Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
•Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based disorders.•Discussion about future research and challenges of deep learning in neuroimaging. Deep learning (DL) is a family of machine learning met...
Saved in:
| Published in: | Neuroscience and biobehavioral reviews Vol. 74; no. Pt A; pp. 58 - 75 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.03.2017
|
| Subjects: | |
| ISSN: | 0149-7634, 1873-7528 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based disorders.•Discussion about future research and challenges of deep learning in neuroimaging.
Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research. |
|---|---|
| AbstractList | Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research. •Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based disorders.•Discussion about future research and challenges of deep learning in neuroimaging. Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research. |
| Author | Vieira, Sandra Pinaya, Walter H.L. Mechelli, Andrea |
| Author_xml | – sequence: 1 givenname: Sandra surname: Vieira fullname: Vieira, Sandra email: sandra.vieira@kcl.ac.uk organization: Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SE5 8AF, United Kingdom – sequence: 2 givenname: Walter H.L. surname: Pinaya fullname: Pinaya, Walter H.L. organization: Centre of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Rua Arcturus, Jardim Antares, São Bernardo do Campo, SP CEP 09.606-070, Brazil – sequence: 3 givenname: Andrea surname: Mechelli fullname: Mechelli, Andrea organization: Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SE5 8AF, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28087243$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTtvFDEUhS0URDaBvwAuaWbi5zyQKKKIR6QgGlJbHvt616tZe7C9K6Xll-PNJhQ0qSzrfOdenXsu0FmIARD6QElLCe2utm2A_eRjgkPLCO1bQltC2Cu0okPPm16y4QytCBVj03dcnKOLnLekEoTLN-icDWTomeAr9Oc--7DGFmDBM-gUjr8SsQ8HyMWvdQFcNoDruhT9Tq-PuokpwVyljKPDS34wG69L8gbrYE_oHNfe6Blbn2OykPIn_APKJtr8yOhlmatefAz5LXrt9Jzh3dN7ie6_fvl18725-_nt9ub6rjFi6EojwTInpJk4G0YmxABSUj6NwlnChDPWOic5pcSOk9B8ouNgnHTdyAUbjXT8En08zV1S_L2v6dTOZwPzrAPEfVZ06KiktB-7ir5_QvfTDqxaUo2eHtTz3Srw-QSYFHNO4JTx5TFOSdrPihJ17Elt1b-e1LEnRaiqLVR__5__ecXLzuuTE-qpDh6SysZDMGB9AlOUjf7FGX8BeYy1yQ |
| CitedBy_id | crossref_primary_10_1016_j_nicl_2017_11_007 crossref_primary_10_1259_bjr_20181000 crossref_primary_10_1007_s00115_018_0557_6 crossref_primary_10_1016_j_pnpbp_2018_09_014 crossref_primary_10_1038_s41598_022_15539_2 crossref_primary_10_1002_widm_1248 crossref_primary_10_3389_fmicb_2025_1541942 crossref_primary_10_1016_j_compbiomed_2020_103764 crossref_primary_10_59324_stss_2025_2_4__10 crossref_primary_10_3389_fnins_2021_651920 crossref_primary_10_1016_j_cpr_2022_102193 crossref_primary_10_3389_fnagi_2020_00141 crossref_primary_10_1016_j_compbiomed_2021_104697 crossref_primary_10_1016_j_mri_2023_03_023 crossref_primary_10_1038_s41380_019_0365_9 crossref_primary_10_1080_21507740_2020_1740352 crossref_primary_10_3390_brainsci14121209 crossref_primary_10_1007_s11042_022_13686_2 crossref_primary_10_1093_gigascience_giac015 crossref_primary_10_1186_s40708_021_00129_1 crossref_primary_10_1109_TCBB_2021_3053181 crossref_primary_10_1186_s12868_024_00870_3 crossref_primary_10_1007_s00259_025_07228_9 crossref_primary_10_1007_s10598_023_09567_4 crossref_primary_10_1016_j_media_2021_101974 crossref_primary_10_1088_1361_6641_ac51b6 crossref_primary_10_1016_j_compbiomed_2025_110333 crossref_primary_10_1017_S0033291719001934 crossref_primary_10_1109_ACCESS_2025_3560395 crossref_primary_10_3389_fnbeh_2019_00122 crossref_primary_10_1038_s41467_020_20655_6 crossref_primary_10_1051_matecconf_201712502067 crossref_primary_10_1148_radiol_2017170706 crossref_primary_10_1080_10888438_2022_2095281 crossref_primary_10_3389_fninf_2021_742807 crossref_primary_10_1186_s12883_021_02331_4 crossref_primary_10_1002_jmri_29801 crossref_primary_10_1007_s11684_019_0718_4 crossref_primary_10_1016_j_procs_2022_09_065 crossref_primary_10_1109_JBHI_2022_3232811 crossref_primary_10_1038_s41598_022_24541_7 crossref_primary_10_1016_j_resourpol_2021_102520 crossref_primary_10_1093_brain_awaa160 crossref_primary_10_1080_13854046_2018_1523466 crossref_primary_10_1016_j_ins_2019_07_026 crossref_primary_10_3389_fnagi_2022_909029 crossref_primary_10_1016_j_engappai_2023_106103 crossref_primary_10_1109_ACCESS_2020_2989396 crossref_primary_10_1136_bmjopen_2020_047343 crossref_primary_10_3389_fnins_2020_00779 crossref_primary_10_1007_s40596_020_01243_8 crossref_primary_10_3390_brainsci15050486 crossref_primary_10_1177_20552076221124432 crossref_primary_10_1177_1550059418782093 crossref_primary_10_1186_s12859_022_04776_x crossref_primary_10_1016_j_media_2022_102430 crossref_primary_10_1016_j_nsa_2022_100103 crossref_primary_10_1002_hbm_25685 crossref_primary_10_1371_journal_pone_0308329 crossref_primary_10_1002_brb3_3348 crossref_primary_10_1111_exsy_13688 crossref_primary_10_1007_s11571_022_09897_w crossref_primary_10_1016_j_jad_2024_11_035 crossref_primary_10_3233_JAD_210299 crossref_primary_10_1093_schbul_sby189 crossref_primary_10_3390_w10050585 crossref_primary_10_3390_a18080509 crossref_primary_10_3390_electronics10030249 crossref_primary_10_3389_fncom_2023_1334748 crossref_primary_10_1016_j_jneumeth_2019_108371 crossref_primary_10_1016_j_neuroimage_2022_119288 crossref_primary_10_4018_IJSSCI_318677 crossref_primary_10_5498_wjp_v12_i10_1287 crossref_primary_10_1016_j_neuroimage_2018_07_047 crossref_primary_10_1038_s41380_020_0679_7 crossref_primary_10_3389_fnins_2020_00476 crossref_primary_10_1038_s41598_025_08175_z crossref_primary_10_3389_fpsyt_2022_993289 crossref_primary_10_1016_j_jad_2024_11_061 crossref_primary_10_1016_j_jneumeth_2019_01_011 crossref_primary_10_1093_bib_bbaa237 crossref_primary_10_1007_s10614_023_10393_4 crossref_primary_10_1038_s41398_025_03290_x crossref_primary_10_1002_hbm_24891 crossref_primary_10_1017_pen_2021_2 crossref_primary_10_1109_TMI_2024_3507008 crossref_primary_10_1155_2021_3169456 crossref_primary_10_1186_s13195_021_00837_0 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_1007_s10916_023_01941_4 crossref_primary_10_1016_j_ebiom_2022_103977 crossref_primary_10_1016_j_jad_2025_119485 crossref_primary_10_3390_sym10110648 crossref_primary_10_1016_j_media_2020_101639 crossref_primary_10_3390_diagnostics10010027 crossref_primary_10_3389_fninf_2019_00053 crossref_primary_10_1093_gigascience_giy130 crossref_primary_10_3389_fnagi_2025_1547727 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_3389_fpsyt_2021_626677 crossref_primary_10_5765_jkacap_200021 crossref_primary_10_1093_psyrad_kkab009 crossref_primary_10_3390_diagnostics10060402 crossref_primary_10_1108_ECAM_08_2020_0614 crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_1038_s41398_020_0798_6 crossref_primary_10_1007_s11126_022_09973_8 crossref_primary_10_1007_s11357_025_01626_5 crossref_primary_10_1016_j_ejrad_2018_08_014 crossref_primary_10_1016_j_artmed_2024_102897 crossref_primary_10_1186_s12938_025_01396_3 crossref_primary_10_1002_advs_202000675 crossref_primary_10_3389_fpsyg_2019_02970 crossref_primary_10_1016_j_brainresbull_2023_110794 crossref_primary_10_1016_j_imu_2021_100545 crossref_primary_10_1038_s41598_021_01681_w crossref_primary_10_1002_hbm_25095 crossref_primary_10_1002_hbm_26182 crossref_primary_10_3390_jpm11090902 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1016_j_eswa_2018_09_056 crossref_primary_10_1016_j_ynirp_2021_100020 crossref_primary_10_1109_ACCESS_2019_2941912 crossref_primary_10_1016_j_jclepro_2021_129072 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1007_s00234_021_02706_x crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1016_j_neuroimage_2024_120646 crossref_primary_10_1016_j_trci_2018_03_007 crossref_primary_10_3389_fnagi_2019_00194 crossref_primary_10_1016_j_neuroimage_2022_119298 crossref_primary_10_1002_hbm_24554 crossref_primary_10_3390_diagnostics13162670 crossref_primary_10_1007_s11042_024_19677_9 crossref_primary_10_1016_j_arr_2022_101614 crossref_primary_10_1016_j_compbiomed_2023_107559 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1186_s12888_021_03063_y crossref_primary_10_1016_j_compbiomed_2021_104245 crossref_primary_10_1093_schbul_sby026 crossref_primary_10_4018_IJSESD_313966 crossref_primary_10_1002_hbm_24423 crossref_primary_10_1016_j_pnucene_2021_104108 crossref_primary_10_1007_s10803_022_05767_w crossref_primary_10_1016_j_ebiom_2023_104540 crossref_primary_10_1038_s41386_020_0767_z crossref_primary_10_1080_13682199_2023_2182382 crossref_primary_10_1016_j_bpsc_2021_02_001 crossref_primary_10_3390_diagnostics11081416 crossref_primary_10_3233_JAD_201163 crossref_primary_10_3390_math9233101 crossref_primary_10_1002_hbm_26243 crossref_primary_10_1088_1741_2552_ad8b6c crossref_primary_10_1177_03611981211066899 crossref_primary_10_1093_biomethods_bpae086 crossref_primary_10_1038_s44184_023_00040_z crossref_primary_10_3390_pr8091071 crossref_primary_10_1016_j_pscychresns_2022_111576 crossref_primary_10_1016_j_heliyon_2024_e30008 crossref_primary_10_1155_2023_9020854 crossref_primary_10_1088_1361_6560_ac9d1e crossref_primary_10_1016_j_eswa_2023_122767 crossref_primary_10_1109_ACCESS_2024_3360930 crossref_primary_10_1016_j_neuroimage_2022_119353 crossref_primary_10_3390_bioengineering11040337 crossref_primary_10_1038_s41398_020_0780_3 crossref_primary_10_1007_s11604_018_0794_4 crossref_primary_10_1111_jsr_13729 crossref_primary_10_3390_su14116651 crossref_primary_10_1016_j_nicl_2021_102712 crossref_primary_10_1111_jon_13012 crossref_primary_10_3938_jkps_75_597 crossref_primary_10_1007_s11277_024_11464_x crossref_primary_10_1109_ACCESS_2025_3582805 crossref_primary_10_1002_brb3_2509 crossref_primary_10_1007_s00521_021_05799_w crossref_primary_10_1109_TCDS_2023_3254209 crossref_primary_10_1051_e3sconf_202020210004 crossref_primary_10_1016_j_ebiom_2018_03_017 crossref_primary_10_1162_imag_a_00497 crossref_primary_10_1017_S0033291722000757 crossref_primary_10_1002_dad2_70026 crossref_primary_10_1007_s00521_020_04726_9 crossref_primary_10_3389_fneur_2021_690979 crossref_primary_10_1038_s41398_019_0600_9 crossref_primary_10_3389_fnins_2020_00251 crossref_primary_10_3389_fpsyt_2019_00371 crossref_primary_10_3390_s22124609 crossref_primary_10_1109_TRPMS_2018_2871760 crossref_primary_10_1016_j_neubiorev_2019_07_010 crossref_primary_10_1002_lsm_23414 crossref_primary_10_1109_MSP_2022_3155951 crossref_primary_10_1007_s11277_024_10920_y crossref_primary_10_1002_hbm_25606 crossref_primary_10_1038_s41531_023_00494_0 crossref_primary_10_1155_2022_5766386 crossref_primary_10_1016_j_ajp_2025_104451 crossref_primary_10_1016_j_compmedimag_2024_102400 crossref_primary_10_1016_j_nic_2020_07_003 crossref_primary_10_1038_s41398_024_02954_4 crossref_primary_10_1007_s12021_024_09680_8 crossref_primary_10_3389_fninf_2020_00010 crossref_primary_10_1016_j_eswa_2021_115074 crossref_primary_10_1016_j_jneumeth_2023_110004 crossref_primary_10_1016_j_media_2021_102082 crossref_primary_10_3389_fnhum_2020_00245 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1016_j_brainres_2024_148876 crossref_primary_10_3390_computers13110293 crossref_primary_10_1007_s12021_022_09572_9 crossref_primary_10_1002_hbm_24863 crossref_primary_10_1016_j_bspc_2023_104917 crossref_primary_10_1016_j_jbi_2020_103627 crossref_primary_10_3389_fnagi_2017_00329 crossref_primary_10_3389_fninf_2017_00061 crossref_primary_10_1016_j_neuroimage_2019_02_060 crossref_primary_10_3233_JAD_231135 crossref_primary_10_1007_s40808_021_01107_6 crossref_primary_10_1038_s41598_024_77687_x crossref_primary_10_1093_sleep_zsad328 crossref_primary_10_1177_24705470231203655 crossref_primary_10_1016_j_jneumeth_2020_108701 crossref_primary_10_1111_exsy_12926 crossref_primary_10_1016_j_jpsychires_2021_02_021 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1117_1_NPh_9_4_041411 crossref_primary_10_3389_fnins_2019_01313 crossref_primary_10_1093_schbul_sbac047 crossref_primary_10_1002_da_23226 crossref_primary_10_1016_j_nicl_2018_101645 crossref_primary_10_1109_JBHI_2019_2914970 crossref_primary_10_1016_j_jairtraman_2021_102126 crossref_primary_10_1038_s41380_023_02334_2 crossref_primary_10_1038_s41598_019_54548_6 crossref_primary_10_1038_s41598_019_55861_w crossref_primary_10_1016_j_media_2024_103388 crossref_primary_10_3389_fnins_2021_630747 crossref_primary_10_1186_s13244_024_01636_5 crossref_primary_10_1016_j_media_2023_102850 crossref_primary_10_1016_j_neuroimage_2019_116276 crossref_primary_10_2196_16669 crossref_primary_10_3389_fpsyg_2022_993162 crossref_primary_10_1002_hbm_25465 crossref_primary_10_1044_2024_JSLHR_24_00157 crossref_primary_10_1016_j_neuroimage_2018_05_049 crossref_primary_10_1016_j_compbiomed_2024_108874 crossref_primary_10_1259_bjr_20190389 crossref_primary_10_1007_s11682_019_00186_5 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_3390_math10152575 crossref_primary_10_1016_j_nicl_2019_101929 crossref_primary_10_1093_schbul_sbac030 crossref_primary_10_3389_fnins_2022_1036102 crossref_primary_10_1155_2021_9998819 crossref_primary_10_3389_fpsyt_2022_1075564 crossref_primary_10_1016_j_neunet_2020_03_017 crossref_primary_10_1016_j_neuroimage_2024_120815 crossref_primary_10_1186_s12888_021_03503_9 crossref_primary_10_1016_j_imu_2023_101176 crossref_primary_10_1109_ACCESS_2022_3180073 crossref_primary_10_35377_saucis___1444155 crossref_primary_10_1016_j_nic_2019_09_009 crossref_primary_10_1002_hbm_25013 crossref_primary_10_3389_fnagi_2022_810125 crossref_primary_10_1016_j_neuroimage_2020_117127 crossref_primary_10_3390_jpm13081214 crossref_primary_10_1016_j_bionps_2024_100102 crossref_primary_10_1155_2020_8891185 crossref_primary_10_1177_1550059420916634 crossref_primary_10_1016_j_neucom_2017_12_062 crossref_primary_10_1038_s41467_020_18037_z crossref_primary_10_3389_fneur_2019_01346 crossref_primary_10_1016_j_asoc_2022_109038 crossref_primary_10_3389_fpsyt_2019_01029 crossref_primary_10_1016_j_pneurobio_2019_01_008 crossref_primary_10_1093_schbul_sbz067 crossref_primary_10_1186_s12883_020_02036_0 crossref_primary_10_3390_s21217169 crossref_primary_10_3389_fnins_2023_1333725 crossref_primary_10_1109_ACCESS_2023_3243178 crossref_primary_10_1016_j_jpsychires_2020_11_014 crossref_primary_10_1109_TBME_2020_3004548 crossref_primary_10_1016_j_neuroscience_2024_12_045 crossref_primary_10_1016_j_nicl_2019_102003 crossref_primary_10_1177_0165551519849516 crossref_primary_10_3389_ebm_2025_10238 crossref_primary_10_3390_a11030028 crossref_primary_10_1038_s41598_021_03785_9 crossref_primary_10_1162_netn_a_00334 crossref_primary_10_1109_ACCESS_2022_3197645 crossref_primary_10_3390_sym14071338 crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_1016_j_ynirp_2025_100259 crossref_primary_10_1016_j_jad_2022_08_078 crossref_primary_10_3389_fnagi_2022_1019869 crossref_primary_10_1016_j_jneumeth_2021_109098 crossref_primary_10_3389_fnins_2021_652987 crossref_primary_10_1155_2022_6078223 crossref_primary_10_3389_fpsyt_2023_1068397 crossref_primary_10_4103_1673_5374_233433 crossref_primary_10_1016_j_media_2022_102585 crossref_primary_10_1089_brain_2020_0878 crossref_primary_10_1002_jcla_23833 crossref_primary_10_1007_s13369_020_05193_z crossref_primary_10_3390_diagnostics11112034 |
| Cites_doi | 10.1007/978-3-319-10590-1_53 10.1016/j.neunet.2014.09.003 10.3389/fnins.2014.00229 10.1007/978-3-319-24888-2_37 10.1016/j.neubiorev.2012.07.012 10.1016/j.neuroimage.2007.10.052 10.1093/schbul/sbw053 10.1007/978-3-319-10581-9_30 10.1016/j.neubiorev.2015.12.007 10.1016/j.neuroimage.2008.11.007 10.1016/j.nic.2005.09.008 10.1109/TBME.2014.2372011 10.1016/j.neuroimage.2012.03.079 10.1016/j.neuroimage.2016.01.005 10.1016/j.neubiorev.2009.12.004 10.1016/j.neubiorev.2012.01.004 10.1073/pnas.0911855107 10.1016/j.neuroimage.2014.06.077 10.1371/journal.pone.0061562 10.1111/j.1525-1497.2004.30091.x 10.1017/S003329171300024X 10.3389/fpsyt.2016.00052 10.1109/TNN.2006.872343 10.1016/j.jalz.2005.06.003 10.1007/978-3-642-40763-5_78 10.1007/978-3-319-10581-9_9 10.1007/s00406-012-0360-5 10.1561/2200000006 10.1109/72.991427 10.1016/j.neuroimage.2010.03.051 10.1162/neco.1992.4.4.473 10.1016/j.neuroimage.2014.10.002 10.1016/j.neuroimage.2015.05.018 10.1016/j.neuroimage.2013.05.079 10.1016/j.drudis.2015.03.003 10.1016/j.neubiorev.2015.08.001 10.1109/5.726791 10.1016/j.nicl.2013.09.003 10.1007/978-3-319-23344-4_16 10.1109/TCYB.2014.2379621 10.1109/CVPR.2016.90 10.1016/j.neubiorev.2015.07.014 10.3389/fpsyt.2013.00187 10.1371/journal.pone.0033182 10.1016/j.neuroimage.2015.06.008 10.1016/j.pscychresns.2014.08.005 10.1609/aaai.v31i1.11231 10.1038/nature14539 10.1007/s00429-013-0687-3 10.1080/j.1440-1614.2005.01714.x 10.1038/npp.2013.251 10.1007/BF02478259 10.1162/neco.2006.18.7.1527 10.1073/pnas.0504136102 10.1145/1273496.1273556 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neubiorev.2017.01.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1873-7528 |
| EndPage | 75 |
| ExternalDocumentID | 28087243 10_1016_j_neubiorev_2017_01_002 S0149763416305176 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Medical Research Council grantid: ID99859 – fundername: Medical Research Council grantid: G1100574 |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM 9JO AABNK AACTN AADFP AADPK AAEDT AAEDW AAFTH AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABIVO ABJNI ABMAC ABOYX ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ACXNI ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W KOM M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OKEIE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSB SSN SSY SSZ T5K TEORI UQL WUQ XJT YQT ZGI ZKB ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c486t-5ed2f45cb32892448e5513b94fd024fcddff53110d9b4a3b198cf5f693429c5f3 |
| ISICitedReferencesCount | 400 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395605200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0149-7634 |
| IngestDate | Sun Sep 28 00:12:35 EDT 2025 Mon Jul 21 06:02:31 EDT 2025 Sat Nov 29 02:59:14 EST 2025 Tue Nov 18 22:23:56 EST 2025 Fri Feb 23 02:22:53 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt A |
| Keywords | Deep learning Neuroimaging Autoencoders Machine learning Deep belief networks Multilayer perceptron Pattern recognition Convolutional neural networks Neurologic disorders Psychiatric disorders |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c486t-5ed2f45cb32892448e5513b94fd024fcddff53110d9b4a3b198cf5f693429c5f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neubiorev.2017.01.002 |
| PMID | 28087243 |
| PQID | 1861511796 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_1861511796 pubmed_primary_28087243 crossref_citationtrail_10_1016_j_neubiorev_2017_01_002 crossref_primary_10_1016_j_neubiorev_2017_01_002 elsevier_sciencedirect_doi_10_1016_j_neubiorev_2017_01_002 |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 2017-03-00 2017-Mar 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuroscience and biobehavioral reviews |
| PublicationTitleAlternate | Neurosci Biobehav Rev |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Arbabshirani, Plis, Sui, Calhoun (bib0015) 2016 Suk, Lee, Shen (bib0380) 2015 Valli, Marquand, Mechelli, Raffin, Allen, Seal, McGuire (bib0400) 2016; 7 Hsu, Lin (bib0140) 2002; 13 Hao, He, Yin (bib0115) 2015 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0255) 2005; 15 Tognin, Pettersson-Yeo, Valli, Hutton, Woolley, Allen, McGuire, Mechelli (bib0395) 2014; 4 Moradi, Pepe, Gaser, Huttunen, Tohka (bib0245) 2015; 104 Gong, Li, Du, Pettersson-Yeo, Crossley, Yang, Li, Huang, Mechelli (bib0095) 2014; 39 Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib0305) 2014; 8 Sheffield, Barch (bib0335) 2016; 61 Moody, Hanson, Krogh, Hertz (bib0240) 1995; 4 Suk, Lee, Shen (bib0375) 2015; 220 Li, Tran, Thung, Ji, Shen, Li (bib0205) 2014 Kumar, Gopal (bib0180) 2011; 38 Alain, G., Bengio, Y., 2016. Understanding intermediate layers using linear classifier probes. arXiv preprint arXiv:1610.01644. Suk, Wee, Lee, Shen (bib0385) 2016; 129 Willette, Calhoun, Egan, Kapogiannis (bib0420) 2014; 224 Alberg, Park, Hager, Brock, Diener‐West (bib0010) 2004; 19 Krizhevsky, Sutskever, Hinton (bib0165) 2012 Munsell, Wee, Keller, Weber, Elger, da Silva, Nesland, Styner, Shen, Bonilha (bib0265) 2015; 118 Nowlan, Hinton (bib0275) 1992; 4 Schmidhuber (bib0325) 2015; 61 Mulders, van Eijndhoven, Schene, Beckmann, Tendolkar (bib0260) 2015; 56 Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806. Orrù, Pettersson-Yeo, Marquand, Sartori, Mechelli (bib0280) 2012; 36 Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R., 2015. Evaluating the visualization of what a deep neural network has learned. arXiv preprint arXiv:1509.06321. Bengio (bib0020) 2009; 2 Brosch T., Tam R., Alzheimer’s Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg. Hastie, Tibshirani, Friedman (bib0120) 2001 Larochelle, Erhan, Courville, Bergstra, Bengio (bib0185) 2007 Gupta, Ayhan, Maida (bib0105) 2013 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0250) 2005; 1 Calhoun, Sui (bib0055) 2016; 1 Szegedy, C., Ioffe, S., Vanhoucke, V., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261. Yung, Yuen, McGorry, Phillips, Kelly, Dell'Olio, Francey, Cosgrave, Killackey, Stanford, Godfrey, Buckby (bib0440) 2005; 39 He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385. Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0355) 2014; 15 McCulloch, Pitts (bib0225) 1943; 7 Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks. arXiv preprint arXiv:1603.08631. Bergstra, Bardenet, Bengio, Kégl (bib0025) 2011 Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv: 1502.02506. Page, Turner, Mohsenin, Oates (bib0285) 2014 Liu, Liu, Cai, Pujol, Kikinis, Feng (bib0210) 2014 Radua, Borgwardt, Crescini, Mataix-Cols, Meyer-Lindenberg, McGuire, Fusar-Poli (bib0310) 2012; 36 Suk, Shen (bib0365) 2013 Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (bib0360) 2010; 51 Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, 818–833. Springer International Publishing. Hinton, Osindero, Teh (bib0130) 2006; 18 LeCun, Bengio, Hinton (bib0200) 2015; 521 Cabral, Kambeitz-Ilankovic, Kambeitz, Calhoun, Dwyer, von Saldern, Urquijo, Falkai, Koutsouleris (bib0050) 2016; 42 Kennedy, Courchesne (bib0155) 2008; 39 Kuang, Guo, An, Zhao, He (bib0175) 2014 Schultz, Fusar-Poli, Wagner, Koch, Schachtzabel, Gruber, Sauer, Schlösser (bib0330) 2012; 262 Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579. Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. Zhang, Shen (bib0455) 2012; 7 Brodersen, Ong, Stephan, Buhmann (bib0040) 2010 Pereira, Mitchell, Botvinick (bib0295) 2009; 45 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib0150) 2013; 80 Nieuwenhuis, van Haren, Pol, Cahn, Kahn, Schnack (bib0270) 2012; 61 Chen, Y., Shi, B., Smith, C.D., Liu, J., 2015. Nonlinear Feature Transformation and Deep Fusion for Alzheimer’s Disease Staging Analysis. In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing. Kuang, He (bib0170) 2014 Kim, Calhoun, Shim, Lee (bib0160) 2016; 124 Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (bib0215) 2015; 62 Grün, F., Rupprecht, C., Navab, N., Tombari, F., 2016. A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks. arXiv preprint arXiv:1606.07757. Fei, Liu (bib0075) 2006; 17 Pettersson-Yeo, Benetti, Marquand, Dell‘Acqua, Williams, Allen, Prata, McGuire, Mechelli (bib0300) 2013; 43 Gelbart, M.A., Snoek, J., Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607. Vapnik (bib0410) 1995 Wolfers, Buitelaar, Beckmann, Franke, Marquand (bib0425) 2015; 57 Deshpande, Wang, Rangaprakash, Wilamowski (bib0065) 2015; 45 Zarogianni, Moorhead, Lawrie (bib0445) 2013; 3 Mechelli, Prata, Kefford, Kapur (bib0230) 2015; 20 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib0080) 2005; 102 Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network. arXiv preprint arXiv:1607.00556. Donahue, Anne Hendricks, Guadarrama, Rohrbach, Venugopalan, Saenko, Darrell (bib0070) 2015 Yang, Zhong, Carass, Ying, Prince (bib0430) 2014 Hu, Ju, Shen, Zhou, Li (bib0145) 2016 Boulesteix, Lauer, Eugster (bib0035) 2013; 8 Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, Ng (bib0190) 2012; 103 Gao, Hui (bib0085) 2016 van der Meer, Costafreda, Aleman, David (bib0405) 2010; 34 Milham, Fair, Mennes, Mostofsky (bib0235) 2012; 6 Han X., Zhong Y., He L., Philip S.Y., Zhang L., 2015. The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing. Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0415) 2010; 11 Liu, Liu, Cai, Pujol, Kikinis, Feng (bib0220) 2015 Simonyan, K., Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Suk, Lee, Shen (bib0370) 2014; 101 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kotter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (bib0030) 2010; 107 LeCun, Bottou, Bengio, Haffner (bib0195) 1998; 86 Kuang (10.1016/j.neubiorev.2017.01.002_bib0170) 2014 Suk (10.1016/j.neubiorev.2017.01.002_bib0375) 2015; 220 Hastie (10.1016/j.neubiorev.2017.01.002_bib0120) 2001 Yang (10.1016/j.neubiorev.2017.01.002_bib0430) 2014 Munsell (10.1016/j.neubiorev.2017.01.002_bib0265) 2015; 118 Willette (10.1016/j.neubiorev.2017.01.002_bib0420) 2014; 224 Hutchison (10.1016/j.neubiorev.2017.01.002_bib0150) 2013; 80 Tognin (10.1016/j.neubiorev.2017.01.002_bib0395) 2014; 4 Liu (10.1016/j.neubiorev.2017.01.002_bib0220) 2015 Moody (10.1016/j.neubiorev.2017.01.002_bib0240) 1995; 4 Nieuwenhuis (10.1016/j.neubiorev.2017.01.002_bib0270) 2012; 61 Liu (10.1016/j.neubiorev.2017.01.002_bib0210) 2014 10.1016/j.neubiorev.2017.01.002_bib0390 Gong (10.1016/j.neubiorev.2017.01.002_bib0095) 2014; 39 Le (10.1016/j.neubiorev.2017.01.002_bib0190) 2012; 103 Plis (10.1016/j.neubiorev.2017.01.002_bib0305) 2014; 8 10.1016/j.neubiorev.2017.01.002_bib0350 10.1016/j.neubiorev.2017.01.002_bib0110 Bengio (10.1016/j.neubiorev.2017.01.002_bib0020) 2009; 2 Radua (10.1016/j.neubiorev.2017.01.002_bib0310) 2012; 36 Valli (10.1016/j.neubiorev.2017.01.002_bib0400) 2016; 7 10.1016/j.neubiorev.2017.01.002_bib0315 10.1016/j.neubiorev.2017.01.002_bib0435 Biswal (10.1016/j.neubiorev.2017.01.002_bib0030) 2010; 107 Wolfers (10.1016/j.neubiorev.2017.01.002_bib0425) 2015; 57 LeCun (10.1016/j.neubiorev.2017.01.002_bib0200) 2015; 521 Bergstra (10.1016/j.neubiorev.2017.01.002_bib0025) 2011 Suk (10.1016/j.neubiorev.2017.01.002_bib0365) 2013 Schultz (10.1016/j.neubiorev.2017.01.002_bib0330) 2012; 262 LeCun (10.1016/j.neubiorev.2017.01.002_bib0195) 1998; 86 Larochelle (10.1016/j.neubiorev.2017.01.002_bib0185) 2007 Deshpande (10.1016/j.neubiorev.2017.01.002_bib0065) 2015; 45 Nowlan (10.1016/j.neubiorev.2017.01.002_bib0275) 1992; 4 Arbabshirani (10.1016/j.neubiorev.2017.01.002_bib0015) 2016 Hao (10.1016/j.neubiorev.2017.01.002_bib0115) 2015 Mueller (10.1016/j.neubiorev.2017.01.002_bib0255) 2005; 15 Hsu (10.1016/j.neubiorev.2017.01.002_bib0140) 2002; 13 10.1016/j.neubiorev.2017.01.002_bib0045 10.1016/j.neubiorev.2017.01.002_bib0320 Yung (10.1016/j.neubiorev.2017.01.002_bib0440) 2005; 39 10.1016/j.neubiorev.2017.01.002_bib0005 Page (10.1016/j.neubiorev.2017.01.002_bib0285) 2014 Stonnington (10.1016/j.neubiorev.2017.01.002_bib0360) 2010; 51 10.1016/j.neubiorev.2017.01.002_bib0125 Orrù (10.1016/j.neubiorev.2017.01.002_bib0280) 2012; 36 Boulesteix (10.1016/j.neubiorev.2017.01.002_bib0035) 2013; 8 Brodersen (10.1016/j.neubiorev.2017.01.002_bib0040) 2010 Krizhevsky (10.1016/j.neubiorev.2017.01.002_bib0165) 2012 Suk (10.1016/j.neubiorev.2017.01.002_bib0370) 2014; 101 Vapnik (10.1016/j.neubiorev.2017.01.002_bib0410) 1995 Kim (10.1016/j.neubiorev.2017.01.002_bib0160) 2016; 124 10.1016/j.neubiorev.2017.01.002_bib0090 Zarogianni (10.1016/j.neubiorev.2017.01.002_bib0445) 2013; 3 Kumar (10.1016/j.neubiorev.2017.01.002_bib0180) 2011; 38 Mechelli (10.1016/j.neubiorev.2017.01.002_bib0230) 2015; 20 10.1016/j.neubiorev.2017.01.002_bib0290 Fei (10.1016/j.neubiorev.2017.01.002_bib0075) 2006; 17 Alberg (10.1016/j.neubiorev.2017.01.002_bib0010) 2004; 19 Moradi (10.1016/j.neubiorev.2017.01.002_bib0245) 2015; 104 10.1016/j.neubiorev.2017.01.002_bib0450 Sheffield (10.1016/j.neubiorev.2017.01.002_bib0335) 2016; 61 Hinton (10.1016/j.neubiorev.2017.01.002_bib0130) 2006; 18 10.1016/j.neubiorev.2017.01.002_bib0135 Kuang (10.1016/j.neubiorev.2017.01.002_bib0175) 2014 McCulloch (10.1016/j.neubiorev.2017.01.002_bib0225) 1943; 7 Pereira (10.1016/j.neubiorev.2017.01.002_bib0295) 2009; 45 Donahue (10.1016/j.neubiorev.2017.01.002_bib0070) 2015 Milham (10.1016/j.neubiorev.2017.01.002_bib0235) 2012; 6 Zhang (10.1016/j.neubiorev.2017.01.002_bib0455) 2012; 7 Srivastava (10.1016/j.neubiorev.2017.01.002_bib0355) 2014; 15 Kennedy (10.1016/j.neubiorev.2017.01.002_bib0155) 2008; 39 Mueller (10.1016/j.neubiorev.2017.01.002_bib0250) 2005; 1 Cabral (10.1016/j.neubiorev.2017.01.002_bib0050) 2016; 42 Calhoun (10.1016/j.neubiorev.2017.01.002_bib0055) 2016; 1 Liu (10.1016/j.neubiorev.2017.01.002_bib0215) 2015; 62 Vincent (10.1016/j.neubiorev.2017.01.002_bib0415) 2010; 11 Suk (10.1016/j.neubiorev.2017.01.002_bib0380) 2015 Gao (10.1016/j.neubiorev.2017.01.002_bib0085) 2016 10.1016/j.neubiorev.2017.01.002_bib0060 van der Meer (10.1016/j.neubiorev.2017.01.002_bib0405) 2010; 34 Gupta (10.1016/j.neubiorev.2017.01.002_bib0105) 2013 Pettersson-Yeo (10.1016/j.neubiorev.2017.01.002_bib0300) 2013; 43 10.1016/j.neubiorev.2017.01.002_bib0340 Mulders (10.1016/j.neubiorev.2017.01.002_bib0260) 2015; 56 10.1016/j.neubiorev.2017.01.002_bib0100 Suk (10.1016/j.neubiorev.2017.01.002_bib0385) 2016; 129 Schmidhuber (10.1016/j.neubiorev.2017.01.002_bib0325) 2015; 61 Li (10.1016/j.neubiorev.2017.01.002_bib0205) 2014 10.1016/j.neubiorev.2017.01.002_bib0345 Fox (10.1016/j.neubiorev.2017.01.002_bib0080) 2005; 102 Hu (10.1016/j.neubiorev.2017.01.002_bib0145) 2016 |
| References_xml | – volume: 51 start-page: 1405 year: 2010 end-page: 1413 ident: bib0360 article-title: Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease publication-title: Neuroimage – volume: 39 start-page: 1877 year: 2008 end-page: 1885 ident: bib0155 article-title: The intrinsic functional organization of the brain is altered in autism publication-title: Neuroimage – volume: 6 start-page: 62 year: 2012 ident: bib0235 article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. – volume: 15 start-page: 869 year: 2005 end-page: 877 ident: bib0255 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. N. Am. – volume: 19 start-page: 460 year: 2004 end-page: 465 ident: bib0010 article-title: The use of overall accuracy to evaluate the validity of screening or diagnostic tests publication-title: J. Gen. Intern. Med. – reference: Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks. arXiv preprint arXiv:1603.08631. – start-page: 2546 year: 2011 end-page: 2554 ident: bib0025 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 924 year: 2015 end-page: 927 ident: bib0230 article-title: Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review publication-title: Drug Discovery Today – reference: Szegedy, C., Ioffe, S., Vanhoucke, V., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261. – volume: 224 start-page: 81 year: 2014 end-page: 88 ident: bib0420 article-title: Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer’s disease: MRI independent component analysis publication-title: Psychiatry Res.: Neuroimag. – volume: 43 start-page: 2547 year: 2013 end-page: 2562 ident: bib0300 article-title: Using genetic: cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level publication-title: Psychol. Med. – volume: 3 start-page: 279 year: 2013 end-page: 289 ident: bib0445 article-title: Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level publication-title: NeuroImage: Clin. – reference: Gelbart, M.A., Snoek, J., Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0200 article-title: Deep learning publication-title: Nature – volume: 36 start-page: 2325 year: 2012 end-page: 2333 ident: bib0310 article-title: Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication publication-title: Neurosci. Biobehav. Rev. – reference: Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579. – year: 2016 ident: bib0085 article-title: A deep learning based approach to classification of CT brain images publication-title: Science and Information Conference – start-page: 1 year: 2015 end-page: 6 ident: bib0115 article-title: Discrimination of ADHD children based on deep bayesian network publication-title: 2015 International Conference on Biomedical Image and Signal Processing – start-page: 240 year: 2014 end-page: 247 ident: bib0205 article-title: Robust deep learning for improved classification of AD/MCI patients publication-title: International Workshop on Machine Learning in Medical Imaging – reference: Chen, Y., Shi, B., Smith, C.D., Liu, J., 2015. Nonlinear Feature Transformation and Deep Fusion for Alzheimer’s Disease Staging Analysis. In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing. – volume: 129 start-page: 292 year: 2016 end-page: 307 ident: bib0385 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI publication-title: Neuroimage – reference: Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv: 1502.02506. – start-page: 68 year: 2014 end-page: 76 ident: bib0430 article-title: Deep learning for cerebellar ataxia classification and functional score regression publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 7 start-page: e33182 year: 2012 ident: bib0455 article-title: Alzheimer’s Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS One – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: bib0370 article-title: Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: Neuroimage – reference: Brosch T., Tam R., Alzheimer’s Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg. – reference: Alain, G., Bengio, Y., 2016. Understanding intermediate layers using linear classifier probes. arXiv preprint arXiv:1610.01644. – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bib0140 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Netw. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385. – volume: 262 start-page: 97 year: 2012 end-page: 106 ident: bib0330 article-title: Multimodal functional and structural imaging investigations in psychosis research publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 45 start-page: 2668 year: 2015 end-page: 2679 ident: bib0065 article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data publication-title: IEEE Trans. Cybernet. – reference: Simonyan, K., Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0325 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – start-page: 583 year: 2013 end-page: 590 ident: bib0365 article-title: Deep learning-based feature representation for AD/MCI classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, 818–833. Springer International Publishing. – start-page: 473 year: 2007 end-page: 480 ident: bib0185 article-title: An empirical evaluation of deep architectures on problems with many factors of variation publication-title: Proceedings of the 24th International Conference on Machine Learning – volume: 124 start-page: 127 year: 2016 end-page: 146 ident: bib0160 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage – volume: 57 start-page: 328 year: 2015 end-page: 349 ident: bib0425 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. – start-page: 27 year: 2014 end-page: 32 ident: bib0170 article-title: Classification on ADHD with deep learning publication-title: Proceedings of the International Conference on Cloud Computing and Big Data – start-page: 1 year: 2015 end-page: 19 ident: bib0380 article-title: Alzheimer’s Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis publication-title: Brain Struct. Funct. – start-page: 3121 year: 2010 end-page: 3124 ident: bib0040 article-title: The balanced accuracy and its posterior distribution publication-title: Proceedings of the IEEE 20th International Conference on Pattern Recognition – volume: 42 start-page: S110 year: 2016 end-page: S117 ident: bib0050 article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance publication-title: Schizophr. Bull. – volume: 56 start-page: 330 year: 2015 end-page: 344 ident: bib0260 article-title: Resting-state functional connectivity in major depressive disorder: a review publication-title: Neurosci. Biobehav. Rev. – start-page: 1097 year: 2012 end-page: 1105 ident: bib0165 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – start-page: 137 year: 2016 end-page: 165 ident: bib0015 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bib0245 article-title: Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage – start-page: 1015 year: 2014 end-page: 1018 ident: bib0210 article-title: Early diagnosis of Alzheimer’s Disease with deep learning publication-title: IEEE 11th International Symposium on Biomedical Imaging – volume: 4 start-page: 187 year: 2014 ident: bib0395 article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis publication-title: Front. Psychiatry – volume: 220 start-page: 841 year: 2015 end-page: 859 ident: bib0375 article-title: Alzheimer’s disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct. Funct. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib0415 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 696 year: 2006 end-page: 704 ident: bib0075 article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm publication-title: IEEE Trans. Neural Netw. – start-page: 987 year: 2013 end-page: 994 ident: bib0105 article-title: Natural image bases to represent neuroimaging data publication-title: International Conference on Machine Learning – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0355 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 1995 ident: bib0410 article-title: The Nature of Statistical Learning Theory – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib0130 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0195 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – volume: 4 start-page: 473 year: 1992 end-page: 493 ident: bib0275 article-title: Simplifying neural networks by soft weight-sharing publication-title: Neural Comput. – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: bib0030 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. – volume: 8 start-page: 1 year: 2014 end-page: 11 ident: bib0305 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. – volume: 45 start-page: S199 year: 2009 end-page: S209 ident: bib0295 article-title: Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage – reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. – start-page: 1 year: 2016 end-page: 6 ident: bib0145 article-title: Clinical decision support for Alzheimer’s disease based on deep learning and brain network publication-title: Proceedings of the IEEE International Conference on Communications – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib0080 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. – reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806. – volume: 1 start-page: 55 year: 2005 end-page: 66 ident: bib0250 article-title: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI) publication-title: Alzheimer's Dementia – volume: 61 start-page: 108 year: 2016 end-page: 120 ident: bib0335 article-title: Cognition and resting-state functional connectivity in schizophrenia publication-title: Neurosci. Biobehav. Rev. – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib0150 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – volume: 118 start-page: 219 year: 2015 end-page: 230 ident: bib0265 article-title: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data publication-title: Neuroimage – reference: Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network. arXiv preprint arXiv:1607.00556. – reference: Han X., Zhong Y., He L., Philip S.Y., Zhang L., 2015. The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing. – start-page: 350 year: 2015 end-page: 359 ident: bib0220 article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis publication-title: Australasian Conference on Artificial Life and Computational Intelligence – start-page: 225 year: 2014 end-page: 232 ident: bib0175 article-title: Discrimination of ADHD based on fMRI data with deep belief network publication-title: International Conference on Intelligent Computing – year: 2014 ident: bib0285 article-title: Comparing raw data and feature extraction for seizure detection with deep learning methods publication-title: International Florida Artificial Intelligence Research Society Conference – volume: 4 start-page: 950 year: 1995 end-page: 957 ident: bib0240 article-title: A simple weight decay can improve generalization publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: e61562 year: 2013 ident: bib0035 article-title: A plea for neutral comparison studies in computational sciences publication-title: PLoS One – volume: 34 start-page: 935 year: 2010 end-page: 946 ident: bib0405 article-title: Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia publication-title: Neurosci. Biobehav. Rev. – volume: 62 start-page: 1132 year: 2015 end-page: 1140 ident: bib0215 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. – reference: Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R., 2015. Evaluating the visualization of what a deep neural network has learned. arXiv preprint arXiv:1509.06321. – volume: 103 year: 2012 ident: bib0190 article-title: Building high-level features using large scale unsupervised learning publication-title: International Conference on Machine Learning – reference: Grün, F., Rupprecht, C., Navab, N., Tombari, F., 2016. A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks. arXiv preprint arXiv:1606.07757. – volume: 39 start-page: 964 year: 2005 end-page: 971 ident: bib0440 article-title: Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states publication-title: Aust. N. Z. J. Psychiatry – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bib0020 article-title: Learning deep architectures for AI publication-title: Found. Trends – volume: 38 start-page: 14238 year: 2011 end-page: 14248 ident: bib0180 article-title: Reduced one-against-all method for multiclass SVM classification publication-title: Expert Syst. Appl. – volume: 39 start-page: 681 year: 2014 end-page: 687 ident: bib0095 article-title: Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI publication-title: Neuropsychopharmacology – volume: 7 start-page: 115 year: 1943 end-page: 133 ident: bib0225 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 61 start-page: 606 year: 2012 end-page: 612 ident: bib0270 article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples publication-title: Neuroimage – volume: 1 start-page: 230 year: 2016 end-page: 244 ident: bib0055 article-title: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness publication-title: Biol. Psychiatry: Cogn. Neurosci.Neuroimag. – volume: 36 start-page: 1140 year: 2012 end-page: 1152 ident: bib0280 article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review publication-title: Neurosci. Biobehav. Rev. – year: 2001 ident: bib0120 article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction – volume: 7 year: 2016 ident: bib0400 article-title: Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data publication-title: Front. Psychiatry – start-page: 2625 year: 2015 end-page: 2634 ident: bib0070 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: 10.1016/j.neubiorev.2017.01.002_bib0450 doi: 10.1007/978-3-319-10590-1_53 – year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0285 article-title: Comparing raw data and feature extraction for seizure detection with deep learning methods publication-title: International Florida Artificial Intelligence Research Society Conference – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0325 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 8 start-page: 1 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0305 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – ident: 10.1016/j.neubiorev.2017.01.002_bib0060 doi: 10.1007/978-3-319-24888-2_37 – start-page: 225 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0175 article-title: Discrimination of ADHD based on fMRI data with deep belief network publication-title: International Conference on Intelligent Computing – volume: 36 start-page: 2325 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0310 article-title: Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.07.012 – volume: 39 start-page: 1877 year: 2008 ident: 10.1016/j.neubiorev.2017.01.002_bib0155 article-title: The intrinsic functional organization of the brain is altered in autism publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.052 – year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0085 article-title: A deep learning based approach to classification of CT brain images – volume: 42 start-page: S110 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0050 article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbw053 – volume: 6 start-page: 62 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0235 article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. – start-page: 240 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0205 article-title: Robust deep learning for improved classification of AD/MCI patients publication-title: International Workshop on Machine Learning in Medical Imaging doi: 10.1007/978-3-319-10581-9_30 – volume: 61 start-page: 108 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0335 article-title: Cognition and resting-state functional connectivity in schizophrenia publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.12.007 – volume: 45 start-page: S199 year: 2009 ident: 10.1016/j.neubiorev.2017.01.002_bib0295 article-title: Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.11.007 – ident: 10.1016/j.neubiorev.2017.01.002_bib0435 – volume: 15 start-page: 869 year: 2005 ident: 10.1016/j.neubiorev.2017.01.002_bib0255 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2005.09.008 – volume: 62 start-page: 1132 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0215 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2372011 – start-page: 27 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0170 article-title: Classification on ADHD with deep learning publication-title: Proceedings of the International Conference on Cloud Computing and Big Data – ident: 10.1016/j.neubiorev.2017.01.002_bib0005 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0355 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 1015 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0210 article-title: Early diagnosis of Alzheimer’s Disease with deep learning publication-title: IEEE 11th International Symposium on Biomedical Imaging – ident: 10.1016/j.neubiorev.2017.01.002_bib0100 – year: 1995 ident: 10.1016/j.neubiorev.2017.01.002_bib0410 – volume: 61 start-page: 606 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0270 article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.079 – ident: 10.1016/j.neubiorev.2017.01.002_bib0345 – volume: 129 start-page: 292 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0385 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.005 – volume: 34 start-page: 935 issue: 6 year: 2010 ident: 10.1016/j.neubiorev.2017.01.002_bib0405 article-title: Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2009.12.004 – start-page: 1 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0115 article-title: Discrimination of ADHD children based on deep bayesian network publication-title: 2015 International Conference on Biomedical Image and Signal Processing – start-page: 3121 year: 2010 ident: 10.1016/j.neubiorev.2017.01.002_bib0040 article-title: The balanced accuracy and its posterior distribution publication-title: Proceedings of the IEEE 20th International Conference on Pattern Recognition – volume: 36 start-page: 1140 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0280 article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.01.004 – volume: 107 start-page: 4734 year: 2010 ident: 10.1016/j.neubiorev.2017.01.002_bib0030 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0911855107 – year: 2001 ident: 10.1016/j.neubiorev.2017.01.002_bib0120 – start-page: 1097 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0165 article-title: Imagenet classification with deep convolutional neural networks – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0370 article-title: Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 8 start-page: e61562 year: 2013 ident: 10.1016/j.neubiorev.2017.01.002_bib0035 article-title: A plea for neutral comparison studies in computational sciences publication-title: PLoS One doi: 10.1371/journal.pone.0061562 – volume: 103 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0190 article-title: Building high-level features using large scale unsupervised learning publication-title: International Conference on Machine Learning – volume: 19 start-page: 460 year: 2004 ident: 10.1016/j.neubiorev.2017.01.002_bib0010 article-title: The use of overall accuracy to evaluate the validity of screening or diagnostic tests publication-title: J. Gen. Intern. Med. doi: 10.1111/j.1525-1497.2004.30091.x – start-page: 583 year: 2013 ident: 10.1016/j.neubiorev.2017.01.002_bib0365 article-title: Deep learning-based feature representation for AD/MCI classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 43 start-page: 2547 year: 2013 ident: 10.1016/j.neubiorev.2017.01.002_bib0300 article-title: Using genetic: cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level publication-title: Psychol. Med. doi: 10.1017/S003329171300024X – volume: 7 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0400 article-title: Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2016.00052 – volume: 17 start-page: 696 year: 2006 ident: 10.1016/j.neubiorev.2017.01.002_bib0075 article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.872343 – volume: 1 start-page: 55 year: 2005 ident: 10.1016/j.neubiorev.2017.01.002_bib0250 article-title: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI) publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2005.06.003 – ident: 10.1016/j.neubiorev.2017.01.002_bib0045 doi: 10.1007/978-3-642-40763-5_78 – volume: 4 start-page: 950 year: 1995 ident: 10.1016/j.neubiorev.2017.01.002_bib0240 article-title: A simple weight decay can improve generalization publication-title: Adv. Neural Inf. Process. Syst. – start-page: 68 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0430 article-title: Deep learning for cerebellar ataxia classification and functional score regression publication-title: International Workshop on Machine Learning in Medical Imaging doi: 10.1007/978-3-319-10581-9_9 – volume: 262 start-page: 97 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0330 article-title: Multimodal functional and structural imaging investigations in psychosis research publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s00406-012-0360-5 – volume: 2 start-page: 1 year: 2009 ident: 10.1016/j.neubiorev.2017.01.002_bib0020 article-title: Learning deep architectures for AI publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000006 – start-page: 1 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0380 article-title: Alzheimer’s Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis publication-title: Brain Struct. Funct. – start-page: 2546 year: 2011 ident: 10.1016/j.neubiorev.2017.01.002_bib0025 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 415 year: 2002 ident: 10.1016/j.neubiorev.2017.01.002_bib0140 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991427 – start-page: 350 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0220 article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis publication-title: Australasian Conference on Artificial Life and Computational Intelligence – ident: 10.1016/j.neubiorev.2017.01.002_bib0090 – ident: 10.1016/j.neubiorev.2017.01.002_bib0315 – ident: 10.1016/j.neubiorev.2017.01.002_bib0340 – volume: 51 start-page: 1405 year: 2010 ident: 10.1016/j.neubiorev.2017.01.002_bib0360 article-title: Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.051 – volume: 4 start-page: 473 year: 1992 ident: 10.1016/j.neubiorev.2017.01.002_bib0275 article-title: Simplifying neural networks by soft weight-sharing publication-title: Neural Comput. doi: 10.1162/neco.1992.4.4.473 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0245 article-title: Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 124 start-page: 127 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0160 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.018 – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.neubiorev.2017.01.002_bib0150 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 20 start-page: 924 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0230 article-title: Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2015.03.003 – volume: 57 start-page: 328 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0425 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.08.001 – ident: 10.1016/j.neubiorev.2017.01.002_bib0135 – start-page: 1 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0145 article-title: Clinical decision support for Alzheimer’s disease based on deep learning and brain network publication-title: Proceedings of the IEEE International Conference on Communications – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.neubiorev.2017.01.002_bib0195 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – ident: 10.1016/j.neubiorev.2017.01.002_bib0350 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.neubiorev.2017.01.002_bib0415 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 279 year: 2013 ident: 10.1016/j.neubiorev.2017.01.002_bib0445 article-title: Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2013.09.003 – start-page: 2625 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0070 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: 10.1016/j.neubiorev.2017.01.002_bib0110 doi: 10.1007/978-3-319-23344-4_16 – volume: 45 start-page: 2668 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0065 article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2014.2379621 – ident: 10.1016/j.neubiorev.2017.01.002_bib0320 – ident: 10.1016/j.neubiorev.2017.01.002_bib0125 doi: 10.1109/CVPR.2016.90 – volume: 56 start-page: 330 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0260 article-title: Resting-state functional connectivity in major depressive disorder: a review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.07.014 – volume: 4 start-page: 187 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0395 article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2013.00187 – volume: 7 start-page: e33182 year: 2012 ident: 10.1016/j.neubiorev.2017.01.002_bib0455 article-title: Alzheimer’s Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS One doi: 10.1371/journal.pone.0033182 – volume: 118 start-page: 219 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0265 article-title: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.008 – volume: 224 start-page: 81 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0420 article-title: Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer’s disease: MRI independent component analysis publication-title: Psychiatry Res.: Neuroimag. doi: 10.1016/j.pscychresns.2014.08.005 – ident: 10.1016/j.neubiorev.2017.01.002_bib0390 doi: 10.1609/aaai.v31i1.11231 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0200 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 220 start-page: 841 year: 2015 ident: 10.1016/j.neubiorev.2017.01.002_bib0375 article-title: Alzheimer’s disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0687-3 – volume: 39 start-page: 964 year: 2005 ident: 10.1016/j.neubiorev.2017.01.002_bib0440 article-title: Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states publication-title: Aust. N. Z. J. Psychiatry doi: 10.1080/j.1440-1614.2005.01714.x – ident: 10.1016/j.neubiorev.2017.01.002_bib0290 – volume: 39 start-page: 681 year: 2014 ident: 10.1016/j.neubiorev.2017.01.002_bib0095 article-title: Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.251 – volume: 7 start-page: 115 year: 1943 ident: 10.1016/j.neubiorev.2017.01.002_bib0225 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – start-page: 137 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0015 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – start-page: 987 year: 2013 ident: 10.1016/j.neubiorev.2017.01.002_bib0105 article-title: Natural image bases to represent neuroimaging data publication-title: International Conference on Machine Learning – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.neubiorev.2017.01.002_bib0130 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 1 start-page: 230 year: 2016 ident: 10.1016/j.neubiorev.2017.01.002_bib0055 article-title: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness publication-title: Biol. Psychiatry: Cogn. Neurosci.Neuroimag. – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neubiorev.2017.01.002_bib0080 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504136102 – volume: 38 start-page: 14238 year: 2011 ident: 10.1016/j.neubiorev.2017.01.002_bib0180 article-title: Reduced one-against-all method for multiclass SVM classification publication-title: Expert Syst. Appl. – start-page: 473 year: 2007 ident: 10.1016/j.neubiorev.2017.01.002_bib0185 article-title: An empirical evaluation of deep architectures on problems with many factors of variation publication-title: Proceedings of the 24th International Conference on Machine Learning doi: 10.1145/1273496.1273556 |
| SSID | ssj0002035 |
| Score | 2.6695597 |
| SecondaryResourceType | review_article |
| Snippet | •Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based... Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 58 |
| SubjectTerms | Autoencoders Convolutional neural networks Deep belief networks Deep learning Humans Machine Learning Mental Disorders Multilayer perceptron Nervous System Diseases Neural Networks, Computer Neuroimaging Neurologic disorders Pattern recognition Psychiatric disorders Speech |
| Title | Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications |
| URI | https://dx.doi.org/10.1016/j.neubiorev.2017.01.002 https://www.ncbi.nlm.nih.gov/pubmed/28087243 https://www.proquest.com/docview/1861511796 |
| Volume | 74 |
| WOSCitedRecordID | wos000395605200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7528 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002035 issn: 0149-7634 databaseCode: AIEXJ dateStart: 19941201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6lKQcuCChLWKpBQlwiV9497i1CRQWpUSQK5GbZs1SuEjtK3aq98l_4n7xZ4wJR4cDFiuzxEn-f33sz8-Z7CL0FJ8CJCJlXBdz34rxMvZIlkRfGomQkjFkWCFVsIptOyXyezwaDH3YtzNUiaxpyfZ2v_ivUsA_Alktn_wFud1HYAb8BdNgC7LD9K-B1EgDjfGVLQpzJALN2ghpcBZtKyLJe6iJFVNboWMiw81YGtNFyVU2tjWRGrlOl0p2o-tNa5rk_Fd4PeacbxUw9VVHVbU8cwMihWuC_1rxWpY_Gn6Ht2jmNWd2UN2r_NzXBPz4eu2HrE67SWWuXoFn2xzLAP7pkrgOu7S_JIi9LzHpxY6B1GR9DxFlnBnm1wdW677_5AT0kcX4ALwj-lKzmI2-nBFrVAu-uR4TVUjEhJD7JQq0Z9YsEtz20g3bDLMnJEO1OPh7NPzmXH_pRcit58I_3lcLT5krboqBtvRwV7Zw-RA9MNwVPNL0eoQFvHqO9SVN27fIGv8MqcVjNyOyh74pxWDIOW8bhrsU9xmFgHO4zDm8Yh1uBe4zDADvuMw47xh1iwzfVps-3J-jLh6PT98eeKe3h0ZiknZdwFoo4oVUEHX6IMAmXhYaqPBYMgkZBGRMCvEPgs7yKy6gKckJFItI8gviJJiJ6ioZN2_DnCAtRUuqnZUrBCPAormjFCMnzjJQ8Azs5Qql91QU1uvey_MqisAmO54WDq5BwFX5QAFwj5LsTV1r65e5TDi2WhfmwdGRaADHvPvmNRb8AGy8n7sqGt5cXRUBkvwNcZzpCzzQt3BNZRr3YeuQlur_51l6hYbe-5K_RPXrV1RfrfbSTzcm-IfRPadzYCQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+learning+to+investigate+the+neuroimaging+correlates+of+psychiatric+and+neurological+disorders%3A+Methods+and+applications&rft.jtitle=Neuroscience+and+biobehavioral+reviews&rft.au=Vieira%2C+Sandra&rft.au=Pinaya%2C+Walter+H+L&rft.au=Mechelli%2C+Andrea&rft.date=2017-03-01&rft.eissn=1873-7528&rft.volume=74&rft.issue=Pt+A&rft.spage=58&rft_id=info:doi/10.1016%2Fj.neubiorev.2017.01.002&rft_id=info%3Apmid%2F28087243&rft.externalDocID=28087243 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-7634&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-7634&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-7634&client=summon |