An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data
The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud...
Uloženo v:
| Vydáno v: | Genome research Ročník 25; číslo 6; s. 918 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.06.2015
|
| Témata: | |
| ISSN: | 1549-5469, 1549-5469 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. |
|---|---|
| AbstractList | The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies.The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. |
| Author | Jun, Goo Kang, Hyun Min Wing, Mary Kate Abecasis, Gonçalo R |
| Author_xml | – sequence: 1 givenname: Goo surname: Jun fullname: Jun, Goo organization: Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA; Center for Statistical Genetics and Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA – sequence: 2 givenname: Mary Kate surname: Wing fullname: Wing, Mary Kate organization: Center for Statistical Genetics and Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA – sequence: 3 givenname: Gonçalo R surname: Abecasis fullname: Abecasis, Gonçalo R organization: Center for Statistical Genetics and Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA – sequence: 4 givenname: Hyun Min surname: Kang fullname: Kang, Hyun Min organization: Center for Statistical Genetics and Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25883319$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtPwzAQhC1URB9w5Ip85JJix48kx6o8pQoucI42zhoFEifYCVB-PSkUidPuaGe_kWZOJq51SMgpZ0vOGb949kueaKXiUcoDMuNKZpGSOpv826dkHsILY0zIND0i01ilqRA8m5GvlaNobWUqdD0FV9JgoIaixlFAvQ1VoNZDgx-tf6W29fQdfAWjFz97D6avWvfz5tFWDpsdxfq2oV3bDTXsztGOiPTyfkUDvg3oDNISejgmhxbqgCf7uSBP11eP69to83Bzt15tIiNT3UcZlyyxWgstmDUGAVEzKbUExguLpTGpjW1swApdWKFQK0CuCl5qWySo4wU5_-V2vh3jQ583VTBY1-CwHULOdaoSJcTY4YKc7a1D0WCZd75qwG_zv77ib0lncTo |
| CitedBy_id | crossref_primary_10_1016_j_jasrep_2025_105401 crossref_primary_10_1093_molbev_msad257 crossref_primary_10_1111_eva_12861 crossref_primary_10_1038_sdata_2017_179 crossref_primary_10_1038_s41586_020_2418_2 crossref_primary_10_3389_fmicb_2025_1584315 crossref_primary_10_1038_s44318_025_00372_w crossref_primary_10_1097_HP_0000000000000880 crossref_primary_10_1186_s12920_019_0524_5 crossref_primary_10_1016_j_ajhg_2018_07_004 crossref_primary_10_1186_s12915_025_02121_1 crossref_primary_10_1038_s41586_023_06334_8 crossref_primary_10_3389_fgene_2021_745508 crossref_primary_10_1002_ajpa_24735 crossref_primary_10_1016_j_watres_2025_123154 crossref_primary_10_1038_s41467_022_28827_2 crossref_primary_10_1111_mec_70094 crossref_primary_10_1038_ejhg_2014_216 crossref_primary_10_1016_j_cub_2025_06_054 crossref_primary_10_1093_g3journal_jkab373 crossref_primary_10_1111_jfb_70167 crossref_primary_10_1093_hmg_ddad189 crossref_primary_10_1038_s41467_024_47606_9 crossref_primary_10_1038_s41598_022_23171_3 crossref_primary_10_3390_genes12060910 crossref_primary_10_7554_eLife_87928_3 crossref_primary_10_1073_pnas_1715554115 crossref_primary_10_1371_journal_pgen_1008915 crossref_primary_10_1093_molbev_msae007 crossref_primary_10_1002_ece3_72075 crossref_primary_10_1093_bib_bbaa065 crossref_primary_10_1111_eva_70049 crossref_primary_10_1038_s41559_025_02699_3 crossref_primary_10_1016_j_jasrep_2023_104333 crossref_primary_10_1073_pnas_1705859115 crossref_primary_10_1126_science_abk0989 crossref_primary_10_1186_s13059_024_03462_w crossref_primary_10_1038_s41586_024_07546_2 crossref_primary_10_1038_s41588_021_00835_w crossref_primary_10_1128_jvi_00090_23 crossref_primary_10_1016_j_xgen_2025_100976 crossref_primary_10_1007_s12520_023_01899_x crossref_primary_10_1016_j_isci_2024_111405 crossref_primary_10_1038_s41431_020_0697_6 crossref_primary_10_1038_s41467_018_04668_w crossref_primary_10_1186_s12711_024_00875_w crossref_primary_10_1038_s41467_018_05936_5 crossref_primary_10_1002_gepi_22067 crossref_primary_10_1038_s43856_023_00269_x crossref_primary_10_1093_evolut_qpac028 crossref_primary_10_1038_s41467_022_28841_4 crossref_primary_10_1371_journal_pbio_3002759 crossref_primary_10_1016_j_prp_2020_152873 crossref_primary_10_1017_ehs_2020_16 crossref_primary_10_1016_j_ajhg_2016_08_012 crossref_primary_10_1161_JAHA_124_036499 crossref_primary_10_1111_tan_15078 crossref_primary_10_1016_j_ebiom_2025_105591 crossref_primary_10_1093_icesjms_fsaf155 crossref_primary_10_1038_s41467_022_30009_z crossref_primary_10_1016_j_cub_2021_06_027 crossref_primary_10_3389_fimmu_2021_754316 crossref_primary_10_1016_j_cub_2021_06_023 crossref_primary_10_1371_journal_pcbi_1010788 crossref_primary_10_1017_S0033291721004840 crossref_primary_10_1038_s41586_021_04052_7 crossref_primary_10_1111_cobi_14254 crossref_primary_10_1038_s41467_023_39950_z crossref_primary_10_1128_JVI_01162_19 crossref_primary_10_1007_s00438_022_01955_6 crossref_primary_10_1038_s41439_023_00231_2 crossref_primary_10_1111_eva_13599 crossref_primary_10_1186_s12915_020_00882_5 crossref_primary_10_1073_pnas_2409302122 crossref_primary_10_1038_s41467_018_06159_4 crossref_primary_10_3390_cancers13020230 crossref_primary_10_1002_ajb2_70078 crossref_primary_10_1161_HYPERTENSIONAHA_122_19324 crossref_primary_10_1038_s41598_021_86200_7 crossref_primary_10_1109_TCBB_2018_2854793 crossref_primary_10_3390_jpm11070631 crossref_primary_10_1111_nph_15887 crossref_primary_10_1186_s12859_019_2903_5 crossref_primary_10_1371_journal_pone_0209523 crossref_primary_10_1093_rheumatology_keac227 crossref_primary_10_1146_annurev_genom_083117_021602 crossref_primary_10_4000_bmsap_13952 crossref_primary_10_1186_s12920_018_0342_1 crossref_primary_10_1038_s41467_021_22339_1 crossref_primary_10_1126_science_ads3732 crossref_primary_10_1007_s00335_024_10053_4 crossref_primary_10_1038_s41467_023_39202_0 crossref_primary_10_1016_j_fsigen_2024_103060 crossref_primary_10_1186_s12859_016_1211_6 crossref_primary_10_1186_s12915_025_02286_9 crossref_primary_10_1093_molbev_msaf139 crossref_primary_10_1016_j_ophtha_2017_10_027 crossref_primary_10_1038_s41598_021_91357_2 crossref_primary_10_1038_s41467_022_28973_7 crossref_primary_10_3389_fgene_2019_00508 crossref_primary_10_3390_agronomy14092004 crossref_primary_10_1093_bioinformatics_btaf105 crossref_primary_10_1186_s12915_025_02350_4 crossref_primary_10_1126_science_adg2238 crossref_primary_10_1186_s12859_016_1108_4 crossref_primary_10_1097_HS9_0000000000000785 crossref_primary_10_1038_ng_3368 crossref_primary_10_1093_g3journal_jkab353 crossref_primary_10_3389_fevo_2022_932004 crossref_primary_10_62347_EANH4082 crossref_primary_10_1016_j_omtm_2025_101501 crossref_primary_10_1016_j_ygeno_2025_111061 crossref_primary_10_1016_j_ygeno_2021_10_018 crossref_primary_10_1007_s40502_025_00856_1 crossref_primary_10_1017_S0033291716003184 crossref_primary_10_1101_gad_348319_121 crossref_primary_10_1093_molbev_msae158 crossref_primary_10_1038_s42003_024_06979_9 crossref_primary_10_1016_j_cub_2023_09_055 crossref_primary_10_1038_s41467_023_39570_7 crossref_primary_10_1038_s41467_023_42763_9 crossref_primary_10_1126_science_adu7144 crossref_primary_10_1534_g3_118_200838 crossref_primary_10_1111_1755_0998_13559 crossref_primary_10_1111_1440_1703_12545 crossref_primary_10_1186_s13059_025_03509_6 crossref_primary_10_1038_s41467_024_47316_2 crossref_primary_10_1126_sciadv_adw4954 crossref_primary_10_1038_s41559_019_0878_2 crossref_primary_10_1038_s10038_024_01295_w crossref_primary_10_1002_gepi_22015 crossref_primary_10_1093_molbev_msac200 crossref_primary_10_1093_nar_gkad635 crossref_primary_10_1111_1755_0998_70032 crossref_primary_10_1099_mgen_0_000615 crossref_primary_10_3390_jpm11111230 crossref_primary_10_1038_s41467_020_16557_2 crossref_primary_10_1186_s12711_019_0462_x crossref_primary_10_1016_j_ygeno_2021_04_003 crossref_primary_10_1038_s41586_024_08113_5 crossref_primary_10_1038_s41598_024_56584_3 crossref_primary_10_1038_s41467_025_58420_2 crossref_primary_10_1038_s42003_024_07338_4 crossref_primary_10_1038_s42003_023_05131_3 crossref_primary_10_1038_s41598_021_86612_5 crossref_primary_10_1073_pnas_2407584121 crossref_primary_10_1038_s41588_018_0286_6 crossref_primary_10_1038_s42003_021_02794_8 crossref_primary_10_1002_ece3_7878 crossref_primary_10_1016_j_cell_2025_08_003 crossref_primary_10_1038_s41598_021_95996_3 crossref_primary_10_1017_laq_2023_13 crossref_primary_10_1093_nargab_lqad004 crossref_primary_10_1016_j_devcel_2021_07_006 crossref_primary_10_1681_ASN_2021060794 crossref_primary_10_1016_j_ajhg_2022_07_012 crossref_primary_10_1111_mec_70025 crossref_primary_10_3390_genes14030700 crossref_primary_10_1002_oa_3300 crossref_primary_10_1371_journal_pone_0288128 crossref_primary_10_3389_fmicb_2024_1471740 crossref_primary_10_1038_s41598_022_25420_x crossref_primary_10_1007_s12520_024_02036_y crossref_primary_10_1111_eva_13653 crossref_primary_10_1073_pnas_1813608115 crossref_primary_10_1371_journal_pbio_3000745 crossref_primary_10_1038_s41388_025_03391_3 crossref_primary_10_1093_molbev_msac108 crossref_primary_10_1371_journal_pone_0253611 crossref_primary_10_1007_s12520_024_02033_1 crossref_primary_10_1038_s41467_023_37691_7 crossref_primary_10_1038_s41598_021_85957_1 crossref_primary_10_1038_s41431_023_01524_4 crossref_primary_10_7554_eLife_87928 crossref_primary_10_1016_j_cub_2025_07_047 crossref_primary_10_1038_s41586_024_07312_4 crossref_primary_10_1038_s41586_020_03114_6 crossref_primary_10_1016_j_cub_2024_06_076 crossref_primary_10_1038_s41559_022_01914_9 crossref_primary_10_1021_acscentsci_3c01131 crossref_primary_10_1038_s41467_018_05747_8 crossref_primary_10_1038_s42003_024_06893_0 crossref_primary_10_1097_FPC_0000000000000260 crossref_primary_10_1007_s00334_025_01041_y crossref_primary_10_1016_j_cell_2020_10_015 crossref_primary_10_1016_j_celrep_2025_115262 crossref_primary_10_1002_sim_9211 crossref_primary_10_7717_peerj_10947 crossref_primary_10_1186_s12859_015_0795_6 crossref_primary_10_1038_s41467_022_31487_x crossref_primary_10_1093_evolut_qpad075 crossref_primary_10_1186_s13073_019_0677_z crossref_primary_10_3389_fgene_2023_1278215 crossref_primary_10_1093_gigascience_giab004 crossref_primary_10_1038_s41467_019_10945_z crossref_primary_10_1038_s41586_020_2819_2 crossref_primary_10_1111_1755_0998_13960 crossref_primary_10_1371_journal_ppat_1009714 crossref_primary_10_3390_ijms242417635 crossref_primary_10_1093_bib_bbaa084 crossref_primary_10_1371_journal_pone_0182918 crossref_primary_10_1002_ajpa_24650 crossref_primary_10_1038_s41598_024_83870_x crossref_primary_10_1016_j_cub_2022_11_036 crossref_primary_10_1016_j_cub_2022_11_034 crossref_primary_10_1111_mec_17573 crossref_primary_10_1038_s41598_020_78723_2 crossref_primary_10_1186_s12915_024_02068_9 crossref_primary_10_1016_j_jas_2025_106178 crossref_primary_10_1038_s41467_023_37095_7 crossref_primary_10_1083_jcb_202307026 crossref_primary_10_1038_s41586_021_04108_8 crossref_primary_10_1038_s41467_021_22463_y crossref_primary_10_1038_s41598_024_54462_6 crossref_primary_10_1016_j_cell_2022_03_007 crossref_primary_10_1093_biomethods_bpz011 crossref_primary_10_1038_s41467_020_18781_2 crossref_primary_10_1111_psyp_12350 crossref_primary_10_1210_clinem_dgaa658 crossref_primary_10_1101_gr_279025_124 crossref_primary_10_1186_s13059_025_03570_1 crossref_primary_10_1111_mec_17440 crossref_primary_10_1016_j_cub_2020_12_015 crossref_primary_10_1038_s41467_022_31403_3 crossref_primary_10_1038_s41592_019_0610_9 crossref_primary_10_1016_j_cell_2019_09_019 crossref_primary_10_15252_embj_2022111587 crossref_primary_10_1038_s41586_022_04578_4 crossref_primary_10_1016_j_cub_2025_01_058 crossref_primary_10_1093_nar_gkad535 crossref_primary_10_1177_1177932219873884 crossref_primary_10_1101_gr_246934_118 crossref_primary_10_1002_tpg2_20249 crossref_primary_10_1038_s41586_024_08418_5 crossref_primary_10_1101_gr_211656_116 crossref_primary_10_1038_s41586_021_03205_y crossref_primary_10_1016_j_jmoldx_2023_11_006 crossref_primary_10_1038_s41467_023_36631_9 crossref_primary_10_1080_03014223_2022_2053554 crossref_primary_10_1038_s41586_025_09103_x crossref_primary_10_1038_s41586_023_05806_1 crossref_primary_10_1038_s41586_020_2844_1 crossref_primary_10_1186_s13059_020_1937_3 crossref_primary_10_1007_s00122_022_04105_z crossref_primary_10_1126_science_adr2915 crossref_primary_10_1534_genetics_119_302843 crossref_primary_10_1038_s41467_025_59155_w crossref_primary_10_7554_eLife_66815 crossref_primary_10_1186_s12915_025_02343_3 crossref_primary_10_1186_s40168_022_01372_2 crossref_primary_10_1038_s41380_020_01006_9 crossref_primary_10_1016_j_jas_2025_106184 crossref_primary_10_1016_j_scitotenv_2023_166540 crossref_primary_10_1002_alz_13691 crossref_primary_10_1002_gepi_22261 |
| ContentType | Journal Article |
| Copyright | 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press. |
| Copyright_xml | – notice: 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1101/gr.176552.114 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1549-5469 |
| ExternalDocumentID | 25883319 |
| Genre | Journal Article Technical Report Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: U01 HG006513 – fundername: NHGRI NIH HHS grantid: R01 HG007022 |
| GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 NPM R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP 7X8 |
| ID | FETCH-LOGICAL-c486t-91407f663630fcceaee604464a01bfedcc8f2f2caf36bf35e65ae15b1d6fb7e62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 301 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355565900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-5469 |
| IngestDate | Fri Sep 05 07:27:09 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-91407f663630fcceaee604464a01bfedcc8f2f2caf36bf35e65ae15b1d6fb7e62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Technical Report-3 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4448687 |
| PMID | 25883319 |
| PQID | 1685753355 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1685753355 pubmed_primary_25883319 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Genome research |
| PublicationTitleAlternate | Genome Res |
| PublicationYear | 2015 |
| References | 23201682 - Nature. 2013 Jan 10;493(7431):216-20 21460063 - Genome Res. 2011 Jun;21(6):940-51 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93 19931040 - Am J Hum Genet. 2009 Dec;85(6):847-61 23296920 - Genome Res. 2013 May;23(5):833-42 21058334 - Genet Epidemiol. 2010 Dec;34(8):816-34 12662656 - Neural Netw. 1999 Jul;12(6):783-789 24324759 - PLoS One. 2013;8(12):e82138 17943122 - Nature. 2007 Oct 18;449(7164):851-61 23128226 - Nature. 2012 Nov 1;491(7422):56-65 23103226 - Am J Hum Genet. 2012 Nov 2;91(5):839-48 22604720 - Science. 2012 Jul 6;337(6090):64-9 21478889 - Nat Genet. 2011 May;43(5):491-8 24319692 - Biomed Res Int. 2013;2013:865181 |
| References_xml | – reference: 23103226 - Am J Hum Genet. 2012 Nov 2;91(5):839-48 – reference: 24319692 - Biomed Res Int. 2013;2013:865181 – reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65 – reference: 22604720 - Science. 2012 Jul 6;337(6090):64-9 – reference: 23201682 - Nature. 2013 Jan 10;493(7431):216-20 – reference: 21460063 - Genome Res. 2011 Jun;21(6):940-51 – reference: 17943122 - Nature. 2007 Oct 18;449(7164):851-61 – reference: 12662656 - Neural Netw. 1999 Jul;12(6):783-789 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93 – reference: 19931040 - Am J Hum Genet. 2009 Dec;85(6):847-61 – reference: 24324759 - PLoS One. 2013;8(12):e82138 – reference: 21058334 - Genet Epidemiol. 2010 Dec;34(8):816-34 – reference: 21478889 - Nat Genet. 2011 May;43(5):491-8 – reference: 23296920 - Genome Res. 2013 May;23(5):833-42 |
| SSID | ssj0003488 |
| Score | 2.611168 |
| Snippet | The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 918 |
| SubjectTerms | Computational Biology Databases, Genetic Exome Genetics, Population - methods Genome, Human Haplotypes High-Throughput Nucleotide Sequencing Humans Polymorphism, Single Nucleotide Sequence Alignment Sequence Analysis, DNA - methods Software |
| Title | An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25883319 https://www.proquest.com/docview/1685753355 |
| Volume | 25 |
| WOSCitedRecordID | wos000355565900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgmDhUV7lJSMhNtM4iZ1kQqVQsVB1AKlbFTtnxEBamlIJfj1nJ2knJCSWKBkcRT7n7rvz-fsIuVIh8ChLBAOPxyxMjGJKm4ypQKVCSJBZqJzYRNTvx8NhMqgKbkXVVln7ROeos7G2NfI2l1ZLMsDweDv5YFY1yu6uVhIaq6QRIJSxqzoaLtnCg9DpTloWMiYwD1xwbPL26_SGR1II35Ll_o4uXZTp7fz3-3bJdoUvaadcEHtkBfIm2e_kmFu_f9Fr6jo-XSm9STbu6rvNbq37tk--OzkFRyyB8YimeUYLtKM9YYUPJYMJNXVLF0XMS-eYb6OBKPr5aXlOwg3D2IsQ1lYfqT3EQicLrTBm3wj0vt-hdSs3ta2qB-Sl9_DcfWSVQgPTYSxn6CkxHzQIWmTgGa0hBZB2hzhMPa4MZFrHxje-Tk0glQkESJECF4pn0qgIpH9I1vJxDseERr6SoUYPwqUdrpSXxMZLVeD5OuIhtMhlPe8jnBC7rZHmMP4sRsuZb5Gj0nijSUnVMfKFFVPmyckfRp-SLURDouwDOyMNg_8_nJN1PZ-9FdMLt7Tw2h88_QCcINvL |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+and+scalable+analysis+framework+for+variant+extraction+and+refinement+from+population-scale+DNA+sequence+data&rft.jtitle=Genome+research&rft.au=Jun%2C+Goo&rft.au=Wing%2C+Mary+Kate&rft.au=Abecasis%2C+Gon%C3%A7alo+R&rft.au=Kang%2C+Hyun+Min&rft.date=2015-06-01&rft.eissn=1549-5469&rft.volume=25&rft.issue=6&rft.spage=918&rft_id=info:doi/10.1101%2Fgr.176552.114&rft_id=info%3Apmid%2F25883319&rft_id=info%3Apmid%2F25883319&rft.externalDocID=25883319 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-5469&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-5469&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-5469&client=summon |