOjm9Sd6fywDdIp2iLNxtQjOW4Ka1AYcMZogOWeVkbEB-jMitscYjz9YgSk3L5o5JRWYpzOoQb-kGbx55tKk6byhM_lapj0jcVEDW8fqPcnGctkos5UbEFvx7LSNkbsx0ZBzLYxZjynrGlEeeIo5T1I3QGaPbIx7wSsgylvbA8oKoxJH0yN4at2mrNJfpT9B65OGmGNQd7mHpwpWrpk6CFEjcI8mWiGx1fbukmJ7UxOkMei0iFdz599MfkEsgLOnr0fjgLrnMQZJxMZ-He6RTLVbuHrlovlTT5eJ-K_GUfDpvsfkBKIme5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+for+Rolling+Bearing+of+Combine+Harvester+Based+on+Composite-Scale-Variable+Dispersion+Entropy+and+Self-Optimization+Variational+Mode+Decomposition+Algorithm&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Wei&rft.au=Shan%2C+Yahui&rft.au=Xue%2C+Xiaoming&rft.au=Ma%2C+Jianpeng&rft.date=2023-07-25&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=25&rft.issue=8&rft.spage=1111&rft_id=info:doi/10.3390%2Fe25081111&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e25081111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon