Parameter-Free State Estimation Based on Kalman Filter with Attention Learning for GPS Tracking in Autonomous Driving System
GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. Howev...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 23; číslo 20; s. 8650 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
23.10.2023
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications. |
|---|---|
| AbstractList | GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications. GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications.GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications. |
| Audience | Academic |
| Author | Chen, Wei Ma, Hui-Jun Jin, Xue-Bo Su, Ting-Li Bai, Yu-Ting Kong, Jian-Lei |
| AuthorAffiliation | 2 China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China 1 Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China; jinxuebo@btbu.edu.cn (X.-B.J.); 2130062047@st.btbu.edu.cn (W.C.); kongjianlei@btbu.edu.cn (J.-L.K.); sutingli@btbu.edu.cn (T.-L.S.); baiyuting@btbu.edu.cn (Y.-T.B.) |
| AuthorAffiliation_xml | – name: 2 China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China – name: 1 Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China; jinxuebo@btbu.edu.cn (X.-B.J.); 2130062047@st.btbu.edu.cn (W.C.); kongjianlei@btbu.edu.cn (J.-L.K.); sutingli@btbu.edu.cn (T.-L.S.); baiyuting@btbu.edu.cn (Y.-T.B.) |
| Author_xml | – sequence: 1 givenname: Xue-Bo orcidid: 0000-0002-2230-0077 surname: Jin fullname: Jin, Xue-Bo – sequence: 2 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 3 givenname: Hui-Jun surname: Ma fullname: Ma, Hui-Jun – sequence: 4 givenname: Jian-Lei orcidid: 0000-0002-0074-3467 surname: Kong fullname: Kong, Jian-Lei – sequence: 5 givenname: Ting-Li surname: Su fullname: Su, Ting-Li – sequence: 6 givenname: Yu-Ting orcidid: 0000-0001-8047-1010 surname: Bai fullname: Bai, Yu-Ting |
| BookMark | eNptUl1rFDEUHaRiP_TBfxDwRR-2zSSZSfIka-3WYsHC1ueQSe5ss84kbZKtFPzxZnZLsUXykMu55577wTms9nzwUFXva3xMqcQniVCCRdvgV9VBzQibCULw3j_xfnWY0hpjQikVb6p9yoVsOasPqj9XOuoRMsTZIgKgZdYZ0FnKbtTZBY--6AQWleC7Hkbt0cINhYx-u3yD5jmD37IuQUfv_Ar1IaLzqyW6jtr8mgDn0XyTgw9j2CT0Nbr7CV0-pAzj2-p1r4cE7x7_o-rn4uz69Nvs8sf5xen8cmaYaPOMGyatbkUtsbE1t33bWUstbQhoQjizsuQ6LGsGTGqpQTSdaITEbdvXuJf0qLrY6dqg1-o2lt3igwraqS0Q4krpmJ0ZQLFWYCx1i0XXsE5i2ZkemgYLEGCNbYrW553W7aYbC1QOEPXwTPR5xrsbtQr3qsZtjTnHReHjo0IMdxtIWY0uGRgG7aHcSBEhaMMlY7xQP7ygrsMm-nKriUXKRQSZRjresVa6bOB8H0pjU56F0Zlild4VfM45aYhs-CT7aVdgYkgpQv80fo3V5Cj15KjCPXnBNS5vrVGauOE_FX8BlnzNNw |
| CitedBy_id | crossref_primary_10_48084_etasr_10528 crossref_primary_10_3390_act14060300 crossref_primary_10_1007_s42154_024_00332_w crossref_primary_10_3390_jmse12112040 |
| Cites_doi | 10.1109/ACCESS.2020.2995672 10.1016/j.eswa.2021.115075 10.26599/TST.2020.9010061 10.1115/1.3658902 10.2514/1.G006654 10.1109/72.279188 10.1109/TITS.2023.3276216 10.3233/JIFS-189623 10.1049/ip-f-2.1993.0015 10.1109/TAC.2021.3106861 10.1109/TUFFC.2022.3162097 10.1063/1.5090750 10.1109/JIOT.2021.3064342 10.1109/TVT.2021.3065665 10.3390/agronomy13030625 10.1016/j.future.2021.09.040 10.2514/1.G005005 10.3390/agriculture12040500 10.3390/ijerph19095059 10.1007/s12555-019-0053-1 10.1111/j.1467-9892.1982.tb00349.x 10.3390/e24030335 10.1016/j.energy.2022.124889 10.3390/e25020247 10.3390/math11040837 10.1109/ACCESS.2020.2979735 10.2514/1.G000941 10.3390/math10040610 10.3390/agronomy12030591 10.1051/matecconf/201816002008 10.1016/j.compag.2021.106134 10.3390/s22134953 10.1111/j.2517-6161.1977.tb01600.x 10.1609/aaai.v32i1.12102 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23208650 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_468009a608b54b909bcfe5508e8edcd5 PMC10610770 A772529577 10_3390_s23208650 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62006008; 62173007; 61903009 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c486t-7c49da68190cd17df6bdd3d352ea2274d9681b0914e49a9ae85b8589066f10f93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001095228800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:51:35 EDT 2025 Tue Nov 04 02:06:17 EST 2025 Wed Oct 01 14:39:25 EDT 2025 Tue Oct 07 07:27:21 EDT 2025 Tue Nov 04 18:38:51 EST 2025 Tue Nov 18 20:45:11 EST 2025 Sat Nov 29 07:12:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-7c49da68190cd17df6bdd3d352ea2274d9681b0914e49a9ae85b8589066f10f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8047-1010 0000-0002-0074-3467 0000-0002-2230-0077 |
| OpenAccessLink | https://doaj.org/article/468009a608b54b909bcfe5508e8edcd5 |
| PMID | 37896741 |
| PQID | 2882819825 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_468009a608b54b909bcfe5508e8edcd5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10610770 proquest_miscellaneous_2883579447 proquest_journals_2882819825 gale_infotracacademiconefile_A772529577 crossref_primary_10_3390_s23208650 crossref_citationtrail_10_3390_s23208650 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-23 |
| PublicationDateYYYYMMDD | 2023-10-23 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Connor (ref_21) 1994; 5 Shumway (ref_15) 1982; 3 Lichota (ref_17) 2023; 46 Wang (ref_32) 2021; 70 Arjas (ref_13) 2022; 69 ref_35 ref_34 ref_11 Akbari (ref_29) 2021; 34 ref_31 Gordon (ref_12) 1993; 140 ref_30 Kalman (ref_10) 1961; 83 Gao (ref_25) 2021; 8 ref_39 Yi (ref_2) 2021; 67 Choi (ref_22) 2021; 40 Dempster (ref_14) 1977; 39 Goff (ref_19) 2015; 38 Kim (ref_24) 2021; 178 Ansari (ref_36) 2022; 128 Liu (ref_9) 2020; 8 Goswami (ref_18) 2021; 44 ref_23 ref_20 Huang (ref_38) 2021; 27 ref_3 Kong (ref_4) 2021; 185 ref_28 ref_27 ref_26 ref_8 Xin (ref_16) 2021; 69 Zha (ref_37) 2022; 260 ref_5 Cui (ref_1) 2020; 18 ref_7 ref_6 Eltoukhy (ref_33) 2020; 8 |
| References_xml | – ident: ref_28 – volume: 8 start-page: 94176 year: 2020 ident: ref_33 article-title: An adaptive turn rate estimation for tracking a maneuvering target publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995672 – volume: 178 start-page: 115075 year: 2021 ident: ref_24 article-title: Nine-Axis IMU-based Extended inertial odometry neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115075 – volume: 27 start-page: 599 year: 2021 ident: ref_38 article-title: Spatial-temporal ConvLSTM for vehicle driving intention prediction publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2020.9010061 – volume: 83 start-page: 95 year: 1961 ident: ref_10 article-title: New results in linear filtering and prediction theory publication-title: J. Basic Eng. doi: 10.1115/1.3658902 – volume: 69 start-page: 1852 year: 2021 ident: ref_16 article-title: Kalman filter for linear systems with unknown structural parameters publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 46 start-page: 350 year: 2023 ident: ref_17 article-title: Wavelet transform-based aircraft system identification publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G006654 – volume: 5 start-page: 240 year: 1994 ident: ref_21 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279188 – ident: ref_26 doi: 10.1109/TITS.2023.3276216 – volume: 40 start-page: 8013 year: 2021 ident: ref_22 article-title: Abnormally high water temperature prediction using LSTM deep learning model publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-189623 – ident: ref_11 – volume: 140 start-page: 107 year: 1993 ident: ref_12 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proc. Radar Signal Process. doi: 10.1049/ip-f-2.1993.0015 – volume: 34 start-page: 24206 year: 2021 ident: ref_29 article-title: Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text publication-title: Adv. Neural Inf. Process. Syst. – volume: 67 start-page: 3458 year: 2021 ident: ref_2 article-title: Robust kalman filtering under model uncertainty: The case of degenerate densities publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3106861 – volume: 69 start-page: 1691 year: 2022 ident: ref_13 article-title: Neural network kalman filtering for 3-d object tracking from linear array ultrasound data publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2022.3162097 – ident: ref_34 doi: 10.1063/1.5090750 – volume: 8 start-page: 12955 year: 2021 ident: ref_25 article-title: Glow in the dark: Smartphone inertial odometry for vehicle tracking in GPS blocked environments publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3064342 – volume: 70 start-page: 3043 year: 2021 ident: ref_32 article-title: Pseudo-spectrum based track-before-detect for weak maneuvering targets in range-Doppler plane publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3065665 – ident: ref_20 doi: 10.3390/agronomy13030625 – volume: 128 start-page: 235 year: 2022 ident: ref_36 article-title: GRU-based deep learning approach for network intrusion alert prediction publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.09.040 – volume: 44 start-page: 15 year: 2021 ident: ref_18 article-title: Non-gaussian estimation and dynamic output feedback using the gaussian mixture kalman filter publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G005005 – ident: ref_3 doi: 10.3390/agriculture12040500 – ident: ref_27 – ident: ref_31 doi: 10.3390/ijerph19095059 – volume: 18 start-page: 1412 year: 2020 ident: ref_1 article-title: Joint multi-innovation recursive extended least squares parameter and state estimation for a class of state-space systems publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-019-0053-1 – volume: 3 start-page: 253 year: 1982 ident: ref_15 article-title: An approach to time series smoothing and forecasting using the EM algorithm publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.1982.tb00349.x – ident: ref_7 doi: 10.3390/e24030335 – volume: 260 start-page: 124889 year: 2022 ident: ref_37 article-title: Forecasting monthly gas field production based on the CNN-LSTM model publication-title: Energy doi: 10.1016/j.energy.2022.124889 – ident: ref_5 doi: 10.3390/e25020247 – ident: ref_6 doi: 10.3390/math11040837 – volume: 8 start-page: 51035 year: 2020 ident: ref_9 article-title: Comparisons on Kalman-filter-based dynamic state estimation algorithms of power systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979735 – volume: 38 start-page: 361 year: 2015 ident: ref_19 article-title: Parameter requirements for noncooperative satellite maneuver reconstruction using adaptive filters publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G000941 – ident: ref_39 doi: 10.3390/math10040610 – ident: ref_8 doi: 10.3390/agronomy12030591 – ident: ref_35 doi: 10.1051/matecconf/201816002008 – volume: 185 start-page: 106134 year: 2021 ident: ref_4 article-title: Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106134 – ident: ref_30 doi: 10.3390/s22134953 – volume: 39 start-page: 1 year: 1977 ident: ref_14 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref_23 doi: 10.1609/aaai.v32i1.12102 |
| SSID | ssj0023338 |
| Score | 2.436655 |
| Snippet | GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 8650 |
| SubjectTerms | Accuracy Algorithms Analysis Big Data Computational linguistics Datasets Deep learning Driverless cars Efficiency Evaluation Kalman filter Language processing long- and short-term memory network Machine learning Natural language interfaces Natural language processing Neural networks Parameter estimation Sensors Signal processing state estimation trajectory tracking Transformer Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4cAeeCMCCzIICS7Rpo4T2yfUhS1IoFUlHuot8nOJtKS7ScqJH89M4nZbQFy4VbGVup3XN2P7G0JeWGP5xDKeisBsygvtU8WYSaW2vhCmlH7oQ_b1ozg5kYuFmseCWxePVa594uCo3dJijfyQARSE6AUJzevzixS7RuHuamyhcZVcw7bZqOdicZlw5ZB_jWxCOaT2hx2gB0DweMV-KwYNVP1_OuTfD0luRZ3Zrf9d721yM-JNOh0V5A654pu7ZH-LhfAe-TnXeEIL_uB01npPB_xJj8H2x2uN9AginaPw4YM--64bOqtxi51iCZdO-348MEkjU-spBRhM380_UQiDFgvxtG7odNXj7YnlqqNv2xqLGHTkSr9PvsyOP795n8amDKnlsuxTYblyukQgYd1EuFAa53IHOM5rBimuUzBmAIVwzxVSf8vCyEIqgDZhkgWVPyB7zbLxDwl1PjDNAwAWFbgwStkS4JzNLAuCm0mekFdrMVU2MpZj44yzCjIXlGi1kWhCnm-mno80HX-bdISy3kxAZu3hwbI9raKhVrwECK10mUlTcKMyZWwAfc2kl6ALrkjIS9SUCu0fFmN1vMYAPwmZtKoppCu4eSpEQg7WmlFFx9BVl2qRkGebYTBp3KfRjQc54Jy8AD_J4RVyRwl3lr470tTfBnJwTPEzIbJH__72x-QGAwPBKMzyA7LXtyv_hFy3P_q6a58OZvQLLoMp6Q priority: 102 providerName: ProQuest |
| Title | Parameter-Free State Estimation Based on Kalman Filter with Attention Learning for GPS Tracking in Autonomous Driving System |
| URI | https://www.proquest.com/docview/2882819825 https://www.proquest.com/docview/2883579447 https://pubmed.ncbi.nlm.nih.gov/PMC10610770 https://doaj.org/article/468009a608b54b909bcfe5508e8edcd5 |
| Volume | 23 |
| WOSCitedRecordID | wos001095228800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiKcILJVBSHCJNnWc2D620AKCrSJeKqfIr0CkJYvalBPitzOTpFULSFy4RFHsVo5nJvN9fnwGeOysE2PHRSwr7mKRmRBrzm2sjAuZtLkK3TlkH9_IxUItl7rYO-qL1oT18sB9x52IHCGNNnmibCasTrR1Ff4-UUEF73ynXppIvSVTA9VKkXn1OkIpkvqTNeIGxO60uX4v-3Qi_X9-in9fHrmXb-bX4doAFNmkb-ANuBCam3B1Tz7wFvwoDC2twp6J56sQWAcc2QyDtt-PyKaYojzDm9fm7Ktp2LymuXFGY69s0rb9Skc2SKx-Zohf2YviHcP85WgEndUNm2xa2vZwvlmz56uaRh9YL3J-Gz7MZ--fvYyH0xRiJ1TextIJ7U1OCMD5sfRVbr1PPQKwYDhyU6-xzCJ8EEFo0uxWmVWZ0ohJqnFS6fQOHDXnTbgLzIeKG1Eh0tCVkFZrlyMOc4njlRR2nEbwdNvLpRukxunEi7MSKQcZpNwZJIJHu6rfen2Nv1Wakql2FUgSu3uAjlIOjlL-y1EieEKGLilwsTHODPsP8JVIAqucIM-gWU8pIzje-kI5RPS65EhFsO-QUEfwcFeMsUgTLKYJaAeqk2b4gRP4F-rAhw6afljS1F86VW_i5omUyb3_8bL34QrHKKAky9NjOGpXm_AALrvvbb1ejeCiXMruqkZwaTpbFG9HXfzg9fTnDJ8Vr06LT78AoyMiRQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLWqggQseCMCBQwCwWbUicczthcVSmlDq4QoEgVlN_g1JVKZlMkEhMQ39Ru5dx5pAohdF-yi2Ermce7j2NfnEvLcGsu7lvFAZMwGPNY-UIyZQGrrY2ES6as-ZB-HYjSSk4kab5Cz9iwMllW2PrFy1G5mcY18m0EqCNELCM3r068Bdo3C3dW2hUYNi4H_8R0o23zncA_e7wvG-vtHbw6CpqtAYLlMykBYrpxOMBJa1xUuS4xzkYNExGsGHM0pGDMQRrnnCrWrZWxkLBXE5qwbZii-BC7_EvhxgWRPTM4JXgR8r1YviiIVbs8hWwHGgEf6V2Je1RrgzwDwe1HmSpTr3_jfns9Ncr3Jp2mvNoBbZMPnt8m1FZXFO-TnWGMFGgAo6Bfe0yq_pvvg2-pjm3QXIrmj8GGgT77onPanWEJAcYma9sqyLgiljRLtMYU0n74dv6cQ5i1uNNBpTnuLEk-HzBZzuldMcZGG1lrwd8mHC7n9e2Qzn-X-PqHOZ0zzDBIylXFhlLIJpKs2tCwT3HSjDnnVwiK1jSI7NgY5SYGZIYLSJYI65Nly6mktQ_K3SbuIreUEVA6vvpgVx2njiFKeAEVQOgmliblRoTI2A3sMpZeAPRd3yEtEZor-DS7G6uaYBtwSKoWlPaBjuDksRIdstUhMG8c3T89h2CFPl8PgsnAfSuce3gPOiWKIAxx-Qq6Bfu3S10fy6edK_ByXMEIhwgf__vcn5MrB0bthOjwcDR6SqwyMEzMOFm2RzbJY-Efksv1WTufF48qEKfl00TbxC40zhc4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDiF44I4oDDAIBC9RU8eJ7QeEOrpC1VFF4qLtKfiWrdKWjjYFIfHL-HWck6SlBcTbHniraqvN5TuXzz7-DiFPrLG8axkPRM5swGPtA8WYCaS2PhYmkb7qQ_ZxX4zH8uBApVvkx_IsDJZVLn1i5ajd1OIaeYdBKgjRCwhNJ2_KItL-4OXZ5wA7SOFO67KdRg2Rkf_2Fejb_MWwD-_6KWODvfev3gRNh4HAcpmUgbBcOZ1gVLSuK1yeGOciB0mJ1wz4mlMwZiCkcs8V6ljL2MhYKojTeTfMUYgJ3P82pOSctch2OnybHq7oXgTsr9YyiiIVduaQuwB_wAP-axGwahTwZzj4vURzLeYNrv7PT-saudJk2rRXm8Z1suWLG-Tymv7iTfI91VibBtAKBjPvaZV50z3wevWBTroLMd5R-DDSJ6e6oIMJFhdQXLymvbKsS0Vpo1F7RIEA0NfpOwoJgMUtCDopaG9R4rmR6WJO-7MJLt_QWiX-FvlwLrd_m7SKaeHvEOp8zjTPIVVTORdGKZtAImtDy3LBTTdqk-dLiGS20WrHliEnGXA2RFO2QlObPF5NPasFSv42aRdxtpqAmuLVF9PZUda4qIwnQB6UTkJpYm5UqIzNwVJD6SXg0MVt8gxRmqHng4uxujnAAbeEGmJZD4gabhsL0SY7S1RmjUucZ78g2SaPVsPgzHCHShce3gPOiWKIEBx-Qm4YwMalb44Uk-NKFh0XN0Ihwrv__veH5CKYQrY_HI_ukUsM7BRTERbtkFY5W_j75IL9Uk7msweNPVPy6byN4iehCpAd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter-Free+State+Estimation+Based+on+Kalman+Filter+with+Attention+Learning+for+GPS+Tracking+in+Autonomous+Driving+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xue-Bo+Jin&rft.au=Wei+Chen&rft.au=Hui-Jun+Ma&rft.au=Jian-Lei+Kong&rft.date=2023-10-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=20&rft.spage=8650&rft_id=info:doi/10.3390%2Fs23208650&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_468009a608b54b909bcfe5508e8edcd5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |