An Improved Particle Swarm Optimization for Feature Selection

Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bionics engineering Vol. 8; no. 2; pp. 191 - 200
Main Authors: Liu, Yuanning, Wang, Gang, Chen, Huiling, Dong, Hao, Zhu, Xiaodong, Wang, Sujing
Format: Journal Article
Language:English
Published: Singapore Elsevier Ltd 01.06.2011
Springer Singapore
Subjects:
ISSN:1672-6529, 2543-2141
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (IFS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capability through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based methods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features.
AbstractList Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (IFS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capability through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based methods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features.
Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (1FS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capa- bility through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based mcthods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features.
Author Chen, Huiling
Dong, Hao
Wang, Gang
Zhu, Xiaodong
Liu, Yuanning
Wang, Sujing
AuthorAffiliation College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China Key Laboratory of S.vmbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China
Author_xml – sequence: 1
  givenname: Yuanning
  surname: Liu
  fullname: Liu, Yuanning
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China
– sequence: 2
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China
– sequence: 3
  givenname: Huiling
  surname: Chen
  fullname: Chen, Huiling
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China
– sequence: 4
  givenname: Hao
  surname: Dong
  fullname: Dong, Hao
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China
– sequence: 5
  givenname: Xiaodong
  surname: Zhu
  fullname: Zhu, Xiaodong
  email: zhuxiaodong.jlu@gmail.com
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China
– sequence: 6
  givenname: Sujing
  surname: Wang
  fullname: Wang, Sujing
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, P. R. China
BookMark eNqFkV1rHCEUhqUk0M3HTwhMr5peTOPR0ZmhlBBC0i4EEkhyLa6e2RpmdKOzKe2vj_vBXvSieyXo8x5fH4_IgQ8eCTkD-hUoyItHkDUrpWDtOcAXSSmjpfxAJkxUvGRQwQGZ7JCP5CilF0pFyxo-Id-vfDEdFjG8oS0edByd6bF4_K3jUNwvRje4v3p0wRddiMUt6nEZ8zH2aFa7J-Sw033C0-16TJ5vb56uf5Z39z-m11d3pakaOZaSSiuY1SiZrqsGBDAOphOSN1ozNhNNy621XNjZrOYdcICuYxVKbBkVBvgx-byZm4u-LjGNanDJYN9rj2GZVNO0FatFKzN5_l8yewCRS_Eqo982qIkhpYidMm5cP3aM2vUKqFrpVWu9auVOAai1XrW6SPyTXkQ36Phnb05ucinzfo5RvYRl9Nne3uDlJohZ9JvLwWQceoPWxfwbyga3d8KnbeVfwc9f8-27zrwBXjPg_B1KCq4q
CitedBy_id crossref_primary_10_7603_s40632_016_0001_7
crossref_primary_10_1007_s42235_023_00414_1
crossref_primary_10_1007_s13042_018_0838_1
crossref_primary_10_1016_j_apm_2021_04_018
crossref_primary_10_1016_j_jksuci_2018_02_013
crossref_primary_10_1016_j_marpolbul_2021_112313
crossref_primary_10_1109_ACCESS_2020_2970438
crossref_primary_10_3390_math10030464
crossref_primary_10_1016_j_asoc_2019_106041
crossref_primary_10_1109_ACCESS_2024_3402652
crossref_primary_10_1016_j_infrared_2020_103295
crossref_primary_10_1016_j_jocs_2017_07_018
crossref_primary_10_1016_j_eswa_2018_04_017
crossref_primary_10_1109_TCYB_2018_2849442
crossref_primary_10_1016_j_asoc_2024_112579
crossref_primary_10_1007_s10462_015_9428_8
crossref_primary_10_1016_j_aeue_2023_154941
crossref_primary_10_3233_HIS_180248
crossref_primary_10_1016_j_inffus_2019_02_005
crossref_primary_10_1016_j_asoc_2019_105517
crossref_primary_10_3233_IDA_160855
crossref_primary_10_1007_s00500_021_06393_x
crossref_primary_10_3390_e21060602
crossref_primary_10_1109_TTE_2025_3554526
crossref_primary_10_1007_s13369_017_2905_4
crossref_primary_10_1109_TEVC_2021_3134804
crossref_primary_10_1016_j_heliyon_2024_e41147
crossref_primary_10_1109_ACCESS_2019_2919991
crossref_primary_10_1016_j_knosys_2014_10_010
crossref_primary_10_1016_j_phycom_2023_102110
crossref_primary_10_1016_j_compbiomed_2017_03_008
crossref_primary_10_1049_cvi2_12029
crossref_primary_10_1109_ACCESS_2021_3060096
crossref_primary_10_1007_s00521_024_10541_3
crossref_primary_10_1007_s11042_013_1838_5
crossref_primary_10_1016_j_asoc_2015_07_023
crossref_primary_10_1109_ACCESS_2020_3012838
crossref_primary_10_1016_j_compeleceng_2015_11_001
crossref_primary_10_1109_ACCESS_2020_3013409
crossref_primary_10_1111_coin_12200
crossref_primary_10_1007_s12652_018_1031_9
crossref_primary_10_1007_s11831_025_10277_w
crossref_primary_10_1016_j_neucom_2015_03_011
crossref_primary_10_1007_s00500_022_07470_5
crossref_primary_10_1016_j_asoc_2019_105524
crossref_primary_10_3233_IDT_180111
crossref_primary_10_1016_j_asoc_2016_01_044
crossref_primary_10_1371_journal_pone_0295579
crossref_primary_10_1049_smt2_12023
crossref_primary_10_1088_1742_6596_1818_1_012053
crossref_primary_10_1016_j_patcog_2017_11_027
crossref_primary_10_1038_s41598_024_73991_8
crossref_primary_10_1371_journal_pone_0090949
crossref_primary_10_1007_s11227_017_2046_2
crossref_primary_10_1038_s41598_024_67488_7
crossref_primary_10_1109_TGRS_2019_2958812
crossref_primary_10_1109_TCBB_2015_2476796
crossref_primary_10_1007_s11227_021_03721_8
crossref_primary_10_1007_s11831_022_09817_5
crossref_primary_10_32604_cmes_2024_048049
crossref_primary_10_1007_s00500_018_3555_5
crossref_primary_10_1007_s12559_017_9542_9
crossref_primary_10_1007_s00500_017_2714_4
crossref_primary_10_1016_j_compbiomed_2015_05_018
crossref_primary_10_1002_oca_2772
crossref_primary_10_1002_int_22381
crossref_primary_10_1088_1742_6596_978_1_012032
crossref_primary_10_1007_s00521_016_2473_7
crossref_primary_10_1007_s10586_017_1334_1
crossref_primary_10_1016_j_eswa_2016_02_042
crossref_primary_10_3233_AIC_190626
crossref_primary_10_7717_peerj_cs_933
crossref_primary_10_1007_s10489_018_1313_0
crossref_primary_10_1016_j_knosys_2021_106859
crossref_primary_10_1155_2014_679847
crossref_primary_10_1016_j_compbiomed_2022_106520
crossref_primary_10_1088_2053_1591_ac1cae
crossref_primary_10_1007_s13369_017_2951_y
crossref_primary_10_1088_1742_6596_930_1_012023
crossref_primary_10_1007_s12652_019_01364_5
crossref_primary_10_1007_s40708_016_0049_z
crossref_primary_10_1016_j_neucom_2018_07_068
crossref_primary_10_1007_s00500_018_3545_7
crossref_primary_10_1007_s11831_022_09780_1
crossref_primary_10_1007_s11047_015_9519_0
crossref_primary_10_1007_s13369_021_05478_x
crossref_primary_10_1155_2014_318478
crossref_primary_10_1016_j_chemolab_2018_10_009
crossref_primary_10_3233_JIFS_189090
crossref_primary_10_3233_JIFS_191685
crossref_primary_10_1016_j_scitotenv_2019_135934
crossref_primary_10_1007_s10586_024_04988_1
crossref_primary_10_1016_j_eswa_2015_07_022
crossref_primary_10_2339_politeknik_1664072
crossref_primary_10_1186_1687_5281_2013_47
crossref_primary_10_1007_s10489_018_1348_2
crossref_primary_10_1088_1742_6596_1641_1_012040
crossref_primary_10_1007_s11831_022_09872_y
crossref_primary_10_1016_j_asoc_2018_06_019
crossref_primary_10_1016_j_ijepes_2021_107893
crossref_primary_10_1155_2013_796304
crossref_primary_10_1007_s10115_023_01915_5
crossref_primary_10_1109_ACCESS_2019_2919956
crossref_primary_10_1007_s00521_019_04570_6
crossref_primary_10_1007_s00500_016_2128_8
crossref_primary_10_3390_s22249653
crossref_primary_10_1016_j_egyr_2021_01_067
crossref_primary_10_1155_2013_241517
crossref_primary_10_1016_j_ijar_2020_01_012
crossref_primary_10_1007_s00521_024_09472_w
crossref_primary_10_1109_ACCESS_2021_3108533
crossref_primary_10_1007_s10044_014_0408_4
crossref_primary_10_1007_s12539_020_00372_w
crossref_primary_10_21511_ppm_17_4__2019_28
crossref_primary_10_1016_j_ins_2021_02_061
crossref_primary_10_1111_coin_12242
crossref_primary_10_3390_app11146516
crossref_primary_10_1007_s11042_020_09705_9
crossref_primary_10_1109_TEVC_2015_2504420
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_1016_j_jksuci_2019_04_002
crossref_primary_10_3390_s16081204
crossref_primary_10_1007_s11227_023_05226_y
crossref_primary_10_1016_j_swevo_2016_02_002
crossref_primary_10_1016_j_asoc_2022_108736
crossref_primary_10_1007_s00521_020_05483_5
crossref_primary_10_1007_s10489_017_0894_3
crossref_primary_10_1088_1757_899X_612_5_052043
crossref_primary_10_1080_00207721_2015_1086931
crossref_primary_10_1016_j_asoc_2024_112121
crossref_primary_10_1007_s10489_021_02659_x
crossref_primary_10_1016_j_neucom_2019_01_011
crossref_primary_10_1016_j_heliyon_2024_e32726
crossref_primary_10_1016_j_swevo_2025_101899
crossref_primary_10_1007_s00500_020_05439_w
crossref_primary_10_1016_j_ins_2024_120269
crossref_primary_10_1109_ACCESS_2019_2946649
crossref_primary_10_3390_info14080435
crossref_primary_10_1007_s00477_021_01969_3
crossref_primary_10_1016_j_foodchem_2024_142465
crossref_primary_10_1109_TEVC_2020_3016049
crossref_primary_10_1007_s00521_016_2804_8
crossref_primary_10_1007_s11042_023_16441_3
crossref_primary_10_1007_s13748_021_00238_2
crossref_primary_10_3390_e25020314
crossref_primary_10_1109_ACCESS_2020_2989749
crossref_primary_10_1016_j_asoc_2015_09_045
crossref_primary_10_1016_j_eswa_2020_114169
crossref_primary_10_1016_j_cose_2022_102684
crossref_primary_10_1109_ACCESS_2023_3294569
crossref_primary_10_1007_s00500_019_03891_x
crossref_primary_10_1007_s11277_021_09158_9
crossref_primary_10_1080_17480930_2015_1123599
crossref_primary_10_1109_JBHI_2018_2872811
crossref_primary_10_1007_s00521_024_09535_y
crossref_primary_10_1016_j_eswa_2018_10_021
crossref_primary_10_1016_j_ins_2017_09_028
crossref_primary_10_1016_j_apenergy_2018_02_140
crossref_primary_10_1016_j_neucom_2015_07_057
crossref_primary_10_1016_S1672_6529_13_60219_X
crossref_primary_10_1109_TSMCB_2012_2227469
crossref_primary_10_1080_09540091_2012_737765
crossref_primary_10_1016_j_eswa_2020_113907
Cites_doi 10.1109/4235.985692
10.1016/j.asoc.2007.10.007
10.1016/j.eswa.2010.10.050
10.1109/ICNN.1995.488968
10.1109/MHS.1995.494215
10.1016/j.eswa.2007.08.088
10.1016/j.amc.2006.07.026
10.1007/s00500-004-0420-5
10.1109/TSMCB.2009.2015956
10.1109/TEVC.2005.859468
10.1016/S0020-0190(02)00447-7
10.1016/j.ipl.2006.10.005
10.1109/TEVC.2005.857077
10.1109/TEVC.2005.857074
10.1145/130385.130401
ContentType Journal Article
Copyright 2011 Jilin University
Jilin University 2011
Copyright_xml – notice: 2011 Jilin University
– notice: Jilin University 2011
DBID 2RA
92L
CQIGP
W94
WU4
~WA
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
7QO
P64
DOI 10.1016/S1672-6529(11)60020-6
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList

Engineering Research Database

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Engineering
DocumentTitleAlternate An Improved Particle Swarm Optimization for Feature Selection
EISSN 2543-2141
EndPage 200
ExternalDocumentID 10_1016_S1672_6529_11_60020_6
S1672652911600206
38137213
GroupedDBID --K
--M
-EM
.~1
0R~
1B1
1~.
1~5
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8UJ
92E
92I
92L
92Q
93N
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CCEZO
CEKLB
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HZ~
IAO
IKXTQ
IWAJR
J-C
J1W
JJJVA
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q38
RIG
RLLFE
ROL
RSV
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
TCJ
TGP
UOJIU
UTJUX
VEKWB
VFIZW
W94
WFFXF
WU4
Z7X
ZMTXR
~WA
AGQEE
FIGPU
-SC
-S~
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
CAJEC
HG6
IHR
ITC
Q--
SJYHP
U1G
U5M
7X7
8FI
9DU
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACLOT
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EFKBS
FYUFA
HCIFZ
HMCUK
M7P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
UKHRP
~HD
7SP
7TB
8FD
FR3
L7M
7QO
P64
ID FETCH-LOGICAL-c486t-606d52dae62a748151231cf5638aa22b5893ddd35dbb73f1311ff24e6e9205c13
IEDL.DBID RSV
ISICitedReferencesCount 213
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291566800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1672-6529
IngestDate Tue Oct 07 09:47:36 EDT 2025
Thu Oct 02 04:58:58 EDT 2025
Sat Nov 29 02:07:41 EST 2025
Tue Nov 18 22:31:42 EST 2025
Fri Feb 21 02:31:05 EST 2025
Fri Feb 23 02:28:42 EST 2024
Wed Feb 14 09:53:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords support vector machines
particle swarm optimization
data mining
feature selection
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-606d52dae62a748151231cf5638aa22b5893ddd35dbb73f1311ff24e6e9205c13
Notes particle swarm optimization, feature selection, data mining, support vector machines
22-1355/TB
Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (1FS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capa- bility through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based mcthods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671548634
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_889427596
proquest_miscellaneous_1671548634
crossref_citationtrail_10_1016_S1672_6529_11_60020_6
crossref_primary_10_1016_S1672_6529_11_60020_6
springer_journals_10_1016_S1672_6529_11_60020_6
elsevier_sciencedirect_doi_10_1016_S1672_6529_11_60020_6
chongqing_primary_38137213
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of bionics engineering
PublicationTitleAbbrev J Bionic Eng
PublicationTitleAlternate Journal of Bionics Engineering
PublicationYear 2011
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Niu, Zhu, He, Wu (bib9) 2007; 185
Chen, Lin (bib10) 2006; 37
Pittsburgh, USA, 1992, 144–152.
Trelea (bib15) 2003; 85
Kadirkamanathan, Selvarajah, Fleming (bib16) 2006; 10
Kennedy J, Eberhart R. Particle swarm optimization.
Xie, Wang (bib20) 2011; 38
Blackwell, Branke (bib7) 2006; 10
Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers.
Eberhart R, Kennedy J. A new optimizer using particle swarm theory.
Anchorage, USA, 1998, 69–73.
Guyon, Elisseeff (bib1) 2003; 3
Huang, Dun (bib5) 2008; 8
Clerc, Kennedy (bib14) 2002; 6
Jiang, Luo, Yang (bib17) 2007; 102
Zhan, Zhang, Li (bib19) 2009; 39
Nagoya, Japan, 1995, 39–43.
Orlando, USA, 1997, 4104–4108.
Perth, Australia, 1995, 1942–1948.
Lin, Ying, Chen, Lee (bib4) 2008; 35
Blackwell (bib6) 2005; 9
Parrott, Li (bib8) 2006; 10
Shi Y, Eberhart R. Modified particle swarm optimizer.
Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm.
Vapnik (bib12) 1999
Huang, Dun (CR5) 2008; 8
Boser, Guyon, Vapnik (CR13) 1992
Xie, Wang (CR20) 2011; 38
Shi, Eberhart (CR18) 1998
Blackwell (CR6) 2005; 9
Trelea (CR15) 2003; 85
Niu, Zhu, He, Wu (CR9) 2007; 185
Jiang, Luo, Yang (CR17) 2007; 102
Kennedy, Eberhart (CR2) 1995
Vapnik (CR12) 1999
Lin, Ying, Chen, Lee (CR4) 2008; 35
Chen, Lin (CR10) 2006; 37
Clerc, Kennedy (CR14) 2002; 6
Guyon, Elisseeff (CR1) 2003; 3
Parrott, Li (CR8) 2006; 10
Zhan, Zhang, Li (CR19) 2009; 39
Blackwell, Branke (CR7) 2006; 10
Eberhart, Kennedy (CR3) 1995
Kennedy, Eberhart (CR11) 1997
Kadirkamanathan, Selvarajah, Fleming (CR16) 2006; 10
B Niu (8020191_CR9) 2007; 185
M Clerc (8020191_CR14) 2002; 6
J Y Xie (8020191_CR20) 2011; 38
V N Vapnik (8020191_CR12) 1999
B E Boser (8020191_CR13) 1992
I C Trelea (8020191_CR15) 2003; 85
J Kennedy (8020191_CR2) 1995
V Kadirkamanathan (8020191_CR16) 2006; 10
R Eberhart (8020191_CR3) 1995
I Guyon (8020191_CR1) 2003; 3
Y W Chen (8020191_CR10) 2006; 37
J Kennedy (8020191_CR11) 1997
S W Lin (8020191_CR4) 2008; 35
D Parrott (8020191_CR8) 2006; 10
Z H Zhan (8020191_CR19) 2009; 39
T Blackwell (8020191_CR6) 2005; 9
T Blackwell (8020191_CR7) 2006; 10
C L Huang (8020191_CR5) 2008; 8
M Jiang (8020191_CR17) 2007; 102
Y Shi (8020191_CR18) 1998
References_xml – reference: Kennedy J, Eberhart R. Particle swarm optimization.
– reference: Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib1
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– year: 1999
  ident: bib12
  publication-title: The Nature of Statistical Learning Theory
– volume: 9
  start-page: 793
  year: 2005
  end-page: 802
  ident: bib6
  article-title: Particle swarms and population diversity
  publication-title: Soft Computing
– volume: 102
  start-page: 8
  year: 2007
  end-page: 16
  ident: bib17
  article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
  publication-title: Information Processing Letters
– reference: , Orlando, USA, 1997, 4104–4108.
– reference: Eberhart R, Kennedy J. A new optimizer using particle swarm theory.
– volume: 37
  start-page: 315
  year: 2006
  end-page: 324
  ident: bib10
  article-title: Combination of feature selection approaches with SVM in credit scoring
  publication-title: Expert Systems with Applications
– reference: Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm.
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: bib15
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Information Processing Letters
– volume: 10
  start-page: 459
  year: 2006
  end-page: 472
  ident: bib7
  article-title: Multiswarms, exclusion, and anti-convergence in dynamic environments
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: , Nagoya, Japan, 1995, 39–43.
– volume: 10
  start-page: 440
  year: 2006
  end-page: 458
  ident: bib8
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 185
  start-page: 1050
  year: 2007
  end-page: 1062
  ident: bib9
  article-title: MCPSO: A multi-swarm cooperative particle swarm optimizer
  publication-title: Applied Mathematics and Computation
– volume: 10
  start-page: 245
  year: 2006
  end-page: 255
  ident: bib16
  article-title: Stability analysis of the particle dynamics in particle swarm optimizer
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: bib4
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Systems with Applications
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib14
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: , Anchorage, USA, 1998, 69–73.
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: bib5
  article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization
  publication-title: Applied Soft Computing
– reference: Shi Y, Eberhart R. Modified particle swarm optimizer.
– reference: , Perth, Australia, 1995, 1942–1948.
– volume: 38
  start-page: 5809
  year: 2011
  end-page: 5815
  ident: bib20
  article-title: Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases
  publication-title: Expert Systems with Applications
– reference: , Pittsburgh, USA, 1992, 144–152.
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: bib19
  article-title: Adaptive Particle Swarm Optimization
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR1
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: CR14
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– start-page: 144
  year: 1992
  end-page: 152
  ident: CR13
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the fifth Annual Workshop on Computational Learning Theory
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: CR5
  article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.10.007
– volume: 38
  start-page: 5809
  year: 2011
  end-page: 5815
  ident: CR20
  article-title: Using support vector machines with a novel hybrid feature selection method for diagnosis of ery- themato-squamous diseases
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.10.050
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: CR2
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Network
  doi: 10.1109/ICNN.1995.488968
– start-page: 39
  year: 1995
  end-page: 43
  ident: CR3
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science
  doi: 10.1109/MHS.1995.494215
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: CR4
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.08.088
– volume: 185
  start-page: 1050
  year: 2007
  end-page: 1062
  ident: CR9
  article-title: MCPSO: A multi-swarm cooperative particle swarm optimizer
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.026
– start-page: 4104
  year: 1997
  end-page: 4108
  ident: CR11
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
– volume: 9
  start-page: 793
  year: 2005
  end-page: 802
  ident: CR6
  article-title: Particle swarms and population diversity
  publication-title: Soft Computing
  doi: 10.1007/s00500-004-0420-5
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: CR19
  article-title: Adaptive Particle Swarm Optimization
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics
  doi: 10.1109/TSMCB.2009.2015956
– volume: 10
  start-page: 440
  year: 2006
  end-page: 458
  ident: CR8
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.859468
– start-page: 69
  year: 1998
  end-page: 73
  ident: CR18
  article-title: Modified particle swarm optimizer
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation
– volume: 37
  start-page: 315
  year: 2006
  end-page: 324
  ident: CR10
  article-title: Combination of feature selection approaches with SVM in credit scoring
  publication-title: Expert Systems with Applications
– year: 1999
  ident: CR12
  publication-title: The Nature of Statistical Learning Theory
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: CR15
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 102
  start-page: 8
  year: 2007
  end-page: 16
  ident: CR17
  article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2006.10.005
– volume: 10
  start-page: 245
  year: 2006
  end-page: 255
  ident: CR16
  article-title: Stability analysis of the particle dynamics in particle swarm optimizer
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857077
– volume: 10
  start-page: 459
  year: 2006
  end-page: 472
  ident: CR7
  article-title: Multiswarms, exclusion, and anti-convergence in dynamic environments
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857074
– start-page: 4104
  volume-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
  year: 1997
  ident: 8020191_CR11
– start-page: 39
  volume-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science
  year: 1995
  ident: 8020191_CR3
  doi: 10.1109/MHS.1995.494215
– volume: 9
  start-page: 793
  year: 2005
  ident: 8020191_CR6
  publication-title: Soft Computing
  doi: 10.1007/s00500-004-0420-5
– volume: 39
  start-page: 1362
  year: 2009
  ident: 8020191_CR19
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics
  doi: 10.1109/TSMCB.2009.2015956
– volume: 10
  start-page: 459
  year: 2006
  ident: 8020191_CR7
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857074
– volume: 85
  start-page: 317
  year: 2003
  ident: 8020191_CR15
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 6
  start-page: 58
  year: 2002
  ident: 8020191_CR14
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– volume: 37
  start-page: 315
  year: 2006
  ident: 8020191_CR10
  publication-title: Expert Systems with Applications
– volume-title: The Nature of Statistical Learning Theory
  year: 1999
  ident: 8020191_CR12
– volume: 35
  start-page: 1817
  year: 2008
  ident: 8020191_CR4
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.08.088
– volume: 102
  start-page: 8
  year: 2007
  ident: 8020191_CR17
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2006.10.005
– volume: 185
  start-page: 1050
  year: 2007
  ident: 8020191_CR9
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.026
– volume: 10
  start-page: 440
  year: 2006
  ident: 8020191_CR8
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.859468
– start-page: 69
  volume-title: Proceedings of IEEE International Conference on Evolutionary Computation
  year: 1998
  ident: 8020191_CR18
– volume: 38
  start-page: 5809
  year: 2011
  ident: 8020191_CR20
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.10.050
– start-page: 144
  volume-title: Proceedings of the fifth Annual Workshop on Computational Learning Theory
  year: 1992
  ident: 8020191_CR13
  doi: 10.1145/130385.130401
– start-page: 1942
  volume-title: Proceedings of the IEEE International Conference on Neural Network
  year: 1995
  ident: 8020191_CR2
  doi: 10.1109/ICNN.1995.488968
– volume: 8
  start-page: 1381
  year: 2008
  ident: 8020191_CR5
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.10.007
– volume: 3
  start-page: 1157
  year: 2003
  ident: 8020191_CR1
  publication-title: Journal of Machine Learning Research
– volume: 10
  start-page: 245
  year: 2006
  ident: 8020191_CR16
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857077
SSID ssj0059283
Score 2.3821015
Snippet Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To...
Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To...
SourceID proquest
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Bionics
Competition
data mining
Engineering
feature selection
Genetic algorithms
IFS方法
Mathematical models
Optimization
particle swarm optimization
PSO
Searching
Support vector machines
优化问题
功能选择
支持向量机
特征选择
社会行为
粒子群优化
Title An Improved Particle Swarm Optimization for Feature Selection
URI http://lib.cqvip.com/qk/87903X/201102/38137213.html
https://dx.doi.org/10.1016/S1672-6529(11)60020-6
https://link.springer.com/article/10.1016/S1672-6529(11)60020-6
https://www.proquest.com/docview/1671548634
https://www.proquest.com/docview/889427596
Volume 8
WOSCitedRecordID wos000291566800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2543-2141
  dateEnd: 20171031
  omitProxy: false
  ssIdentifier: ssj0059283
  issn: 1672-6529
  databaseCode: AIEXJ
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2543-2141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059283
  issn: 1672-6529
  databaseCode: RSV
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFH9RxEQPCqvGBTUl4QCHwZ1O2-kcOBAD8bQxgoZb0-mHksgs7iwa_3tfO51xQ_gIXid9baZ936_9PYBtawznBoMc5I4yY0aLTFNfZnUugsF1lbc-Npsop1N5elp9SqmLtr_t3pcko6Ye3vTmoqSZ4LTayfPdUE7CuOchPEKLJ4NEfj7-2qtgXtGIvzlQ_Hu6c_00AVjh-6z59hOXvclALTmgV2qm0RQdPf_vn1iDZ8n7JAcdu6zDA9eM4HHXj_LPCJ4uoROOYD3JfUt2Ejj17gvYP2jIWUxEOEsuEt-R9reen5MZqp_z9K6ToDNMvIuwoaSNzXbw60v4cnR48uFjllowZIZJscgwvLGcWu0E1WXAdUFDlxvPUWq1prTm6O5Yawtu67osfMDu8Z4yJ1xFJ9zkxStYaWaNew3E84lnYlJbVCGM-VJ67ZG0khQ_FVaOYWM4A3XRQW0o9CcKjFGLMbD-UJRJ4OWhh8YPNdxSCzurws5iUKPizioxhr2BrJ_yDgLZn7hKLkjnWii0MHeRbvUcolBEQ91FN2522SocHQJDUbAxkBvGSFkxWvIKp3nfc45K6qS9feGNe1NswpMuNR6SSW9gZTG_dG9h1fxanLXzd1GU_gJZahIv
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFH9B0CAHkAXjomJNPMBhYKfTdmYOHoiBYMSNUTTcmk4_lERmcWeR8N_z2umMxIhEr5O-NtO-79f-HsArozXnGoMc5I48YVqJRFGXJ1UqvMG1pTMuNJvIx-Pi5KT8EFMXTXfbvStJBk3dv-lNRU4TwWm5labbvpyEcc89WGBotPxdvo-fvnQqmJc04G_2FL-e7vx5Gg-s8G1Sf_2By95moG44oL_VTIMpOlj57594BMvR-yR7LbuswpytB_Cg7Ud5NYClG-iEA1iNct-QrQhOvb0Gr_dqchoSEdaQ88h3pLlU0zMyQfVzFt91EnSGibMBNpQ0odkOfl2Hzwf7x28Ok9iCIdGsELMEwxvDqVFWUJV7XBc0dKl2HKVWKUorju6OMSbjpqryzHnsHucos8KWdMR1mj2G-XpS2ydAHB85JkaVQRXCmMsLpxySlgXFT5kphrDRn4E8b6E2JPoTGcao2RBYdyhSR_By30Pju-xvqfmdlX5nMaiRYWelGMJOT9ZNeQdB0Z24jC5I61pItDB3kb7sOESiiPq6i6rt5KKRONoHhiJjQyC3jCmKktGclzjNbsc5MqqT5u8Lb_wzxQtYPDx-fySP3o7fPYWHbZrcJ5aewfxsemGfw339c3baTDeDWF0DN9wVEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V8hAcgG6L2JaHkTi0h3Q3ju0kBw5VYQUCrSrxUG-W40dbiWaXzbYV_56x46QVolRIXC2PndjjeXg83wC8NlpzrtHJQe7IE6aVSBR1eVKlwitcWzrjQrGJfDotDg_LgxXY73Jhwmv3LiTZ5jR4lKZ6OZobN-rze1OR00RwWm6n6Y4PLaEPdAtuM183yLvsn7914piXNGBx9hSXaTx_HsaDLBzP6qMf-AnXKasrxuhv8dOgliaP_ssPPYaH0Soley0brcGKrQdwt61T-XMAD66gFg5gLcqDhmxH0OqddXizV5OTcEFhDZlHfiTNhVqckhmKpdOY70nQSCbOBjhR0oQiPNi6AV8n777sv09iaYZEs0IsE3R7DKdGWUFV7vFeUAGm2nE8zUpRWnE0g4wxGTdVlWfOY_o4R5kVtqRjrtPsCazWs9o-BeL42DExrgyKFsZcXjjlkLQsKDZlphjCZr8fct5CcEi0MzL0XbMhsG6DpI6g5r62xnfZv17zKyv9yqKzI8PKSjGE3Z6sG_IGgqLbfRlNk9bkkKh5biJ91XGLxKPr4zGqtrOzRmJv7zCKjA2BXNOnKEpGc17iMKOOi2QUM83fJ978Z4qXcO_g7UR--jD9uAX329tzf9_0DFaXizP7HO7o8-VJs3gRTtgvxicd9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Particle+Swarm+Optimization+for+Feature+Selection&rft.jtitle=Journal+of+bionics+engineering&rft.au=Liu%2C+Yuanning&rft.au=Wang%2C+Gang&rft.au=Chen%2C+Huiling&rft.au=Dong%2C+Hao&rft.date=2011-06-01&rft.issn=1672-6529&rft.volume=8&rft.issue=2&rft.spage=191&rft.epage=200&rft_id=info:doi/10.1016%2FS1672-6529%2811%2960020-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87903X%2F87903X.jpg