High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat

Key message High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics Jg. 134; H. 9; S. 2857 - 2873
Hauptverfasser: Pang, Yunlong, Wu, Yuye, Liu, Chunxia, Li, Wenhui, St. Amand, Paul, Bernardo, Amy, Wang, Danfeng, Dong, Lei, Yuan, Xiufang, Zhang, Huirui, Zhao, Meng, Li, Linzhi, Wang, Liming, He, Fang, Liang, Yunlong, Yan, Qiang, Lu, Yue, Su, Yu, Jiang, Hongming, Wu, Jiajie, Li, Anfei, Kong, Lingrang, Bai, Guihua, Liu, Shubing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:0040-5752, 1432-2242, 1432-2242
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Key message High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.
AbstractList Key message High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.
KEY MESSAGE: High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.
Key message High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to [less than or equal to] 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.
High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.KEY MESSAGEHigh-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding. Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.
Key message
Key messageHigh-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction models were highly predictive and valuable in wheat genomic breeding.Wheat is a major staple food crop and provides more than one-fifth of the daily calories and dietary proteins for humans. Genome-wide association study (GWAS) and genomic selection (GS) for wheat stress resistance and tolerance related traits are critical to understanding their genetic architecture for improvement of breeding selection efficiency. However, the insufficient marker density in previous studies limited the utility of GWAS and GS in wheat genomic breeding. Here, we conducted a high-resolution GWAS for wheat leaf rust (LR), yellow rust (YR), powdery mildew (PM), and cold tolerance (CT) by genotyping a panel of 768 wheat cultivars using genotyping-by-sequencing. Among 153 quantitative trait loci (QTLs) identified, 81 QTLs were delimited to ≤ 1.0 Mb intervals with three validated using bi-parental populations. Furthermore, 837 stress resistance-related genes were identified in the QTL regions with 12 showing induced expression by YR and PM pathogens. Genomic prediction using 2608, 4064, 3907, and 2136 pre-selected SNPs based on GWAS and genotypic correlations between the SNPs showed high prediction accuracies of 0.76, 0.73, and 0.78 for resistance to LR, YR, and PM, respectively, and 0.83 for resistance to cold damage. Our study laid a solid foundation for large-scale QTL fine mapping, candidate gene validation and GS in wheat.
Audience Academic
Author Zhao, Meng
St. Amand, Paul
Kong, Lingrang
Yan, Qiang
Dong, Lei
Wu, Jiajie
He, Fang
Liu, Chunxia
Jiang, Hongming
Liu, Shubing
Liang, Yunlong
Wang, Liming
Li, Anfei
Wang, Danfeng
Lu, Yue
Bernardo, Amy
Yuan, Xiufang
Su, Yu
Bai, Guihua
Wu, Yuye
Li, Linzhi
Pang, Yunlong
Zhang, Huirui
Li, Wenhui
Author_xml – sequence: 1
  givenname: Yunlong
  surname: Pang
  fullname: Pang, Yunlong
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 2
  givenname: Yuye
  surname: Wu
  fullname: Wu, Yuye
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 3
  givenname: Chunxia
  surname: Liu
  fullname: Liu, Chunxia
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 4
  givenname: Wenhui
  surname: Li
  fullname: Li, Wenhui
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 5
  givenname: Paul
  surname: St. Amand
  fullname: St. Amand, Paul
  organization: Hard Winter Wheat Genetics Research Unit
– sequence: 6
  givenname: Amy
  surname: Bernardo
  fullname: Bernardo, Amy
  organization: Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Kansas State University
– sequence: 7
  givenname: Danfeng
  surname: Wang
  fullname: Wang, Danfeng
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 8
  givenname: Lei
  surname: Dong
  fullname: Dong, Lei
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 9
  givenname: Xiufang
  surname: Yuan
  fullname: Yuan, Xiufang
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 10
  givenname: Huirui
  surname: Zhang
  fullname: Zhang, Huirui
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 11
  givenname: Meng
  surname: Zhao
  fullname: Zhao, Meng
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 12
  givenname: Linzhi
  surname: Li
  fullname: Li, Linzhi
  organization: Yantai Academy of Agricultural Sciences
– sequence: 13
  givenname: Liming
  surname: Wang
  fullname: Wang, Liming
  organization: College of Agriculture, Henan University of Science and Technology
– sequence: 14
  givenname: Fang
  surname: He
  fullname: He, Fang
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, College of Agriculture, Guizhou University
– sequence: 15
  givenname: Yunlong
  surname: Liang
  fullname: Liang, Yunlong
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 16
  givenname: Qiang
  surname: Yan
  fullname: Yan, Qiang
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 17
  givenname: Yue
  surname: Lu
  fullname: Lu, Yue
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 18
  givenname: Yu
  surname: Su
  fullname: Su, Yu
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 19
  givenname: Hongming
  surname: Jiang
  fullname: Jiang, Hongming
  organization: Yantai Academy of Agricultural Sciences
– sequence: 20
  givenname: Jiajie
  surname: Wu
  fullname: Wu, Jiajie
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 21
  givenname: Anfei
  surname: Li
  fullname: Li, Anfei
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 22
  givenname: Lingrang
  surname: Kong
  fullname: Kong, Lingrang
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
– sequence: 23
  givenname: Guihua
  surname: Bai
  fullname: Bai, Guihua
  organization: Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Kansas State University
– sequence: 24
  givenname: Shubing
  orcidid: 0000-0001-6450-0459
  surname: Liu
  fullname: Liu, Shubing
  email: sbliu@sdau.edu.cn
  organization: State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University
BookMark eNqFkk1r3DAQhk1JoZu0f6AnQy_tQeno0_YxhLYJBAr9OAutPHYUvNJWktnm31exC2FDSdFBMPO8M9LMe1qd-OCxqt5SOKcAzccEQBkjwCgB3ipO1ItqQwVnhDHBTqoNgAAiG8leVacp3QEAk8A31eHKjbckYgrTnF3w9Yg-7JAcXI-1SSlYZ5Z4ynN_Xxvfr4Sz9T5i7-ySHEKse5fQJKxLLZey8RYX2oapr3OYMC4h5-vDLZr8uno5mCnhm7_3WfXz86cfl1fk5uuX68uLG2JFqzJpmWIwdMoo2wvDO9sryQFtB1tpqJSG94MsGbmVtuHUKLU1ZgAqoFCs2fKz6v1adx_DrxlT1juXLE6T8RjmpJniSrad6pr_o5IroQQHWdB3T9C7MEdfPlIo2XWScyEeqdFMqJ0fQo7GPhTVF6qhktOym0Kd_4Mqp8cy5bLmwZX4keDDkaAwGX_n0cwp6evv345ZtrI2hpQiDnof3c7Ee01BPzhHr87RxTl6cY5WRdQ-EVmXFxeUl7npeSlfpan08SPGx8E8o_oD-lXX-w
CitedBy_id crossref_primary_10_3389_fgene_2024_1473717
crossref_primary_10_1007_s00122_023_04352_8
crossref_primary_10_3390_ijms232214099
crossref_primary_10_1007_s11033_022_07287_3
crossref_primary_10_1007_s00122_024_04689_8
crossref_primary_10_3390_ijms24010006
crossref_primary_10_3390_plants12234014
crossref_primary_10_1016_j_jia_2025_02_028
crossref_primary_10_3390_agriculture13030642
crossref_primary_10_1016_j_plaphe_2025_100061
crossref_primary_10_1002_advs_202412423
crossref_primary_10_1007_s00122_024_04768_w
crossref_primary_10_1007_s00604_024_06778_3
crossref_primary_10_3390_agronomy13041173
crossref_primary_10_3390_genes14071447
crossref_primary_10_3389_fgene_2024_1487700
crossref_primary_10_1016_j_jenvman_2024_123461
crossref_primary_10_1007_s00425_022_03843_0
crossref_primary_10_3390_plants12223864
Cites_doi 10.1093/gigascience/gix097
10.7717/peerj.8190
10.1186/1753-6561-5-S3-S12
10.1007/978-3-319-23162-4_13
10.1093/genetics/157.4.1819
10.1371/journal.pone.0150717
10.1111/jipb.12918
10.1038/nbt.3877
10.1094/PHYTO-07-17-0254-R
10.1126/science.1166453
10.1007/s00122-014-2378-8
10.1038/s41467-020-18738-5
10.1534/g3.116.037622
10.1007/s10681-011-0361-x
10.1023/A:1003950431049
10.3835/plantgenome2011.08.0024
10.3835/plantgenome2016.01.0005
10.1126/science.aar7191
10.1038/s41477-021-00869-2
10.1111/nph.16761
10.1007/s00122-017-2946-9
10.1007/s12298-017-0495-y
10.1007/s00122-009-1031-4
10.1007/s00122-018-3135-1
10.1016/j.molp.2018.02.013
10.1016/S2095-3119(16)61610-6
10.1094/PDIS-02-17-0168-RE
10.1094/PD-90-0980
10.1093/bfgp/elq001
10.3835/plantgenome2019.05.0033
10.1038/s41467-020-15139-6
10.1016/j.tplants.2014.05.006
10.1007/s00122-016-2694-2
10.1002/ps.3767
10.1186/s13059-020-02225-7
10.1111/tpj.13424
10.1111/j.1467-7652.2010.00536.x
10.1111/nph.15696
10.1016/j.molp.2020.07.008
10.1038/s41586-020-2961-x
10.1111/jipb.12657
10.1016/j.funbio.2020.02.013
10.1007/978-3-319-24277-4
10.1186/1471-2164-15-898
10.3389/fpls.2017.01914
10.1038/s41467-019-11872-9
10.1007/s00122-017-2897-1
10.1093/pcp/pct164
10.1111/nph.14159
10.1094/PHYTO-06-18-0208-RVW
10.1093/bioinformatics/btm308
10.1111/mpp.12618
10.1016/j.molp.2018.03.004
10.1016/j.agrformet.2018.06.006
10.1093/bioinformatics/bts444
10.1111/pbi.13452
10.1007/s00122-015-2642-6
10.1016/S2095-3119(16)61379-5
10.1111/ppa.13166
10.1038/ng.3439
10.1094/PDIS-08-19-1745-RE
10.1126/science.1166289
10.1007/s11103-007-9201-8
10.1016/j.plantsci.2015.08.021
10.1007/s00122-014-2341-8
10.1038/s41467-020-14294-0
10.1007/s00122-014-2445-1
10.1111/tpj.14150
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
ISR
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
DOI 10.1007/s00122-021-03863-6
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database ProQuest
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE - Academic


ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1432-2242
EndPage 2873
ExternalDocumentID A671531242
10_1007_s00122_021_03863_6
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Shandong Province Agricultural Fine Seeds Project
  grantid: 2019LZGC015, 2016LZGC023
– fundername: National Key Research and Development Programs of China
  grantid: 2016YFD0101802, 2016ZX08009003-001-006
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7S
Z7U
Z7V
Z7W
Z7Y
Z83
Z85
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7SS
7TK
7XB
8FD
8FK
AZQEC
DWQXO
ESTFP
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c486t-82620f96a6cd4a39cd6530ec90b5a155a3df5d4a5b5c731a66baaf014030e27b3
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000656785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-5752
1432-2242
IngestDate Fri Sep 05 14:31:49 EDT 2025
Sun Sep 28 12:07:13 EDT 2025
Wed Nov 05 01:08:41 EST 2025
Sat Nov 29 13:13:45 EST 2025
Sat Nov 29 10:04:35 EST 2025
Wed Nov 26 09:24:06 EST 2025
Tue Nov 18 20:26:19 EST 2025
Sat Nov 29 06:46:40 EST 2025
Fri Feb 21 02:47:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-82620f96a6cd4a39cd6530ec90b5a155a3df5d4a5b5c731a66baaf014030e27b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6450-0459
PQID 2559953344
PQPubID 54040
PageCount 17
ParticipantIDs proquest_miscellaneous_2636589697
proquest_miscellaneous_2536464305
proquest_journals_2559953344
gale_infotracmisc_A671531242
gale_infotracacademiconefile_A671531242
gale_incontextgauss_ISR_A671531242
crossref_primary_10_1007_s00122_021_03863_6
crossref_citationtrail_10_1007_s00122_021_03863_6
springer_journals_10_1007_s00122_021_03863_6
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Plant Breeding Research
PublicationTitle Theoretical and applied genetics
PublicationTitleAbbrev Theor Appl Genet
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Oliver (CR43) 2014; 70
Sheng (CR53) 1988; 1
Li, Dong, Li, Wang, Xie, Qiu, Li, Shi, Yang, Wu, Chen, Lu, Guo, Zhang, Zhang, Zhu, Li, Zhang, Wang, Yuan, Liu, Yu, Luo, Fahima, Nevo, Li, Liu (CR34) 2020; 228
(CR25) 2018; 361
Liu, Shi, Yang (CR37) 2018; 60
Schulz-Streeck, Ogutu, Piepho (CR51) 2011; 5
Borrill, Harrington, Uauy (CR4) 2019; 97
Endelman (CR12) 2011; 4
Jia, Xie, Cheng, Kong, Wang, Gao, Zhao, Guo, Wang, Li, Cui, Hu, Zhao, Wang, Ru, Zhang (CR27) 2021; 22
Sapkota, Hao, Johnson, Buck, Aoun, Mergoum (CR49) 2019; 12
Tang, Zhao, Ren, Yang, Zhu, Zhao (CR56) 2020; 62
Afzal, Chaudhari, Gul, Farooq, Ali, Nisar, Sarfraz, Shehzadi, Mujeeb-Kazi, Hakeem (CR1) 2015
Dong, Hegarty, Zhang, Zhang, Chao, Chen, Zhou, Dubcovsky (CR11) 2017; 130
Pinto da Silva, Zanella, Martinelli, Chaves, Hiebert, McCallum, Boyd (CR45) 2018; 108
Michel, Ametz, Gungor, Epure, Grausgruber, Löschenberger, Buerstmayr (CR41) 2016; 129
Walkowiak, Gao, Monat, Haberer, Kassa, Brinton, Ramirez-Gonzalez, Kolodziej, Delorean, Thambugala, Klymiuk, Byrns, Gundlach, Bandi, Siri, Nilsen, Aquino, Himmelbach, Copetti, Ban, Venturini, Bevan, Clavijo, Koo, Ens, Wiebe, N’Diaye, Fritz, Gutwin, Fiebig, Fosker, Fu, Accinelli, Gardner, Fradgley, Gutierrez-Gonzalez, Halstead-Nussloch, Hatakeyama, Koh, Deek, Costamagna, Fobert, Heavens, Kanamori, Kawaura, Kobayashi, Krasileva, Kuo, McKenzie, Murata, Nabeka, Paape, Padmarasu, Percival-Alwyn, Kagale, Scholz, Sese, Juliana, Singh, Shimizu-Inatsugi, Swarbreck, Cockram, Budak, Tameshige, Tanaka, Tsuji, Wright, Wu, Steuernagel, Small, Cloutier, Keeble-Gagnère, Muehlbauer, Tibbets, Nasuda, Melonek, Hucl, Sharpe, Clark, Legg, Bharti, Langridge, Hall, Uauy, Mascher, Krattinger, Handa, Shimizu, Distelfeld, Chalmers, Keller, Mayer, Poland, Stein, McCartney, Spannagl, Wicker, Pozniak (CR58) 2020; 588
Liu, Liu, Zhang, Jia, Wang, Gao, Peng, Jin, Chen (CR36) 2017; 47
Ding, Shi, Yang (CR10) 2019; 222
Krattinger, Lagudah, Spielmeyer, Singh, Huerta-Espino, McFadden, Bossolini, Selter, Keller (CR31) 2009; 323
Huerta-Espino, Singh, Germán, McCallum, Park, Chen, Bhardwaj, Goyeau (CR24) 2011; 179
Winfield, Lu, Wilson, Coghill, Edwards (CR61) 2010; 8
Fu, Uauy, Distelfeld, Blechl, Epstein, Chen, Sela, Fahima, Dubcovsky (CR14) 2009; 323
He, Zhu, Zhao, Jiang, Ji, Ji, Qiu, Li, Bie (CR22) 2018; 11
Kang, Zhou, Merry, Barry (CR29) 2020; 69
Bassi, Bentley, Charmet, Ortiz, Crossa (CR2) 2016; 242
Guo, Ren, Tang, Shi, Zhou (CR16) 2019; 7
Juliana, Singh, Singh, Crossa, Huerta-Espino, Lan, Bhavani, Rutkoski, Poland, Bergstrom, Sorrells (CR28) 2017; 130
Zhang, Hiebert, McIntosh, McCallum, Thomas, Hoxha, Singh, Bansal (CR70) 2016; 129
Sánchez-Martín, Widrig, Herren, Wicker, Zbinden, Gronnier, Spörri, Praz, Heuberger, Kolodziej, Isaksson, Steuernagel, Karafiátová, Doležel, Zipfel, Keller (CR48) 2021; 7
Xu, Feng, Fan, Liu, Li, Zhou, Ma (CR66) 2018; 17
Zhang, Yang, Wang, Liu, Li, Fu, Wang, Nie, Liu, Ji (CR69) 2014; 15
Zhang, Huang, Zhang, Hao, Lyu, Wang, Epstein, Liu, Kou, Qi, Chen, Li, Gao, Ni, Zhang, Hao, Wang, Chen, Luo, Zheng, Wu, Liu, Fu (CR71) 2019; 10
Rong, Millet, Manisterski, Feldman (CR47) 2000; 115
Daetwyler, Bansal, Bariana, Hayden, Hayes (CR8) 2014; 127
Cheng, Xu, Wang, See, Chen (CR6) 2014; 127
Kolmer, Bernardo, Bai, Hayden, Chao (CR30) 2018; 108
Prasad, Savadi, Bhardwaj, Gupta (CR46) 2020; 124
Desta, Ortiz (CR9) 2014; 19
Moore, Herrera-Foessel, Lan, Schnippenkoetter, Ayliffe, Huerta-Espino, Lillemo, Viccars, Milne, Periyannan, Kong, Spielmeyer, Talbot, Bariana, Patrick, Dodds, Singh, Lagudah (CR42) 2015; 47
Cloutier, McCallum, Loutre, Banks, Wicker, Feuillet, Keller, Jordan (CR7) 2007; 65
Lu, Guo, Wang, Li, Li, Li, Qiu, Shi, Yang, Wang, Guo, Xie, Wu, Chen, Li, Zhang, Dong, Zhang, Zhu, Yu, Zhang, Deal, Huo, Liu, Luo, Dvorak, Gu, Li, Liu (CR39) 2020; 11
Battenfield, Guzmán, Gaynor, Singh, Peña, Dreisigacker, Fritz, Poland (CR3) 2016
Li, Shi, Hu, Wu, Qiu, Qu, Xie, Wu, Zhang, Yang, Liu, Zhou, Liu, Li (CR33) 2020; 104
Zeng, Luo (CR68) 2006; 90
Thind, Wicker, Šimková, Fossati, Moullet, Brabant, Vrána, Doležel, Krattinger (CR57) 2017; 35
Kruse, Carle, Wen, Skinner, Murray, Garland-Campbell, Carter (CR32) 2017; 7
Bradbury, Zhang, Kroon, Casstevens, Ramdoss, Buckler (CR5) 2007; 23
Lu, Chen, Liu, He, Xia (CR38) 2016; 15
Wickham (CR60) 2016
Zimin, Puiu, Hall, Kingan, Clavijo, Salzberg (CR72) 2017; 6
Jannink, Lorenz, Iwata (CR26) 2010; 9
Graham, McNeney, Blay, Shin (CR15) 2006; 16
Xiao, Liu, Asseng, Xia, Tang, Liu, Cao, Zhu (CR64) 2018; 260–261
Guo, Xin, Wang, Yao, Hu, Song, Yu, Chen, Wang, Guan, Appels, Peng, Ni, Sun (CR17) 2020; 11
Sun, Hu, Song, Qiu, Cui, Wu, Zhang, Liu, Yang, Qu, Li, Li, Cheng, Zhou, Liu, Li, Li (CR54) 2018; 131
Meuwissen, Hayes, Goddard (CR40) 2001; 157
Xing, Hu, Liu, Witek, Zhou, Xu, Zhou, Gao, Huang, Zhang, Wang, Chen, Wang, Jones, Karafiátová, Vrána, Bartoš, Doležel, Tian, Wu, Cao (CR65) 2018; 11
Wu, Yu, Wang, Ce, Huang, Jiao, Yu, Nie, Wang, Liu, Weining, Singh, Bhavani, Kang, Han, Zeng (CR62) 2020
Sasaki, Christov, Tsuda, Imai (CR50) 2013; 55
Tang, Cao, Xu, Jiang, Luo, Ma, Fan, Zhou (CR55) 2017; 101
Pang, Liu, Wang, St Amand, Bernardo, Li, He, Li, Wang, Yuan, Dong, Su, Zhang, Zhao, Liang, Jia, Shen, Lu, Jiang, Wu, Li, Wang, Kong, Bai, Liu (CR44) 2020; 13
He, Ji, Zhu, Li, Zhao, Jiang, Bie (CR21) 2017
Hao, Wang, Wang, Wang, Fu, Huang, Kang (CR19) 2016; 11
Würschum, Longin, Hahn, Tucker, Leiser (CR63) 2017; 89
Lipka, Tian, Wang, Peiffer, Li, Bradbury, Gore, Buckler, Zhang (CR35) 2012; 28
Figueroa, Hammond-Kosack, Solomon (CR13) 2018; 19
CR20
Hua, Liu, Zhu, Xie, Yang, Zhou, Duan, Sun, Liu (CR23) 2009; 119
Wang, Zou, Li, Lin, Tang (CR59) 2020; 11
Jin, Zhai, Wang, Ding, Guo, Bai, Wang (CR67) 2018; 24
Schwessinger (CR52) 2017; 213
Hao, Parks, Cowger, Chen, Wang, Bland, Murphy, Guedira, Brown-Guedira, Johnson (CR18) 2015; 128
Z Dong (3863_CR11) 2017; 130
B Sheng (3863_CR53) 1988; 1
J Huerta-Espino (3863_CR24) 2011; 179
S Walkowiak (3863_CR58) 2020; 588
X-d Xu (3863_CR66) 2018; 17
Y Kang (3863_CR29) 2020; 69
M Li (3863_CR34) 2020; 228
J Sánchez-Martín (3863_CR48) 2021; 7
J Wu (3863_CR62) 2020
IWGSC (3863_CR25) 2018; 361
J Liu (3863_CR37) 2018; 60
THE Meuwissen (3863_CR40) 2001; 157
L Xiao (3863_CR64) 2018; 260–261
Y Li (3863_CR33) 2020; 104
J-l Lu (3863_CR38) 2016; 15
HD Daetwyler (3863_CR8) 2014; 127
P Prasad (3863_CR46) 2020; 124
Y Pang (3863_CR44) 2020; 13
F Afzal (3863_CR1) 2015
EB Kruse (3863_CR32) 2017; 7
J Guo (3863_CR16) 2019; 7
K Tang (3863_CR56) 2020; 62
L Xing (3863_CR65) 2018; 11
H Zhang (3863_CR69) 2014; 15
Y Hao (3863_CR19) 2016; 11
Y Ding (3863_CR10) 2019; 222
D Fu (3863_CR14) 2009; 323
X Tang (3863_CR55) 2017; 101
SD Battenfield (3863_CR3) 2016
P Borrill (3863_CR4) 2019; 97
S Sapkota (3863_CR49) 2019; 12
M Figueroa (3863_CR13) 2018; 19
P Juliana (3863_CR28) 2017; 130
P Lu (3863_CR39) 2020; 11
S Cloutier (3863_CR7) 2007; 65
JW Moore (3863_CR42) 2015; 47
P Zhang (3863_CR70) 2016; 129
P Cheng (3863_CR6) 2014; 127
S-M Zeng (3863_CR68) 2006; 90
JK Rong (3863_CR47) 2000; 115
FM Bassi (3863_CR2) 2016; 242
H He (3863_CR22) 2018; 11
H Wang (3863_CR59) 2020; 11
AK Thind (3863_CR57) 2017; 35
Y Jin (3863_CR67) 2018; 24
J Graham (3863_CR15) 2006; 16
T Schulz-Streeck (3863_CR51) 2011; 5
W Guo (3863_CR17) 2020; 11
AV Zimin (3863_CR72) 2017; 6
H Sun (3863_CR54) 2018; 131
PJ Bradbury (3863_CR5) 2007; 23
B Liu (3863_CR36) 2017; 47
W Hua (3863_CR23) 2009; 119
B Schwessinger (3863_CR52) 2017; 213
J Jia (3863_CR27) 2021; 22
JL Jannink (3863_CR26) 2010; 9
S Michel (3863_CR41) 2016; 129
ZA Desta (3863_CR9) 2014; 19
H He (3863_CR21) 2017
RP Oliver (3863_CR43) 2014; 70
H Wickham (3863_CR60) 2016
AE Lipka (3863_CR35) 2012; 28
K Sasaki (3863_CR50) 2013; 55
MO Winfield (3863_CR61) 2010; 8
T Würschum (3863_CR63) 2017; 89
S Krattinger (3863_CR31) 2009; 323
GB Pinto da Silva (3863_CR45) 2018; 108
JB Endelman (3863_CR12) 2011; 4
Y Hao (3863_CR18) 2015; 128
JA Kolmer (3863_CR30) 2018; 108
C Zhang (3863_CR71) 2019; 10
3863_CR20
References_xml – volume: 6
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR72
  article-title: The first near-complete assembly of the hexaploid bread wheat genome,
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix097
– volume: 7
  start-page: e8190
  year: 2019
  end-page: e8190
  ident: CR16
  article-title: Characterization and expression profiling of the ICE-CBF-COR genes in wheat
  publication-title: PeerJ
  doi: 10.7717/peerj.8190
– volume: 5
  start-page: S12
  year: 2011
  ident: CR51
  article-title: Pre-selection of markers for genomic selection
  publication-title: BMC Proceed
  doi: 10.1186/1753-6561-5-S3-S12
– start-page: 293
  year: 2015
  end-page: 317
  ident: CR1
  article-title: Bread wheat ( L.) under biotic and abiotic stresses: an overview
  publication-title: Crop production and global environmental issues
  doi: 10.1007/978-3-319-23162-4_13
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  ident: CR40
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 11
  start-page: e0150717
  year: 2016
  ident: CR19
  article-title: Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to stripe rust at the adult plant stage
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0150717
– volume: 62
  start-page: 258
  year: 2020
  end-page: 263
  ident: CR56
  article-title: The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12918
– volume: 35
  start-page: 793
  year: 2017
  end-page: 796
  ident: CR57
  article-title: Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3877
– volume: 108
  start-page: 246
  year: 2018
  end-page: 253
  ident: CR30
  article-title: Adult plant leaf rust resistance derived from toropi wheat is conditioned by and three minor QTL
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-07-17-0254-R
– volume: 323
  start-page: 1360
  year: 2009
  end-page: 1363
  ident: CR31
  article-title: A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat
  publication-title: Science
  doi: 10.1126/science.1166453
– volume: 127
  start-page: 2267
  year: 2014
  end-page: 2277
  ident: CR6
  article-title: Molecular mapping of genes and for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2378-8
– volume: 11
  start-page: 5085
  year: 2020
  ident: CR17
  article-title: Origin and adaptation to high altitude of Tibetan semi-wild wheat
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18738-5
– volume: 7
  start-page: 775
  issue: 3
  year: 2017
  end-page: 780
  ident: CR32
  article-title: Genomic regions associated with tolerance to freezing stress and snow mold in winter wheat
  publication-title: G3-Genes Genom Genet
  doi: 10.1534/g3.116.037622
– volume: 179
  start-page: 143
  year: 2011
  end-page: 160
  ident: CR24
  article-title: Global status of wheat leaf rust caused by Puccinia triticina
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0361-x
– volume: 115
  start-page: 121
  year: 2000
  end-page: 126
  ident: CR47
  article-title: A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping
  publication-title: Euphytica
  doi: 10.1023/A:1003950431049
– volume: 4
  start-page: 250
  year: 2011
  end-page: 255
  ident: CR12
  article-title: ridge regression and other kernels for genomic selection with R package rrBLUP
  publication-title: The Plant Genome
  doi: 10.3835/plantgenome2011.08.0024
– year: 2016
  ident: CR3
  article-title: Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program
  publication-title: The Plant Genome
  doi: 10.3835/plantgenome2016.01.0005
– volume: 361
  start-page: eaar7191
  year: 2018
  ident: CR25
  article-title: Shifting the limits in wheat research and breeding using a fully annotated reference genome
  publication-title: Science
  doi: 10.1126/science.aar7191
– volume: 7
  start-page: 327
  year: 2021
  end-page: 341
  ident: CR48
  article-title: Wheat resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins
  publication-title: Nat Plants
  doi: 10.1038/s41477-021-00869-2
– volume: 228
  start-page: 1027
  issue: 3
  year: 2020
  end-page: 1037
  ident: CR34
  article-title: A CNL protein in wild emmer wheat confers powdery mildew resistance
  publication-title: New Phytol
  doi: 10.1111/nph.16761
– volume: 130
  start-page: 2127
  year: 2017
  end-page: 2137
  ident: CR11
  article-title: Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS ( )
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-017-2946-9
– volume: 24
  start-page: 211
  year: 2018
  end-page: 229
  ident: CR67
  article-title: Identification of genes from the ICE–CBF–COR pathway under cold stress in Aegilops-Triticum composite group and the evolution analysis with those from Triticeae
  publication-title: Physiol Mol Biol Pla
  doi: 10.1007/s12298-017-0495-y
– volume: 119
  start-page: 223
  year: 2009
  end-page: 230
  ident: CR23
  article-title: Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides)
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-009-1031-4
– volume: 131
  start-page: 2085
  year: 2018
  end-page: 2097
  ident: CR54
  article-title: : a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-018-3135-1
– volume: 11
  start-page: 874
  year: 2018
  end-page: 878
  ident: CR65
  article-title: , Encoding a typical CC-NBS-LRR protein, encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.02.013
– volume: 17
  start-page: 37
  year: 2018
  end-page: 45
  ident: CR66
  article-title: Identification of the resistance gene to powdery mildew in Chinese wheat landrace Baiyouyantiao
  publication-title: J Integr Agr
  doi: 10.1016/S2095-3119(16)61610-6
– volume: 16
  start-page: 1
  issue: 3
  year: 2006
  end-page: 10
  ident: CR15
  article-title: LDheatmap: an r function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphism
  publication-title: J Stat Softw
– volume: 101
  start-page: 1753
  year: 2017
  end-page: 1760
  ident: CR55
  article-title: Effects of climate change on epidemics of powdery mildew in winter wheat in China
  publication-title: Plant Dis
  doi: 10.1094/PDIS-02-17-0168-RE
– volume: 90
  start-page: 980
  year: 2006
  end-page: 988
  ident: CR68
  article-title: Long-distance spread and interregional epidemics of wheat stripe rust in China
  publication-title: Plant Dis
  doi: 10.1094/PD-90-0980
– volume: 9
  start-page: 166
  year: 2010
  end-page: 177
  ident: CR26
  article-title: Genomic selection in plant breeding: from theory to practice
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elq001
– volume: 12
  start-page: 190033
  issue: 3
  year: 2019
  ident: CR49
  article-title: Genome-wide association study of a worldwide collection of wheat genotypes reveals novel quantitative trait loci for leaf rust resistance
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2019.05.0033
– volume: 11
  start-page: 1353
  year: 2020
  ident: CR59
  article-title: An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15139-6
– volume: 19
  start-page: 592
  year: 2014
  end-page: 601
  ident: CR9
  article-title: Genomic selection: genome-wide prediction in plant improvement
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.05.006
– volume: 129
  start-page: 1179
  year: 2016
  end-page: 1189
  ident: CR41
  article-title: Genomic selection across multiple breeding cycles in applied bread wheat breeding
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2694-2
– volume: 70
  start-page: 1641
  year: 2014
  end-page: 1645
  ident: CR43
  article-title: A reassessment of the risk of rust fungi developing resistance to fungicides
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.3767
– volume: 22
  start-page: 26
  year: 2021
  ident: CR27
  article-title: Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02225-7
– volume: 89
  start-page: 764
  year: 2017
  end-page: 773
  ident: CR63
  article-title: Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat
  publication-title: Plant J
  doi: 10.1111/tpj.13424
– volume: 8
  start-page: 749
  year: 2010
  end-page: 771
  ident: CR61
  article-title: Plant responses to cold: transcriptome analysis of wheat
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2010.00536.x
– volume: 222
  start-page: 1690
  year: 2019
  end-page: 1704
  ident: CR10
  article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants
  publication-title: New Phytol
  doi: 10.1111/nph.15696
– volume: 13
  start-page: 1311
  year: 2020
  end-page: 1327
  ident: CR44
  article-title: High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2020.07.008
– volume: 588
  start-page: 277
  year: 2020
  end-page: 283
  ident: CR58
  article-title: Multiple wheat genomes reveal global variation in modern breeding
  publication-title: Nature
  doi: 10.1038/s41586-020-2961-x
– volume: 60
  start-page: 780
  year: 2018
  end-page: 795
  ident: CR37
  article-title: Insights into the regulation of C-repeat binding factors in plant cold signaling
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12657
– volume: 124
  start-page: 537
  year: 2020
  end-page: 550
  ident: CR46
  article-title: The progress of leaf rust research in wheat
  publication-title: Fungal Biol
  doi: 10.1016/j.funbio.2020.02.013
– year: 2016
  ident: CR60
  publication-title: ggplot2: Elegant Graphics for Data Analysis
  doi: 10.1007/978-3-319-24277-4
– volume: 15
  start-page: 898
  year: 2014
  ident: CR69
  article-title: Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-898
– year: 2017
  ident: CR21
  article-title: Genetic, physical and comparative mapping of the powdery mildew resistance gene Pm21 Originating from Dasypyrum villosum
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01914
– volume: 10
  start-page: 4023
  year: 2019
  ident: CR71
  article-title: An ancestral NB-LRR with duplicated 3′UTRs confers stripe rust resistance in wheat and barley
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11872-9
– volume: 130
  start-page: 1415
  year: 2017
  end-page: 1430
  ident: CR28
  article-title: Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-017-2897-1
– volume: 55
  start-page: 136
  year: 2013
  end-page: 147
  ident: CR50
  article-title: Identification of a Novel LEA Protein Involved in Freezing Tolerance in Wheat
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pct164
– volume: 213
  start-page: 1625
  year: 2017
  end-page: 1631
  ident: CR52
  article-title: Fundamental wheat stripe rust research in the 21st century
  publication-title: New Phytol
  doi: 10.1111/nph.14159
– volume: 47
  start-page: 681
  year: 2017
  end-page: 687
  ident: CR36
  article-title: Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China
  publication-title: Acta Phytopathol Sin
– volume: 108
  start-page: 1344
  year: 2018
  end-page: 1354
  ident: CR45
  article-title: Quantitative trait loci conferring leaf rust resistance in hexaploid wheat
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-06-18-0208-RVW
– volume: 23
  start-page: 2633
  year: 2007
  end-page: 2635
  ident: CR5
  article-title: TASSEL: software for association mapping of complex traits in diverse samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm308
– volume: 19
  start-page: 1523
  year: 2018
  end-page: 1536
  ident: CR13
  article-title: A review of wheat diseases—a field perspective
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12618
– volume: 11
  start-page: 879
  year: 2018
  end-page: 882
  ident: CR22
  article-title: , encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.03.004
– volume: 260–261
  start-page: 154
  year: 2018
  end-page: 164
  ident: CR64
  article-title: Estimating spring frost and its impact on yield across winter wheat in China
  publication-title: Agr Forest Meteorol
  doi: 10.1016/j.agrformet.2018.06.006
– volume: 28
  start-page: 2397
  year: 2012
  end-page: 2399
  ident: CR35
  article-title: GAPIT: genome association and prediction integrated tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts444
– year: 2020
  ident: CR62
  article-title: A large-scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13452
– volume: 129
  start-page: 485
  year: 2016
  end-page: 493
  ident: CR70
  article-title: The relationship of leaf rust resistance gene and hybrid necrosis gene on wheat chromosome 2BS
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-015-2642-6
– volume: 15
  start-page: 2461
  year: 2016
  end-page: 2468
  ident: CR38
  article-title: Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175
  publication-title: J Integr Agr
  doi: 10.1016/S2095-3119(16)61379-5
– volume: 69
  start-page: 601
  year: 2020
  end-page: 617
  ident: CR29
  article-title: Mechanisms of powdery mildew resistance of wheat – a review of molecular breeding
  publication-title: Plant Pathol
  doi: 10.1111/ppa.13166
– volume: 47
  start-page: 1494
  year: 2015
  end-page: 1498
  ident: CR42
  article-title: A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat
  publication-title: Nat Genet
  doi: 10.1038/ng.3439
– volume: 104
  start-page: 743
  year: 2020
  end-page: 751
  ident: CR33
  article-title: Identification of a recessive gene conferring resistance to powdery mildew in wheat landrace Qingxinmai using BSR-Seq analysis
  publication-title: Plant Dis
  doi: 10.1094/PDIS-08-19-1745-RE
– volume: 97
  start-page: 56
  year: 2019
  end-page: 72
  ident: CR4
  article-title: Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat
  publication-title: Plant J
– volume: 323
  start-page: 1357
  year: 2009
  end-page: 1360
  ident: CR14
  article-title: A kinase-START gene confers temperature-dependent resistance to wheat stripe rust
  publication-title: Science
  doi: 10.1126/science.1166289
– volume: 65
  start-page: 93
  year: 2007
  end-page: 106
  ident: CR7
  article-title: Leaf rust resistance gene , isolated from bread wheat ( L.) is a member of the large psr567 gene family
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9201-8
– volume: 242
  start-page: 23
  year: 2016
  end-page: 36
  ident: CR2
  article-title: Breeding schemes for the implementation of genomic selection in wheat ( spp.)
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2015.08.021
– volume: 1
  start-page: 49
  year: 1988
  ident: CR53
  article-title: Scoring powdery mildew with infection type at wheat seedling stage
  publication-title: Plant Prot
– volume: 127
  start-page: 1795
  year: 2014
  end-page: 1803
  ident: CR8
  article-title: Genomic prediction for rust resistance in diverse wheat landraces
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2341-8
– volume: 11
  start-page: 680
  year: 2020
  ident: CR39
  article-title: A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14294-0
– ident: CR20
– volume: 128
  start-page: 465
  year: 2015
  end-page: 476
  ident: CR18
  article-title: Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2445-1
– volume: 323
  start-page: 1360
  year: 2009
  ident: 3863_CR31
  publication-title: Science
  doi: 10.1126/science.1166453
– volume: 97
  start-page: 56
  year: 2019
  ident: 3863_CR4
  publication-title: Plant J
  doi: 10.1111/tpj.14150
– volume: 4
  start-page: 250
  year: 2011
  ident: 3863_CR12
  publication-title: The Plant Genome
  doi: 10.3835/plantgenome2011.08.0024
– year: 2016
  ident: 3863_CR3
  publication-title: The Plant Genome
  doi: 10.3835/plantgenome2016.01.0005
– volume: 65
  start-page: 93
  year: 2007
  ident: 3863_CR7
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9201-8
– volume: 12
  start-page: 190033
  issue: 3
  year: 2019
  ident: 3863_CR49
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2019.05.0033
– volume: 101
  start-page: 1753
  year: 2017
  ident: 3863_CR55
  publication-title: Plant Dis
  doi: 10.1094/PDIS-02-17-0168-RE
– volume: 13
  start-page: 1311
  year: 2020
  ident: 3863_CR44
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2020.07.008
– volume: 19
  start-page: 1523
  year: 2018
  ident: 3863_CR13
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12618
– volume: 108
  start-page: 1344
  year: 2018
  ident: 3863_CR45
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-06-18-0208-RVW
– volume: 22
  start-page: 26
  year: 2021
  ident: 3863_CR27
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02225-7
– volume: 7
  start-page: 327
  year: 2021
  ident: 3863_CR48
  publication-title: Nat Plants
  doi: 10.1038/s41477-021-00869-2
– volume: 70
  start-page: 1641
  year: 2014
  ident: 3863_CR43
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.3767
– volume: 127
  start-page: 2267
  year: 2014
  ident: 3863_CR6
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2378-8
– volume: 17
  start-page: 37
  year: 2018
  ident: 3863_CR66
  publication-title: J Integr Agr
  doi: 10.1016/S2095-3119(16)61610-6
– start-page: 293
  volume-title: Crop production and global environmental issues
  year: 2015
  ident: 3863_CR1
  doi: 10.1007/978-3-319-23162-4_13
– volume: 8
  start-page: 749
  year: 2010
  ident: 3863_CR61
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2010.00536.x
– volume: 47
  start-page: 1494
  year: 2015
  ident: 3863_CR42
  publication-title: Nat Genet
  doi: 10.1038/ng.3439
– year: 2017
  ident: 3863_CR21
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01914
– volume-title: ggplot2: Elegant Graphics for Data Analysis
  year: 2016
  ident: 3863_CR60
  doi: 10.1007/978-3-319-24277-4
– volume: 15
  start-page: 2461
  year: 2016
  ident: 3863_CR38
  publication-title: J Integr Agr
  doi: 10.1016/S2095-3119(16)61379-5
– volume: 60
  start-page: 780
  year: 2018
  ident: 3863_CR37
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12657
– volume: 11
  start-page: 5085
  year: 2020
  ident: 3863_CR17
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18738-5
– volume: 5
  start-page: S12
  year: 2011
  ident: 3863_CR51
  publication-title: BMC Proceed
  doi: 10.1186/1753-6561-5-S3-S12
– volume: 11
  start-page: 1353
  year: 2020
  ident: 3863_CR59
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15139-6
– volume: 115
  start-page: 121
  year: 2000
  ident: 3863_CR47
  publication-title: Euphytica
  doi: 10.1023/A:1003950431049
– volume: 7
  start-page: 775
  issue: 3
  year: 2017
  ident: 3863_CR32
  publication-title: G3-Genes Genom Genet
  doi: 10.1534/g3.116.037622
– volume: 9
  start-page: 166
  year: 2010
  ident: 3863_CR26
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elq001
– volume: 47
  start-page: 681
  year: 2017
  ident: 3863_CR36
  publication-title: Acta Phytopathol Sin
– ident: 3863_CR20
– volume: 28
  start-page: 2397
  year: 2012
  ident: 3863_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts444
– year: 2020
  ident: 3863_CR62
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13452
– volume: 129
  start-page: 1179
  year: 2016
  ident: 3863_CR41
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2694-2
– volume: 24
  start-page: 211
  year: 2018
  ident: 3863_CR67
  publication-title: Physiol Mol Biol Pla
  doi: 10.1007/s12298-017-0495-y
– volume: 157
  start-page: 1819
  year: 2001
  ident: 3863_CR40
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 260–261
  start-page: 154
  year: 2018
  ident: 3863_CR64
  publication-title: Agr Forest Meteorol
  doi: 10.1016/j.agrformet.2018.06.006
– volume: 127
  start-page: 1795
  year: 2014
  ident: 3863_CR8
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2341-8
– volume: 128
  start-page: 465
  year: 2015
  ident: 3863_CR18
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2445-1
– volume: 104
  start-page: 743
  year: 2020
  ident: 3863_CR33
  publication-title: Plant Dis
  doi: 10.1094/PDIS-08-19-1745-RE
– volume: 11
  start-page: 879
  year: 2018
  ident: 3863_CR22
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.03.004
– volume: 222
  start-page: 1690
  year: 2019
  ident: 3863_CR10
  publication-title: New Phytol
  doi: 10.1111/nph.15696
– volume: 124
  start-page: 537
  year: 2020
  ident: 3863_CR46
  publication-title: Fungal Biol
  doi: 10.1016/j.funbio.2020.02.013
– volume: 19
  start-page: 592
  year: 2014
  ident: 3863_CR9
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.05.006
– volume: 242
  start-page: 23
  year: 2016
  ident: 3863_CR2
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2015.08.021
– volume: 23
  start-page: 2633
  year: 2007
  ident: 3863_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm308
– volume: 62
  start-page: 258
  year: 2020
  ident: 3863_CR56
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12918
– volume: 11
  start-page: 874
  year: 2018
  ident: 3863_CR65
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.02.013
– volume: 6
  start-page: 1
  year: 2017
  ident: 3863_CR72
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix097
– volume: 16
  start-page: 1
  issue: 3
  year: 2006
  ident: 3863_CR15
  publication-title: J Stat Softw
– volume: 11
  start-page: e0150717
  year: 2016
  ident: 3863_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0150717
– volume: 69
  start-page: 601
  year: 2020
  ident: 3863_CR29
  publication-title: Plant Pathol
  doi: 10.1111/ppa.13166
– volume: 323
  start-page: 1357
  year: 2009
  ident: 3863_CR14
  publication-title: Science
  doi: 10.1126/science.1166289
– volume: 213
  start-page: 1625
  year: 2017
  ident: 3863_CR52
  publication-title: New Phytol
  doi: 10.1111/nph.14159
– volume: 361
  start-page: eaar7191
  year: 2018
  ident: 3863_CR25
  publication-title: Science
  doi: 10.1126/science.aar7191
– volume: 1
  start-page: 49
  year: 1988
  ident: 3863_CR53
  publication-title: Plant Prot
– volume: 130
  start-page: 1415
  year: 2017
  ident: 3863_CR28
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-017-2897-1
– volume: 130
  start-page: 2127
  year: 2017
  ident: 3863_CR11
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-017-2946-9
– volume: 131
  start-page: 2085
  year: 2018
  ident: 3863_CR54
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-018-3135-1
– volume: 10
  start-page: 4023
  year: 2019
  ident: 3863_CR71
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11872-9
– volume: 90
  start-page: 980
  year: 2006
  ident: 3863_CR68
  publication-title: Plant Dis
  doi: 10.1094/PD-90-0980
– volume: 11
  start-page: 680
  year: 2020
  ident: 3863_CR39
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14294-0
– volume: 35
  start-page: 793
  year: 2017
  ident: 3863_CR57
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3877
– volume: 129
  start-page: 485
  year: 2016
  ident: 3863_CR70
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-015-2642-6
– volume: 179
  start-page: 143
  year: 2011
  ident: 3863_CR24
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0361-x
– volume: 588
  start-page: 277
  year: 2020
  ident: 3863_CR58
  publication-title: Nature
  doi: 10.1038/s41586-020-2961-x
– volume: 89
  start-page: 764
  year: 2017
  ident: 3863_CR63
  publication-title: Plant J
  doi: 10.1111/tpj.13424
– volume: 108
  start-page: 246
  year: 2018
  ident: 3863_CR30
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-07-17-0254-R
– volume: 15
  start-page: 898
  year: 2014
  ident: 3863_CR69
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-898
– volume: 7
  start-page: e8190
  year: 2019
  ident: 3863_CR16
  publication-title: PeerJ
  doi: 10.7717/peerj.8190
– volume: 119
  start-page: 223
  year: 2009
  ident: 3863_CR23
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-009-1031-4
– volume: 228
  start-page: 1027
  issue: 3
  year: 2020
  ident: 3863_CR34
  publication-title: New Phytol
  doi: 10.1111/nph.16761
– volume: 55
  start-page: 136
  year: 2013
  ident: 3863_CR50
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pct164
SSID ssj0002503
Score 2.478233
Snippet Key message High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic...
Key message
Key message High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic...
Key messageHigh-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic...
High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic prediction...
KEY MESSAGE: High-resolution genome-wide association study (GWAS) facilitated QTL fine mapping and candidate gene identification, and the GWAS based genomic...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2857
SubjectTerms Agricultural research
Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
Calories
Chromosome mapping
Cold tolerance
Control
Cultivars
Disease resistance
Diseases and pests
Fungal diseases of plants
Gene mapping
genes
Genetic aspects
Genome-wide association studies
genome-wide association study
Genomes
Genomics
Genotyping
genotyping by sequencing
Hardiness
Leaf rust
Life Sciences
marker-assisted selection
Methods
Original Article
Plant Biochemistry
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant immunology
Plants
Powdery mildew
prediction
Prediction models
Quantitative trait loci
quantitative traits
Single-nucleotide polymorphism
staple crops
stress tolerance
Stripe rust
Wheat
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BAhIceCwgAgsyCIkDWNvGiZOcUIVYwWWFeEi9WX5lVWlJStJS8e-ZcdxUBdELt6ievDrjmc-Z8TcAL3XhC3S9kirVak6EchwPapx4vpaTzGLQKEOzieL8vJzPq0_xg1sfyyq3PjE4atda-kZ-OlBjCZFlb5c_OHWNouxqbKFxFa5R22yy82I-LrgovI9VcwhL0rhpJmydCzklTgUKE1FKweVeYPrTPf-VJw3h5-zO_z74XbgdgSebDZZyD6745hhuzS66SL7hj-HG0Jjy133YUPkHx5V4NExGVK7fPd8snGd6p1EW2GmZbtwgsbBs2VHqJwwiHmYxAcTwWoRU0cSCNJqfY6v20nfhp0XDNhQVHsC3s_df333gsUUDt1kpV7wkPvu6klpal2lRWSdzMfG2mphcI1TRwtU5juQmt4WYaimN1jWt6lAqLYx4CEdN2_hHwLwxtUa85_LSI0YzpirNVNtUONoGmFUJTLf6UTbyl1MbjUs1Mi8HnSrUqQo6VTKB1-M5y4G946D0C1K7IlqMhupuLvS679XHL5_VTBYYGhALpQm8ikJ1i7e3Om5jwJcgJq09yZM9SZy3dn94ay8q-o1e7YwlgefjMJ1JtXCNb9ckI2QmiartgIwUCC0rWRUJvNla7u42__4PHh9-qidwMw1zhorsTuBo1a39U7huf64WffcszL7fBIEz2g
  priority: 102
  providerName: ProQuest
Title High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat
URI https://link.springer.com/article/10.1007/s00122-021-03863-6
https://www.proquest.com/docview/2559953344
https://www.proquest.com/docview/2536464305
https://www.proquest.com/docview/2636589697
Volume 134
WOSCitedRecordID wos000656785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1432-2242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002503
  issn: 0040-5752
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSR44GMMERiVQUg8gKU2TuzksaBN8FJVG6C-WY7jTJVGOiUtFf89d46TqXxMgpcoin_5ss93Z93dzwCvjXIKVa-kTLWKE6Ecx5MKJ56r5DixaDQyv9mEms2yxSKfh6Kwts9270OSXlMPxW4-CsQppWAsMim43IODlNhmaI1-_nXQv2jUh1w5dEbiUCrz52fsmKNflfJv0VFvdE4f_N_nPoT7wclk004qHsEtVx_CvelFE4g23CHc6Tah_PEYtpTqwXHVHYSQEW3rN8e3y9Ixcz16zDPRMlOXHWJp2VVDYR7fiL4vC8Eehs8irxTFyaNR1Eq2Xl26xl9a1mxLFuAIvpyefP7wkYftGLhNMrnmGXHXV7k00paJEbktZSrGzubjIjXolhhRVim2pEVqlZgYKQtjKlrBISpWhXgC-_Wqdk-BuaKoDPp2ZZo59MeKIs-KibGxKKnkL8kjmPSjom3gKqctMy71wLLsu1dj92rfvVpG8Ha456pj6rgR_YoGWxMFRk05Nhdm07b60_mZnkqFZgD9njiCNwFUrfD11oSSBfwJYs3aQR7vIHGO2t3mXqZ00BGt7sjehEiSCF4OzXQn5b3VbrUhjJCJJFq2GzBSoBuZy1xF8K6XxevX_L0Pnv0b_Dncjb04U4LdMeyvm417Abft9_WybUawpxbKH7MRHLw_mc3PRpRIOx_52fkTeUYuFQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIOPEoRhgILAnGgFo7XXtsHhCKgatQSVdBKvS3r9bqKVOxgJ0T9U_xGZtaPKCBy64FblB3b8fqbhzMz3wC8VJGJ0PQKqlTLXSKUc_FDjopncuEFGp1GbIdNRONxfHqaHG3Ar64XhsoqO5toDXVWavqP_G1DjcV5ELyf_nBpahRlV7sRGg0sDszFAl_Z6nejj_h8X_n-3qfjD_tuO1XA1UEsZm5MFOx5IpTQWaB4ojMRcs_oxEtDhd5V8SwPcSVMQx3xgRIiVSqnFxGU8qOU43mvwFUMI3zPlgoe9ZYfw4m-Sg_DIL9t0rGtejaH5VJBhMdjwV2x4gj_dAd_5WWtu9u7879t1F243QbWbNhowj3YMMUW3BqeVS25iNmC683gzYv7sKDyFrcyneIxoqr9btzFJDNMLRHLLPsuU0XWSEw0m1aU2rKLGO-zNsHF8FwUiaMKWWlUr4zNynNT2a8mBVuQ19uGk0vZgwewWZSFeQjMpGmuMJ7NwtggeNI0idOB0j7PqM0xSBwYdHiQuuVnpzEh57JnlrYYkoghaTEkhQNv-mOmDTvJWukXBDNJtB8F1RWdqXldy9HXL3IoInR9GOv5DrxuhfISL69V26aBN0FMYSuSOyuSaJf06nKHT9naxVouwenA836ZjqRav8KUc5LhIhBERbdGRnAMnRORRA7sdpqyvMy_9-DR-l_1DG7sH38-lIej8cFjuOlbfaWCwh3YnFVz8wSu6Z-zSV09tZrP4Ntla9BvMuSQxQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAceJQiAgUWBOJArSZee20fEAq0EVFRFBUq9bas1-sqUrGDkxD1r_HrmFmvEwVEbj1wi7JjO9l889jMzDcAr1RkIjS9girVco8I5Tx8kaPimVx0Ao1OI7bDJqLhMD47S0Zb8KvphaGyysYmWkOdlZr-Iz-oqbE4D4KD3JVFjA777yc_PJogRZnWZpxGDZFjc7nA49v03eAQf-vXvt8_-vrxk-cmDHg6iMXMi4mOPU-EEjoLFE90JkLeMTrppKFCT6t4loe4EqahjnhXCZEqldOhBKX8KOV432uwHXE89LRg-8PRcHSy9AMYXCxr9jAo8l3Ljm3csxktj8ojOjwW3BNrbvFP5_BXltY6v_7d_3nb7sEdF3KzXq0j92HLFDtwu3deOdoRswM36pGclw9gQYUvXmUalWREYvvdeItxZphaYZlZXl6miqyWGGs2qSjpZRfxJMBc6ovhvShGR-Wy0qh4GZuVF6ayb40LtiB_uAunV7IHD6FVlIV5BMykaa4w0s3C2GB0mqZJnHaV9nlGDZBB0oZugw2pHXM7DRC5kEvOaYsniXiSFk9StOHt8ppJzVuyUfolQU4SIUhBGDlX8-lUDr6cyJ6I0CliFOi34Y0Tykt8vFaugQO_BHGIrUnurUmixdLryw1WpbOYU7kCahteLJfpSqoCLEw5JxkuAkEkdRtkBMegOhFJ1Ib9RmtWj_n3Hjze_Kmew01UHPl5MDx-Ard8q7pUabgHrVk1N0_huv45G0-rZ84MMPh21Sr0G-UImt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+genome-wide+association+study+and+genomic+prediction+for+disease+resistance+and+cold+tolerance+in+wheat&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Pang%2C+Yunlong&rft.au=Wu%2C+Yuye&rft.au=Liu%2C+Chunxia&rft.au=Li%2C+Wenhui&rft.date=2021-09-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=134&rft.issue=9&rft.spage=2857&rft_id=info:doi/10.1007%2Fs00122-021-03863-6&rft.externalDBID=ISR&rft.externalDocID=A671531242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon