An Improved Particle Swarm Optimization for Feature Selection
Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation...
Saved in:
| Published in: | Journal of bionics engineering Vol. 8; no. 2; pp. 191 - 200 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Elsevier Ltd
01.06.2011
Springer Singapore |
| Subjects: | |
| ISSN: | 1672-6529, 2543-2141 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (IFS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capability through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based methods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features. |
|---|---|
| AbstractList | Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (IFS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capability through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based methods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features. Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (1FS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capa- bility through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based mcthods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features. |
| Author | Chen, Huiling Dong, Hao Wang, Gang Zhu, Xiaodong Liu, Yuanning Wang, Sujing |
| AuthorAffiliation | College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China Key Laboratory of S.vmbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China |
| Author_xml | – sequence: 1 givenname: Yuanning surname: Liu fullname: Liu, Yuanning organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China – sequence: 2 givenname: Gang surname: Wang fullname: Wang, Gang organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China – sequence: 3 givenname: Huiling surname: Chen fullname: Chen, Huiling organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China – sequence: 4 givenname: Hao surname: Dong fullname: Dong, Hao organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China – sequence: 5 givenname: Xiaodong surname: Zhu fullname: Zhu, Xiaodong email: zhuxiaodong.jlu@gmail.com organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China – sequence: 6 givenname: Sujing surname: Wang fullname: Wang, Sujing organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China |
| BookMark | eNqFkV1rHCEUhqUk0M3HTwhMr5peTOPR0ZmhlBBC0i4EEkhyLa6e2RpmdKOzKe2vj_vBXvSieyXo8x5fH4_IgQ8eCTkD-hUoyItHkDUrpWDtOcAXSSmjpfxAJkxUvGRQwQGZ7JCP5CilF0pFyxo-Id-vfDEdFjG8oS0edByd6bF4_K3jUNwvRje4v3p0wRddiMUt6nEZ8zH2aFa7J-Sw033C0-16TJ5vb56uf5Z39z-m11d3pakaOZaSSiuY1SiZrqsGBDAOphOSN1ozNhNNy621XNjZrOYdcICuYxVKbBkVBvgx-byZm4u-LjGNanDJYN9rj2GZVNO0FatFKzN5_l8yewCRS_Eqo982qIkhpYidMm5cP3aM2vUKqFrpVWu9auVOAai1XrW6SPyTXkQ36Phnb05ucinzfo5RvYRl9Nne3uDlJohZ9JvLwWQceoPWxfwbyga3d8KnbeVfwc9f8-27zrwBXjPg_B1KCq4q |
| CitedBy_id | crossref_primary_10_7603_s40632_016_0001_7 crossref_primary_10_1007_s42235_023_00414_1 crossref_primary_10_1007_s13042_018_0838_1 crossref_primary_10_1016_j_apm_2021_04_018 crossref_primary_10_1016_j_jksuci_2018_02_013 crossref_primary_10_1016_j_marpolbul_2021_112313 crossref_primary_10_1109_ACCESS_2020_2970438 crossref_primary_10_3390_math10030464 crossref_primary_10_1016_j_asoc_2019_106041 crossref_primary_10_1109_ACCESS_2024_3402652 crossref_primary_10_1016_j_infrared_2020_103295 crossref_primary_10_1016_j_jocs_2017_07_018 crossref_primary_10_1016_j_eswa_2018_04_017 crossref_primary_10_1109_TCYB_2018_2849442 crossref_primary_10_1016_j_asoc_2024_112579 crossref_primary_10_1007_s10462_015_9428_8 crossref_primary_10_1016_j_aeue_2023_154941 crossref_primary_10_3233_HIS_180248 crossref_primary_10_1016_j_inffus_2019_02_005 crossref_primary_10_1016_j_asoc_2019_105517 crossref_primary_10_3233_IDA_160855 crossref_primary_10_1007_s00500_021_06393_x crossref_primary_10_3390_e21060602 crossref_primary_10_1109_TTE_2025_3554526 crossref_primary_10_1007_s13369_017_2905_4 crossref_primary_10_1109_TEVC_2021_3134804 crossref_primary_10_1016_j_heliyon_2024_e41147 crossref_primary_10_1109_ACCESS_2019_2919991 crossref_primary_10_1016_j_knosys_2014_10_010 crossref_primary_10_1016_j_phycom_2023_102110 crossref_primary_10_1016_j_compbiomed_2017_03_008 crossref_primary_10_1049_cvi2_12029 crossref_primary_10_1109_ACCESS_2021_3060096 crossref_primary_10_1007_s00521_024_10541_3 crossref_primary_10_1007_s11042_013_1838_5 crossref_primary_10_1016_j_asoc_2015_07_023 crossref_primary_10_1109_ACCESS_2020_3012838 crossref_primary_10_1016_j_compeleceng_2015_11_001 crossref_primary_10_1109_ACCESS_2020_3013409 crossref_primary_10_1111_coin_12200 crossref_primary_10_1007_s12652_018_1031_9 crossref_primary_10_1007_s11831_025_10277_w crossref_primary_10_1016_j_neucom_2015_03_011 crossref_primary_10_1007_s00500_022_07470_5 crossref_primary_10_1016_j_asoc_2019_105524 crossref_primary_10_3233_IDT_180111 crossref_primary_10_1016_j_asoc_2016_01_044 crossref_primary_10_1371_journal_pone_0295579 crossref_primary_10_1049_smt2_12023 crossref_primary_10_1088_1742_6596_1818_1_012053 crossref_primary_10_1016_j_patcog_2017_11_027 crossref_primary_10_1038_s41598_024_73991_8 crossref_primary_10_1371_journal_pone_0090949 crossref_primary_10_1007_s11227_017_2046_2 crossref_primary_10_1038_s41598_024_67488_7 crossref_primary_10_1109_TGRS_2019_2958812 crossref_primary_10_1109_TCBB_2015_2476796 crossref_primary_10_1007_s11227_021_03721_8 crossref_primary_10_1007_s11831_022_09817_5 crossref_primary_10_32604_cmes_2024_048049 crossref_primary_10_1007_s00500_018_3555_5 crossref_primary_10_1007_s12559_017_9542_9 crossref_primary_10_1007_s00500_017_2714_4 crossref_primary_10_1016_j_compbiomed_2015_05_018 crossref_primary_10_1002_oca_2772 crossref_primary_10_1002_int_22381 crossref_primary_10_1088_1742_6596_978_1_012032 crossref_primary_10_1007_s00521_016_2473_7 crossref_primary_10_1007_s10586_017_1334_1 crossref_primary_10_1016_j_eswa_2016_02_042 crossref_primary_10_3233_AIC_190626 crossref_primary_10_7717_peerj_cs_933 crossref_primary_10_1007_s10489_018_1313_0 crossref_primary_10_1016_j_knosys_2021_106859 crossref_primary_10_1155_2014_679847 crossref_primary_10_1016_j_compbiomed_2022_106520 crossref_primary_10_1088_2053_1591_ac1cae crossref_primary_10_1007_s13369_017_2951_y crossref_primary_10_1088_1742_6596_930_1_012023 crossref_primary_10_1007_s12652_019_01364_5 crossref_primary_10_1007_s40708_016_0049_z crossref_primary_10_1016_j_neucom_2018_07_068 crossref_primary_10_1007_s00500_018_3545_7 crossref_primary_10_1007_s11831_022_09780_1 crossref_primary_10_1007_s11047_015_9519_0 crossref_primary_10_1007_s13369_021_05478_x crossref_primary_10_1155_2014_318478 crossref_primary_10_1016_j_chemolab_2018_10_009 crossref_primary_10_3233_JIFS_189090 crossref_primary_10_3233_JIFS_191685 crossref_primary_10_1016_j_scitotenv_2019_135934 crossref_primary_10_1007_s10586_024_04988_1 crossref_primary_10_1016_j_eswa_2015_07_022 crossref_primary_10_2339_politeknik_1664072 crossref_primary_10_1186_1687_5281_2013_47 crossref_primary_10_1007_s10489_018_1348_2 crossref_primary_10_1088_1742_6596_1641_1_012040 crossref_primary_10_1007_s11831_022_09872_y crossref_primary_10_1016_j_asoc_2018_06_019 crossref_primary_10_1016_j_ijepes_2021_107893 crossref_primary_10_1155_2013_796304 crossref_primary_10_1007_s10115_023_01915_5 crossref_primary_10_1109_ACCESS_2019_2919956 crossref_primary_10_1007_s00521_019_04570_6 crossref_primary_10_1007_s00500_016_2128_8 crossref_primary_10_3390_s22249653 crossref_primary_10_1016_j_egyr_2021_01_067 crossref_primary_10_1155_2013_241517 crossref_primary_10_1016_j_ijar_2020_01_012 crossref_primary_10_1007_s00521_024_09472_w crossref_primary_10_1109_ACCESS_2021_3108533 crossref_primary_10_1007_s10044_014_0408_4 crossref_primary_10_1007_s12539_020_00372_w crossref_primary_10_21511_ppm_17_4__2019_28 crossref_primary_10_1016_j_ins_2021_02_061 crossref_primary_10_1111_coin_12242 crossref_primary_10_3390_app11146516 crossref_primary_10_1007_s11042_020_09705_9 crossref_primary_10_1109_TEVC_2015_2504420 crossref_primary_10_1016_j_eswa_2024_123362 crossref_primary_10_1016_j_jksuci_2019_04_002 crossref_primary_10_3390_s16081204 crossref_primary_10_1007_s11227_023_05226_y crossref_primary_10_1016_j_swevo_2016_02_002 crossref_primary_10_1016_j_asoc_2022_108736 crossref_primary_10_1007_s00521_020_05483_5 crossref_primary_10_1007_s10489_017_0894_3 crossref_primary_10_1088_1757_899X_612_5_052043 crossref_primary_10_1080_00207721_2015_1086931 crossref_primary_10_1016_j_asoc_2024_112121 crossref_primary_10_1007_s10489_021_02659_x crossref_primary_10_1016_j_neucom_2019_01_011 crossref_primary_10_1016_j_heliyon_2024_e32726 crossref_primary_10_1016_j_swevo_2025_101899 crossref_primary_10_1007_s00500_020_05439_w crossref_primary_10_1016_j_ins_2024_120269 crossref_primary_10_1109_ACCESS_2019_2946649 crossref_primary_10_3390_info14080435 crossref_primary_10_1007_s00477_021_01969_3 crossref_primary_10_1016_j_foodchem_2024_142465 crossref_primary_10_1109_TEVC_2020_3016049 crossref_primary_10_1007_s00521_016_2804_8 crossref_primary_10_1007_s11042_023_16441_3 crossref_primary_10_1007_s13748_021_00238_2 crossref_primary_10_3390_e25020314 crossref_primary_10_1109_ACCESS_2020_2989749 crossref_primary_10_1016_j_asoc_2015_09_045 crossref_primary_10_1016_j_eswa_2020_114169 crossref_primary_10_1016_j_cose_2022_102684 crossref_primary_10_1109_ACCESS_2023_3294569 crossref_primary_10_1007_s00500_019_03891_x crossref_primary_10_1007_s11277_021_09158_9 crossref_primary_10_1080_17480930_2015_1123599 crossref_primary_10_1109_JBHI_2018_2872811 crossref_primary_10_1007_s00521_024_09535_y crossref_primary_10_1016_j_eswa_2018_10_021 crossref_primary_10_1016_j_ins_2017_09_028 crossref_primary_10_1016_j_apenergy_2018_02_140 crossref_primary_10_1016_j_neucom_2015_07_057 crossref_primary_10_1016_S1672_6529_13_60219_X crossref_primary_10_1109_TSMCB_2012_2227469 crossref_primary_10_1080_09540091_2012_737765 crossref_primary_10_1016_j_eswa_2020_113907 |
| Cites_doi | 10.1109/4235.985692 10.1016/j.asoc.2007.10.007 10.1016/j.eswa.2010.10.050 10.1109/ICNN.1995.488968 10.1109/MHS.1995.494215 10.1016/j.eswa.2007.08.088 10.1016/j.amc.2006.07.026 10.1007/s00500-004-0420-5 10.1109/TSMCB.2009.2015956 10.1109/TEVC.2005.859468 10.1016/S0020-0190(02)00447-7 10.1016/j.ipl.2006.10.005 10.1109/TEVC.2005.857077 10.1109/TEVC.2005.857074 10.1145/130385.130401 |
| ContentType | Journal Article |
| Copyright | 2011 Jilin University Jilin University 2011 |
| Copyright_xml | – notice: 2011 Jilin University – notice: Jilin University 2011 |
| DBID | 2RA 92L CQIGP W94 WU4 ~WA AAYXX CITATION 7SP 7TB 8FD FR3 L7M 7QO P64 |
| DOI | 10.1016/S1672-6529(11)60020-6 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Biology Engineering |
| DocumentTitleAlternate | An Improved Particle Swarm Optimization for Feature Selection |
| EISSN | 2543-2141 |
| EndPage | 200 |
| ExternalDocumentID | 10_1016_S1672_6529_11_60020_6 S1672652911600206 38137213 |
| GroupedDBID | --K --M -EM .~1 0R~ 1B1 1~. 1~5 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8UJ 92E 92I 92L 92Q 93N AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJNI ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADBBV ADEZE ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEKER AENEX AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CCEZO CEKLB CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HZ~ IAO IKXTQ IWAJR J-C J1W JJJVA JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O-L O9- O9J OAUVE OZT P-8 P-9 P2P PC. PT4 Q38 RIG RLLFE ROL RSV SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K TCJ TGP UOJIU UTJUX VEKWB VFIZW W94 WFFXF WU4 Z7X ZMTXR ~WA AGQEE FIGPU -SC -S~ AACDK AAJBT AASML AAXDM AAXKI ABAKF ABWVN ACDTI ACPIV ACRPL ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU CAJEC HG6 IHR ITC Q-- SJYHP U1G U5M 7X7 8FI 9DU AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACLOT ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AFPUW AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA BBNVY BENPR BGLVJ BHPHI CCPQU CITATION EFKBS FYUFA HCIFZ HMCUK M7P M7S PHGZM PHGZT PQGLB PTHSS UKHRP ~HD 7SP 7TB 8FD FR3 L7M 7QO P64 |
| ID | FETCH-LOGICAL-c486t-606d52dae62a748151231cf5638aa22b5893ddd35dbb73f1311ff24e6e9205c13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 213 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291566800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1672-6529 |
| IngestDate | Tue Oct 07 09:47:36 EDT 2025 Thu Oct 02 04:58:58 EDT 2025 Sat Nov 29 02:07:41 EST 2025 Tue Nov 18 22:31:42 EST 2025 Fri Feb 21 02:31:05 EST 2025 Fri Feb 23 02:28:42 EST 2024 Wed Feb 14 09:53:55 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | support vector machines particle swarm optimization data mining feature selection |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-606d52dae62a748151231cf5638aa22b5893ddd35dbb73f1311ff24e6e9205c13 |
| Notes | particle swarm optimization, feature selection, data mining, support vector machines 22-1355/TB Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (1FS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capa- bility through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based mcthods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671548634 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_889427596 proquest_miscellaneous_1671548634 crossref_citationtrail_10_1016_S1672_6529_11_60020_6 crossref_primary_10_1016_S1672_6529_11_60020_6 springer_journals_10_1016_S1672_6529_11_60020_6 elsevier_sciencedirect_doi_10_1016_S1672_6529_11_60020_6 chongqing_primary_38137213 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-06-01 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Journal of bionics engineering |
| PublicationTitleAbbrev | J Bionic Eng |
| PublicationTitleAlternate | Journal of Bionics Engineering |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd Springer Singapore |
| Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
| References | Niu, Zhu, He, Wu (bib9) 2007; 185 Chen, Lin (bib10) 2006; 37 Pittsburgh, USA, 1992, 144–152. Trelea (bib15) 2003; 85 Kadirkamanathan, Selvarajah, Fleming (bib16) 2006; 10 Kennedy J, Eberhart R. Particle swarm optimization. Xie, Wang (bib20) 2011; 38 Blackwell, Branke (bib7) 2006; 10 Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Anchorage, USA, 1998, 69–73. Guyon, Elisseeff (bib1) 2003; 3 Huang, Dun (bib5) 2008; 8 Clerc, Kennedy (bib14) 2002; 6 Jiang, Luo, Yang (bib17) 2007; 102 Zhan, Zhang, Li (bib19) 2009; 39 Nagoya, Japan, 1995, 39–43. Orlando, USA, 1997, 4104–4108. Perth, Australia, 1995, 1942–1948. Lin, Ying, Chen, Lee (bib4) 2008; 35 Blackwell (bib6) 2005; 9 Parrott, Li (bib8) 2006; 10 Shi Y, Eberhart R. Modified particle swarm optimizer. Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm. Vapnik (bib12) 1999 Huang, Dun (CR5) 2008; 8 Boser, Guyon, Vapnik (CR13) 1992 Xie, Wang (CR20) 2011; 38 Shi, Eberhart (CR18) 1998 Blackwell (CR6) 2005; 9 Trelea (CR15) 2003; 85 Niu, Zhu, He, Wu (CR9) 2007; 185 Jiang, Luo, Yang (CR17) 2007; 102 Kennedy, Eberhart (CR2) 1995 Vapnik (CR12) 1999 Lin, Ying, Chen, Lee (CR4) 2008; 35 Chen, Lin (CR10) 2006; 37 Clerc, Kennedy (CR14) 2002; 6 Guyon, Elisseeff (CR1) 2003; 3 Parrott, Li (CR8) 2006; 10 Zhan, Zhang, Li (CR19) 2009; 39 Blackwell, Branke (CR7) 2006; 10 Eberhart, Kennedy (CR3) 1995 Kennedy, Eberhart (CR11) 1997 Kadirkamanathan, Selvarajah, Fleming (CR16) 2006; 10 B Niu (8020191_CR9) 2007; 185 M Clerc (8020191_CR14) 2002; 6 J Y Xie (8020191_CR20) 2011; 38 V N Vapnik (8020191_CR12) 1999 B E Boser (8020191_CR13) 1992 I C Trelea (8020191_CR15) 2003; 85 J Kennedy (8020191_CR2) 1995 V Kadirkamanathan (8020191_CR16) 2006; 10 R Eberhart (8020191_CR3) 1995 I Guyon (8020191_CR1) 2003; 3 Y W Chen (8020191_CR10) 2006; 37 J Kennedy (8020191_CR11) 1997 S W Lin (8020191_CR4) 2008; 35 D Parrott (8020191_CR8) 2006; 10 Z H Zhan (8020191_CR19) 2009; 39 T Blackwell (8020191_CR6) 2005; 9 T Blackwell (8020191_CR7) 2006; 10 C L Huang (8020191_CR5) 2008; 8 M Jiang (8020191_CR17) 2007; 102 Y Shi (8020191_CR18) 1998 |
| References_xml | – reference: Kennedy J, Eberhart R. Particle swarm optimization. – reference: Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib1 article-title: An introduction to variable and feature selection publication-title: Journal of Machine Learning Research – year: 1999 ident: bib12 publication-title: The Nature of Statistical Learning Theory – volume: 9 start-page: 793 year: 2005 end-page: 802 ident: bib6 article-title: Particle swarms and population diversity publication-title: Soft Computing – volume: 102 start-page: 8 year: 2007 end-page: 16 ident: bib17 article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm publication-title: Information Processing Letters – reference: , Orlando, USA, 1997, 4104–4108. – reference: Eberhart R, Kennedy J. A new optimizer using particle swarm theory. – volume: 37 start-page: 315 year: 2006 end-page: 324 ident: bib10 article-title: Combination of feature selection approaches with SVM in credit scoring publication-title: Expert Systems with Applications – reference: Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm. – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: bib15 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Information Processing Letters – volume: 10 start-page: 459 year: 2006 end-page: 472 ident: bib7 article-title: Multiswarms, exclusion, and anti-convergence in dynamic environments publication-title: IEEE Transactions on Evolutionary Computation – reference: , Nagoya, Japan, 1995, 39–43. – volume: 10 start-page: 440 year: 2006 end-page: 458 ident: bib8 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation publication-title: IEEE Transactions on Evolutionary Computation – volume: 185 start-page: 1050 year: 2007 end-page: 1062 ident: bib9 article-title: MCPSO: A multi-swarm cooperative particle swarm optimizer publication-title: Applied Mathematics and Computation – volume: 10 start-page: 245 year: 2006 end-page: 255 ident: bib16 article-title: Stability analysis of the particle dynamics in particle swarm optimizer publication-title: IEEE Transactions on Evolutionary Computation – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: bib4 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Systems with Applications – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib14 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Transactions on Evolutionary Computation – reference: , Anchorage, USA, 1998, 69–73. – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: bib5 article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization publication-title: Applied Soft Computing – reference: Shi Y, Eberhart R. Modified particle swarm optimizer. – reference: , Perth, Australia, 1995, 1942–1948. – volume: 38 start-page: 5809 year: 2011 end-page: 5815 ident: bib20 article-title: Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases publication-title: Expert Systems with Applications – reference: , Pittsburgh, USA, 1992, 144–152. – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: bib19 article-title: Adaptive Particle Swarm Optimization publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: CR1 article-title: An introduction to variable and feature selection publication-title: Journal of Machine Learning Research – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: CR14 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985692 – start-page: 144 year: 1992 end-page: 152 ident: CR13 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the fifth Annual Workshop on Computational Learning Theory – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: CR5 article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.10.007 – volume: 38 start-page: 5809 year: 2011 end-page: 5815 ident: CR20 article-title: Using support vector machines with a novel hybrid feature selection method for diagnosis of ery- themato-squamous diseases publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.10.050 – start-page: 1942 year: 1995 end-page: 1948 ident: CR2 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Network doi: 10.1109/ICNN.1995.488968 – start-page: 39 year: 1995 end-page: 43 ident: CR3 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science doi: 10.1109/MHS.1995.494215 – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: CR4 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.08.088 – volume: 185 start-page: 1050 year: 2007 end-page: 1062 ident: CR9 article-title: MCPSO: A multi-swarm cooperative particle swarm optimizer publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.026 – start-page: 4104 year: 1997 end-page: 4108 ident: CR11 article-title: A discrete binary version of the particle swarm algorithm publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics – volume: 9 start-page: 793 year: 2005 end-page: 802 ident: CR6 article-title: Particle swarms and population diversity publication-title: Soft Computing doi: 10.1007/s00500-004-0420-5 – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: CR19 article-title: Adaptive Particle Swarm Optimization publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics doi: 10.1109/TSMCB.2009.2015956 – volume: 10 start-page: 440 year: 2006 end-page: 458 ident: CR8 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.859468 – start-page: 69 year: 1998 end-page: 73 ident: CR18 article-title: Modified particle swarm optimizer publication-title: Proceedings of IEEE International Conference on Evolutionary Computation – volume: 37 start-page: 315 year: 2006 end-page: 324 ident: CR10 article-title: Combination of feature selection approaches with SVM in credit scoring publication-title: Expert Systems with Applications – year: 1999 ident: CR12 publication-title: The Nature of Statistical Learning Theory – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: CR15 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Information Processing Letters doi: 10.1016/S0020-0190(02)00447-7 – volume: 102 start-page: 8 year: 2007 end-page: 16 ident: CR17 article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm publication-title: Information Processing Letters doi: 10.1016/j.ipl.2006.10.005 – volume: 10 start-page: 245 year: 2006 end-page: 255 ident: CR16 article-title: Stability analysis of the particle dynamics in particle swarm optimizer publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857077 – volume: 10 start-page: 459 year: 2006 end-page: 472 ident: CR7 article-title: Multiswarms, exclusion, and anti-convergence in dynamic environments publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857074 – start-page: 4104 volume-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics year: 1997 ident: 8020191_CR11 – start-page: 39 volume-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science year: 1995 ident: 8020191_CR3 doi: 10.1109/MHS.1995.494215 – volume: 9 start-page: 793 year: 2005 ident: 8020191_CR6 publication-title: Soft Computing doi: 10.1007/s00500-004-0420-5 – volume: 39 start-page: 1362 year: 2009 ident: 8020191_CR19 publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics doi: 10.1109/TSMCB.2009.2015956 – volume: 10 start-page: 459 year: 2006 ident: 8020191_CR7 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857074 – volume: 85 start-page: 317 year: 2003 ident: 8020191_CR15 publication-title: Information Processing Letters doi: 10.1016/S0020-0190(02)00447-7 – volume: 6 start-page: 58 year: 2002 ident: 8020191_CR14 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985692 – volume: 37 start-page: 315 year: 2006 ident: 8020191_CR10 publication-title: Expert Systems with Applications – volume-title: The Nature of Statistical Learning Theory year: 1999 ident: 8020191_CR12 – volume: 35 start-page: 1817 year: 2008 ident: 8020191_CR4 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.08.088 – volume: 102 start-page: 8 year: 2007 ident: 8020191_CR17 publication-title: Information Processing Letters doi: 10.1016/j.ipl.2006.10.005 – volume: 185 start-page: 1050 year: 2007 ident: 8020191_CR9 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.026 – volume: 10 start-page: 440 year: 2006 ident: 8020191_CR8 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.859468 – start-page: 69 volume-title: Proceedings of IEEE International Conference on Evolutionary Computation year: 1998 ident: 8020191_CR18 – volume: 38 start-page: 5809 year: 2011 ident: 8020191_CR20 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.10.050 – start-page: 144 volume-title: Proceedings of the fifth Annual Workshop on Computational Learning Theory year: 1992 ident: 8020191_CR13 doi: 10.1145/130385.130401 – start-page: 1942 volume-title: Proceedings of the IEEE International Conference on Neural Network year: 1995 ident: 8020191_CR2 doi: 10.1109/ICNN.1995.488968 – volume: 8 start-page: 1381 year: 2008 ident: 8020191_CR5 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.10.007 – volume: 3 start-page: 1157 year: 2003 ident: 8020191_CR1 publication-title: Journal of Machine Learning Research – volume: 10 start-page: 245 year: 2006 ident: 8020191_CR16 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857077 |
| SSID | ssj0059283 |
| Score | 2.3821015 |
| Snippet | Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To... Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To... |
| SourceID | proquest crossref springer elsevier chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 191 |
| SubjectTerms | Artificial Intelligence Biochemical Engineering Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Bionics Competition data mining Engineering feature selection Genetic algorithms IFS方法 Mathematical models Optimization particle swarm optimization PSO Searching Support vector machines 优化问题 功能选择 支持向量机 特征选择 社会行为 粒子群优化 |
| Title | An Improved Particle Swarm Optimization for Feature Selection |
| URI | http://lib.cqvip.com/qk/87903X/201102/38137213.html https://dx.doi.org/10.1016/S1672-6529(11)60020-6 https://link.springer.com/article/10.1016/S1672-6529(11)60020-6 https://www.proquest.com/docview/1671548634 https://www.proquest.com/docview/889427596 |
| Volume | 8 |
| WOSCitedRecordID | wos000291566800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2543-2141 dateEnd: 20171031 omitProxy: false ssIdentifier: ssj0059283 issn: 1672-6529 databaseCode: AIEXJ dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2543-2141 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059283 issn: 1672-6529 databaseCode: RSV dateStart: 20040301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFH9RxEQPCqvGBTUl4QCHwZ1O2-kcOBAD8bQxgoZb0-mHksgs7iwa_3tfO51xQ_gIXid9baZ936_9PYBtawznBoMc5I4yY0aLTFNfZnUugsF1lbc-Npsop1N5elp9SqmLtr_t3pcko6Ye3vTmoqSZ4LTayfPdUE7CuOchPEKLJ4NEfj7-2qtgXtGIvzlQ_Hu6c_00AVjh-6z59hOXvclALTmgV2qm0RQdPf_vn1iDZ8n7JAcdu6zDA9eM4HHXj_LPCJ4uoROOYD3JfUt2Ejj17gvYP2jIWUxEOEsuEt-R9reen5MZqp_z9K6ToDNMvIuwoaSNzXbw60v4cnR48uFjllowZIZJscgwvLGcWu0E1WXAdUFDlxvPUWq1prTm6O5Yawtu67osfMDu8Z4yJ1xFJ9zkxStYaWaNew3E84lnYlJbVCGM-VJ67ZG0khQ_FVaOYWM4A3XRQW0o9CcKjFGLMbD-UJRJ4OWhh8YPNdxSCzurws5iUKPizioxhr2BrJ_yDgLZn7hKLkjnWii0MHeRbvUcolBEQ91FN2522SocHQJDUbAxkBvGSFkxWvIKp3nfc45K6qS9feGNe1NswpMuNR6SSW9gZTG_dG9h1fxanLXzd1GU_gJZahIv |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFH9B0CAHkAXjomJNPMBhYKfTdmYOHoiBYMSNUTTcmk4_lERmcWeR8N_z2umMxIhEr5O-NtO-79f-HsArozXnGoMc5I48YVqJRFGXJ1UqvMG1pTMuNJvIx-Pi5KT8EFMXTXfbvStJBk3dv-lNRU4TwWm5labbvpyEcc89WGBotPxdvo-fvnQqmJc04G_2FL-e7vx5Gg-s8G1Sf_2By95moG44oL_VTIMpOlj57594BMvR-yR7LbuswpytB_Cg7Ud5NYClG-iEA1iNct-QrQhOvb0Gr_dqchoSEdaQ88h3pLlU0zMyQfVzFt91EnSGibMBNpQ0odkOfl2Hzwf7x28Ok9iCIdGsELMEwxvDqVFWUJV7XBc0dKl2HKVWKUorju6OMSbjpqryzHnsHucos8KWdMR1mj2G-XpS2ydAHB85JkaVQRXCmMsLpxySlgXFT5kphrDRn4E8b6E2JPoTGcao2RBYdyhSR_By30Pju-xvqfmdlX5nMaiRYWelGMJOT9ZNeQdB0Z24jC5I61pItDB3kb7sOESiiPq6i6rt5KKRONoHhiJjQyC3jCmKktGclzjNbsc5MqqT5u8Lb_wzxQtYPDx-fySP3o7fPYWHbZrcJ5aewfxsemGfw339c3baTDeDWF0DN9wVEw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V8hAcgG6L2JaHkTi0h3Q3ju0kBw5VYQUCrSrxUG-W40dbiWaXzbYV_56x46QVolRIXC2PndjjeXg83wC8NlpzrtHJQe7IE6aVSBR1eVKlwitcWzrjQrGJfDotDg_LgxXY73Jhwmv3LiTZ5jR4lKZ6OZobN-rze1OR00RwWm6n6Y4PLaEPdAtuM183yLvsn7914piXNGBx9hSXaTx_HsaDLBzP6qMf-AnXKasrxuhv8dOgliaP_ssPPYaH0Soley0brcGKrQdwt61T-XMAD66gFg5gLcqDhmxH0OqddXizV5OTcEFhDZlHfiTNhVqckhmKpdOY70nQSCbOBjhR0oQiPNi6AV8n777sv09iaYZEs0IsE3R7DKdGWUFV7vFeUAGm2nE8zUpRWnE0g4wxGTdVlWfOY_o4R5kVtqRjrtPsCazWs9o-BeL42DExrgyKFsZcXjjlkLQsKDZlphjCZr8fct5CcEi0MzL0XbMhsG6DpI6g5r62xnfZv17zKyv9yqKzI8PKSjGE3Z6sG_IGgqLbfRlNk9bkkKh5biJ91XGLxKPr4zGqtrOzRmJv7zCKjA2BXNOnKEpGc17iMKOOi2QUM83fJ978Z4qXcO_g7UR--jD9uAX329tzf9_0DFaXizP7HO7o8-VJs3gRTtgvxicd9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Particle+Swarm+Optimization+for+Feature+Selection&rft.jtitle=Journal+of+bionics+engineering&rft.au=Liu%2C+Yuanning&rft.au=Wang%2C+Gang&rft.au=Chen%2C+Huiling&rft.au=Dong%2C+Hao&rft.date=2011-06-01&rft.issn=1672-6529&rft.volume=8&rft.issue=2&rft.spage=191&rft.epage=200&rft_id=info:doi/10.1016%2FS1672-6529%2811%2960020-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87903X%2F87903X.jpg |