Parameter-Free State Estimation Based on Kalman Filter with Attention Learning for GPS Tracking in Autonomous Driving System

GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. Howev...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 20; p. 8650
Main Authors: Jin, Xue-Bo, Chen, Wei, Ma, Hui-Jun, Kong, Jian-Lei, Su, Ting-Li, Bai, Yu-Ting
Format: Journal Article
Language:English
Published: Basel MDPI AG 23.10.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications.
AbstractList GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications.
GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications.GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous vehicles, and other fields.The classical tracking approach employs a Kalman filter with precise system parameters to estimate the state. However, it is difficult to model their uncertainty because of the complex motion of maneuvering targets and the unknown sensor characteristics. Furthermore, GPS data often involve unknown color noise, making it challenging to obtain accurate system parameters, which can degrade the performance of the classical methods. To address these issues, we present a state estimation method based on the Kalman filter that does not require predefined parameters but instead uses attention learning. We use a transformer encoder with a long short-term memory (LSTM) network to extract dynamic characteristics, and estimate the system model parameters online using the expectation maximization (EM) algorithm, based on the output of the attention learning module. Finally, the Kalman filter computes the dynamic state estimates using the parameters of the learned system, dynamics, and measurement characteristics. Based on GPS simulation data and the Geolife Beijing vehicle GPS trajectory dataset, the experimental results demonstrated that our method outperformed classical and pure model-free network estimation approaches in estimation accuracy, providing an effective solution for practical maneuvering-target tracking applications.
Audience Academic
Author Chen, Wei
Ma, Hui-Jun
Jin, Xue-Bo
Su, Ting-Li
Bai, Yu-Ting
Kong, Jian-Lei
AuthorAffiliation 2 China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China
1 Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China; jinxuebo@btbu.edu.cn (X.-B.J.); 2130062047@st.btbu.edu.cn (W.C.); kongjianlei@btbu.edu.cn (J.-L.K.); sutingli@btbu.edu.cn (T.-L.S.); baiyuting@btbu.edu.cn (Y.-T.B.)
AuthorAffiliation_xml – name: 2 China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China
– name: 1 Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China; jinxuebo@btbu.edu.cn (X.-B.J.); 2130062047@st.btbu.edu.cn (W.C.); kongjianlei@btbu.edu.cn (J.-L.K.); sutingli@btbu.edu.cn (T.-L.S.); baiyuting@btbu.edu.cn (Y.-T.B.)
Author_xml – sequence: 1
  givenname: Xue-Bo
  orcidid: 0000-0002-2230-0077
  surname: Jin
  fullname: Jin, Xue-Bo
– sequence: 2
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
– sequence: 3
  givenname: Hui-Jun
  surname: Ma
  fullname: Ma, Hui-Jun
– sequence: 4
  givenname: Jian-Lei
  orcidid: 0000-0002-0074-3467
  surname: Kong
  fullname: Kong, Jian-Lei
– sequence: 5
  givenname: Ting-Li
  surname: Su
  fullname: Su, Ting-Li
– sequence: 6
  givenname: Yu-Ting
  orcidid: 0000-0001-8047-1010
  surname: Bai
  fullname: Bai, Yu-Ting
BookMark eNptUl1rFDEUHaRiP_TBfxDwRR-2zSSZSfIka-3WYsHC1ueQSe5ss84kbZKtFPzxZnZLsUXykMu55577wTms9nzwUFXva3xMqcQniVCCRdvgV9VBzQibCULw3j_xfnWY0hpjQikVb6p9yoVsOasPqj9XOuoRMsTZIgKgZdYZ0FnKbtTZBY--6AQWleC7Hkbt0cINhYx-u3yD5jmD37IuQUfv_Ar1IaLzqyW6jtr8mgDn0XyTgw9j2CT0Nbr7CV0-pAzj2-p1r4cE7x7_o-rn4uz69Nvs8sf5xen8cmaYaPOMGyatbkUtsbE1t33bWUstbQhoQjizsuQ6LGsGTGqpQTSdaITEbdvXuJf0qLrY6dqg1-o2lt3igwraqS0Q4krpmJ0ZQLFWYCx1i0XXsE5i2ZkemgYLEGCNbYrW553W7aYbC1QOEPXwTPR5xrsbtQr3qsZtjTnHReHjo0IMdxtIWY0uGRgG7aHcSBEhaMMlY7xQP7ygrsMm-nKriUXKRQSZRjresVa6bOB8H0pjU56F0Zlild4VfM45aYhs-CT7aVdgYkgpQv80fo3V5Cj15KjCPXnBNS5vrVGauOE_FX8BlnzNNw
CitedBy_id crossref_primary_10_48084_etasr_10528
crossref_primary_10_3390_act14060300
crossref_primary_10_1007_s42154_024_00332_w
crossref_primary_10_3390_jmse12112040
Cites_doi 10.1109/ACCESS.2020.2995672
10.1016/j.eswa.2021.115075
10.26599/TST.2020.9010061
10.1115/1.3658902
10.2514/1.G006654
10.1109/72.279188
10.1109/TITS.2023.3276216
10.3233/JIFS-189623
10.1049/ip-f-2.1993.0015
10.1109/TAC.2021.3106861
10.1109/TUFFC.2022.3162097
10.1063/1.5090750
10.1109/JIOT.2021.3064342
10.1109/TVT.2021.3065665
10.3390/agronomy13030625
10.1016/j.future.2021.09.040
10.2514/1.G005005
10.3390/agriculture12040500
10.3390/ijerph19095059
10.1007/s12555-019-0053-1
10.1111/j.1467-9892.1982.tb00349.x
10.3390/e24030335
10.1016/j.energy.2022.124889
10.3390/e25020247
10.3390/math11040837
10.1109/ACCESS.2020.2979735
10.2514/1.G000941
10.3390/math10040610
10.3390/agronomy12030591
10.1051/matecconf/201816002008
10.1016/j.compag.2021.106134
10.3390/s22134953
10.1111/j.2517-6161.1977.tb01600.x
10.1609/aaai.v32i1.12102
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23208650
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_468009a608b54b909bcfe5508e8edcd5
PMC10610770
A772529577
10_3390_s23208650
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62006008; 62173007; 61903009
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c486t-7c49da68190cd17df6bdd3d352ea2274d9681b0914e49a9ae85b8589066f10f93
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001095228800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:35 EDT 2025
Tue Nov 04 02:06:17 EST 2025
Wed Oct 01 14:39:25 EDT 2025
Tue Oct 07 07:27:21 EDT 2025
Tue Nov 04 18:38:51 EST 2025
Tue Nov 18 20:45:11 EST 2025
Sat Nov 29 07:12:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-7c49da68190cd17df6bdd3d352ea2274d9681b0914e49a9ae85b8589066f10f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8047-1010
0000-0002-0074-3467
0000-0002-2230-0077
OpenAccessLink https://doaj.org/article/468009a608b54b909bcfe5508e8edcd5
PMID 37896741
PQID 2882819825
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_468009a608b54b909bcfe5508e8edcd5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10610770
proquest_miscellaneous_2883579447
proquest_journals_2882819825
gale_infotracacademiconefile_A772529577
crossref_primary_10_3390_s23208650
crossref_citationtrail_10_3390_s23208650
PublicationCentury 2000
PublicationDate 2023-10-23
PublicationDateYYYYMMDD 2023-10-23
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-23
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Connor (ref_21) 1994; 5
Shumway (ref_15) 1982; 3
Lichota (ref_17) 2023; 46
Wang (ref_32) 2021; 70
Arjas (ref_13) 2022; 69
ref_35
ref_34
ref_11
Akbari (ref_29) 2021; 34
ref_31
Gordon (ref_12) 1993; 140
ref_30
Kalman (ref_10) 1961; 83
Gao (ref_25) 2021; 8
ref_39
Yi (ref_2) 2021; 67
Choi (ref_22) 2021; 40
Dempster (ref_14) 1977; 39
Goff (ref_19) 2015; 38
Kim (ref_24) 2021; 178
Ansari (ref_36) 2022; 128
Liu (ref_9) 2020; 8
Goswami (ref_18) 2021; 44
ref_23
ref_20
Huang (ref_38) 2021; 27
ref_3
Kong (ref_4) 2021; 185
ref_28
ref_27
ref_26
ref_8
Xin (ref_16) 2021; 69
Zha (ref_37) 2022; 260
ref_5
Cui (ref_1) 2020; 18
ref_7
ref_6
Eltoukhy (ref_33) 2020; 8
References_xml – ident: ref_28
– volume: 8
  start-page: 94176
  year: 2020
  ident: ref_33
  article-title: An adaptive turn rate estimation for tracking a maneuvering target
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995672
– volume: 178
  start-page: 115075
  year: 2021
  ident: ref_24
  article-title: Nine-Axis IMU-based Extended inertial odometry neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115075
– volume: 27
  start-page: 599
  year: 2021
  ident: ref_38
  article-title: Spatial-temporal ConvLSTM for vehicle driving intention prediction
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2020.9010061
– volume: 83
  start-page: 95
  year: 1961
  ident: ref_10
  article-title: New results in linear filtering and prediction theory
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3658902
– volume: 69
  start-page: 1852
  year: 2021
  ident: ref_16
  article-title: Kalman filter for linear systems with unknown structural parameters
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 46
  start-page: 350
  year: 2023
  ident: ref_17
  article-title: Wavelet transform-based aircraft system identification
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G006654
– volume: 5
  start-page: 240
  year: 1994
  ident: ref_21
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279188
– ident: ref_26
  doi: 10.1109/TITS.2023.3276216
– volume: 40
  start-page: 8013
  year: 2021
  ident: ref_22
  article-title: Abnormally high water temperature prediction using LSTM deep learning model
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-189623
– ident: ref_11
– volume: 140
  start-page: 107
  year: 1993
  ident: ref_12
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: IEE Proc. Radar Signal Process.
  doi: 10.1049/ip-f-2.1993.0015
– volume: 34
  start-page: 24206
  year: 2021
  ident: ref_29
  article-title: Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 67
  start-page: 3458
  year: 2021
  ident: ref_2
  article-title: Robust kalman filtering under model uncertainty: The case of degenerate densities
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3106861
– volume: 69
  start-page: 1691
  year: 2022
  ident: ref_13
  article-title: Neural network kalman filtering for 3-d object tracking from linear array ultrasound data
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2022.3162097
– ident: ref_34
  doi: 10.1063/1.5090750
– volume: 8
  start-page: 12955
  year: 2021
  ident: ref_25
  article-title: Glow in the dark: Smartphone inertial odometry for vehicle tracking in GPS blocked environments
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3064342
– volume: 70
  start-page: 3043
  year: 2021
  ident: ref_32
  article-title: Pseudo-spectrum based track-before-detect for weak maneuvering targets in range-Doppler plane
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3065665
– ident: ref_20
  doi: 10.3390/agronomy13030625
– volume: 128
  start-page: 235
  year: 2022
  ident: ref_36
  article-title: GRU-based deep learning approach for network intrusion alert prediction
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.09.040
– volume: 44
  start-page: 15
  year: 2021
  ident: ref_18
  article-title: Non-gaussian estimation and dynamic output feedback using the gaussian mixture kalman filter
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G005005
– ident: ref_3
  doi: 10.3390/agriculture12040500
– ident: ref_27
– ident: ref_31
  doi: 10.3390/ijerph19095059
– volume: 18
  start-page: 1412
  year: 2020
  ident: ref_1
  article-title: Joint multi-innovation recursive extended least squares parameter and state estimation for a class of state-space systems
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-019-0053-1
– volume: 3
  start-page: 253
  year: 1982
  ident: ref_15
  article-title: An approach to time series smoothing and forecasting using the EM algorithm
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– ident: ref_7
  doi: 10.3390/e24030335
– volume: 260
  start-page: 124889
  year: 2022
  ident: ref_37
  article-title: Forecasting monthly gas field production based on the CNN-LSTM model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124889
– ident: ref_5
  doi: 10.3390/e25020247
– ident: ref_6
  doi: 10.3390/math11040837
– volume: 8
  start-page: 51035
  year: 2020
  ident: ref_9
  article-title: Comparisons on Kalman-filter-based dynamic state estimation algorithms of power systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979735
– volume: 38
  start-page: 361
  year: 2015
  ident: ref_19
  article-title: Parameter requirements for noncooperative satellite maneuver reconstruction using adaptive filters
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G000941
– ident: ref_39
  doi: 10.3390/math10040610
– ident: ref_8
  doi: 10.3390/agronomy12030591
– ident: ref_35
  doi: 10.1051/matecconf/201816002008
– volume: 185
  start-page: 106134
  year: 2021
  ident: ref_4
  article-title: Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106134
– ident: ref_30
  doi: 10.3390/s22134953
– volume: 39
  start-page: 1
  year: 1977
  ident: ref_14
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref_23
  doi: 10.1609/aaai.v32i1.12102
SSID ssj0023338
Score 2.4365737
Snippet GPS-based maneuvering target localization and tracking is a crucial aspect of autonomous driving and is widely used in navigation, transportation, autonomous...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8650
SubjectTerms Accuracy
Algorithms
Analysis
Big Data
Computational linguistics
Datasets
Deep learning
Driverless cars
Efficiency
Evaluation
Kalman filter
Language processing
long- and short-term memory network
Machine learning
Natural language interfaces
Natural language processing
Neural networks
Parameter estimation
Sensors
Signal processing
state estimation
trajectory tracking
Transformer
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag9AAHSnmIQEGmQiqXVTfZl32qUmhAQqoiQaXcLL9SViqbsrvhxI_nm10nTQriwi2KrY038_pmbH_D2FtjiKUSymvy2CBBSbOIdp8imXnnYVxGC9s1myjOz8VsJqeh4NaEY5Urn9g5arewVCM_HgEKInohoTm5_hFR1yjaXQ0tNO6ye9Q2m_S8mN0kXAnyr55NKEFqf9wAPQDB0xX7jRjUUfX_6ZBvH5LciDqTvf9d7yP2MOBNPu4VZJ_d8dVj9mCDhfAJ-zXVdEILf3A0qb3nHf7kZ7D9_lojP0WkcxwfPuur77rik5K22DmVcPm4bfsDkzwwtV5ywGD-cfqFIwxaKsTzsuLjZUu3JxbLhn-oSypi8J4r_Sm7mJx9ff8pCk0ZIpuKvI0Km0qncwIS1g0LN8-Nc4kDjvN6hBTXSYwZoJDUp5Kov0VmIH0JaDMfxnOZPGM71aLyzxnPpMUzRWZjJ4DqjBFDjANhQkVykRcD9m4lJmUDYzk1zrhSyFxIomot0QE7XE-97mk6_jbplGS9nkDM2t0Xi_pSBUNVaQ4ILXUeC5OlRsbS2LlHGie8gC64bMCOSFMU2T8WY3W4xoBXIiYtNUa6QpunBZZ_sNIMFRxDo27UYsDerIdh0rRPoysPOdCcJIOfTPEIsaWEW0vfHqnKbx05OKX4cVHEL_796y_Z_REMhKLwKDlgO2299K_Yrv3Zlk39ujOj31sPKHk
  priority: 102
  providerName: ProQuest
Title Parameter-Free State Estimation Based on Kalman Filter with Attention Learning for GPS Tracking in Autonomous Driving System
URI https://www.proquest.com/docview/2882819825
https://www.proquest.com/docview/2883579447
https://pubmed.ncbi.nlm.nih.gov/PMC10610770
https://doaj.org/article/468009a608b54b909bcfe5508e8edcd5
Volume 23
WOSCitedRecordID wos001095228800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLVgYMEsRjxFmaEyCAk20aTNw_ayhRYQmiriIZWV5VeZSDOZUZuyQnw75yZp1QISGzZRFFuR43tv7jl-HDP2wlpSqYTz2jy2IChpFtHsU6Sy4AOCyxrpmsMmxGwm53NV7Bz1RWvCWnngtuNO0xyQRpk8ljZLrYqVdYsAWC2DDN75Rr00FmpDpjqqlYB5tTpCCUj96Qq4AdidNtfvZJ9GpP_PX_HvyyN38s30LjvqgCIftQ28x26E6j473JEPfMB-FIaWVqFnoukyBN4ARz5B0Lb7EfkYKcpz3HwwF5em4tOS5sY5jb3yUV23Kx15J7H6jQO_8rfFJ4785WgEnZcVH61r2vZwtV7xN8uSRh94K3L-kH2ZTj6_fhd1pylELpV5HQmXKm9yQgDOD4Rf5Nb7xAOABTMEN_UKZRbwIQ2pIs1umVmYTQGTLAbxQiWP2EF1VYXHjGfK4Z0yc7GXgGPWygHKAQ1h21zmosdebXpZu05qnE68uNCgHGQQvTVIjz3fVr1u9TX-VmlMptpWIEns5gEcRXeOov_lKD32kgytKXDRGGe6_Qf4JJLA0iPwDJr1FGj-ycYXdBfRKz0EFUHfgVD32LNtMWKRJlhMFWAHqpNk-MGleIXc86G9pu-XVOV5o-pN3DwWIn7yPz72mN0ZIgooyQ6TE3ZQL9fhKbvtvtflatlnN8VcNFfZZ7fGk1nxsd_ED65nPyd4Vrw_K77-Aps3INU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAGB1VBQk4sCMCBQYEgotVx-vMAaGUNrRKiSJRpNxcz5JiqTjFdkBI_CZ-I-_zkiaAuPXAzcqM7HH8vuXN8j7GnitFKpUAr4pcBYIShA6tPjkytMbCuFQqdF1sIh6PxXQqJxvsZ3cWhrZVdj6xdtRmrmmOfNtDKojoBULz5uyLQ1WjaHW1K6HRwGJkv38DZStfH-zi-77wvOHe0dt9p60q4OhARJUT60CaNKJIqE0_NrNIGeMbJCI29cDRjESbQhgNbCBJu1qECsOXiM2zvjsj8SW4_Evw4zGRvXh6TvB88L1Gvcj3pbtdIlsBY6Aj_Ssxry4N8GcA-H1T5kqUG9743_6fm-x6m0_zQWMAt9iGzW-zaysqi3fYj0lKO9AAIGdYWMvr_Jrvwbc1xzb5DiK54bgYpaef05wPM9pCwGmKmg-qqtkQylsl2hOONJ-_m3zgCPOaFhp4lvPBoqLTIfNFyXeLjCZpeKMFf5d9vJDXv8c283lu7zMeSo17ilC7RiBrVUr00Y4MGiYQiSjusVcdLBLdKrJTYZDTBMyMEJQsEdRjz5ZdzxoZkr912iFsLTuQcnj9w7w4SVpHlAQRKIJMI1eoMFDSlUrPLGiqsALYM2GPvSRkJuTfMBidtsc08EqkFJYMQMdocTjG8Lc6JCat4yuTcxj22NNlM1wWrUOlucV3oD5-iDgQ4BZiDfRrQ19vybNPtfg5TWG4cew--PfTn7Ar-0fvD5PDg_HoIbvqwTgp4_D8LbZZFQv7iF3WX6usLB7XJszZ8UXbxC95IIRe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LihNBFC2GjIgufIvRUUtRdNOk08-qhUjGTGuIhgYVZlZt1yNjYOyMSUcR_DK_znP7ERMVd7NwF1JFpyp9X6furXMZe6QUsVRCeFXkKgCUIHQo--TI0BoL5VK50FWziXgyEYeHMt1hP9q7MFRW2drEylCbuaYz8p6HUBDeC4CmN23KItJh8vz0s0MdpCjT2rbTqEVkbL99BXxbPhsN8a4fe15y8O7FK6fpMODoQESlE-tAmjwir6hNPzbTSBnjGwQlNveA14zEmIJLDWwgicdahApbkfDT0747JSImmP9dhOSB12G76ehNerSGez7QX81l5PvS7S0RuwA_0AX_DQ9YNQr40x38XqK54fOSy__zv3WFXWoibT6oVeMq27HFNXZxg3_xOvue5lSbBtFykoW1vIq8-QGsXn2hk-_DxxuOD-P85FNe8GRGxQWcDq_5oCzrUlHecNQecwAA_jJ9yxEAaEpB8FnBB6uS7o3MV0s-XMzo-IbXLPE32Psz2f5N1inmhb3FeCg1nilC7RqBeFYp0cc4YmsoRySiuMuetiKS6YarnVqGnGTAbCRN2VqauuzheuppTVDyt0n7JGfrCcQpXn0xXxxnjYnKggjgQeaRK1QYKOlKpacWAFZYATk0YZc9ISnNyPJhMTpvLnBgS8Qhlg0A1ChtHGP5e61UZo1JXGa_RLLLHqyHYcwoQ5UXFu-B5vghPESAR4gtBdha-vZIMftY0aLT4YYbx-7tf__6fXYeqpC9Hk3Gd9gFD3pKoYjn77FOuVjZu-yc_lLOlot7jT5z9uGsleIneNeOrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter-Free+State+Estimation+Based+on+Kalman+Filter+with+Attention+Learning+for+GPS+Tracking+in+Autonomous+Driving+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xue-Bo+Jin&rft.au=Wei+Chen&rft.au=Hui-Jun+Ma&rft.au=Jian-Lei+Kong&rft.date=2023-10-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=20&rft.spage=8650&rft_id=info:doi/10.3390%2Fs23208650&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_468009a608b54b909bcfe5508e8edcd5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon