Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications

•Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based disorders.•Discussion about future research and challenges of deep learning in neuroimaging. Deep learning (DL) is a family of machine learning met...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neuroscience and biobehavioral reviews Ročník 74; číslo Pt A; s. 58 - 75
Hlavní autoři: Vieira, Sandra, Pinaya, Walter H.L., Mechelli, Andrea
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.03.2017
Témata:
ISSN:0149-7634, 1873-7528
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based disorders.•Discussion about future research and challenges of deep learning in neuroimaging. Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research.
AbstractList Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research.
•Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based disorders.•Discussion about future research and challenges of deep learning in neuroimaging. Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research.
Author Vieira, Sandra
Pinaya, Walter H.L.
Mechelli, Andrea
Author_xml – sequence: 1
  givenname: Sandra
  surname: Vieira
  fullname: Vieira, Sandra
  email: sandra.vieira@kcl.ac.uk
  organization: Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SE5 8AF, United Kingdom
– sequence: 2
  givenname: Walter H.L.
  surname: Pinaya
  fullname: Pinaya, Walter H.L.
  organization: Centre of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Rua Arcturus, Jardim Antares, São Bernardo do Campo, SP CEP 09.606-070, Brazil
– sequence: 3
  givenname: Andrea
  surname: Mechelli
  fullname: Mechelli, Andrea
  organization: Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SE5 8AF, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28087243$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhS0URDaBvwAuaWbi5zyQKKKIR6QgGlJbHvt616tZe7C9K6Xll-PNJhQ0qSzrfOdenXsu0FmIARD6QElLCe2utm2A_eRjgkPLCO1bQltC2Cu0okPPm16y4QytCBVj03dcnKOLnLekEoTLN-icDWTomeAr9Oc--7DGFmDBM-gUjr8SsQ8HyMWvdQFcNoDruhT9Tq-PuokpwVyljKPDS34wG69L8gbrYE_oHNfe6Blbn2OykPIn_APKJtr8yOhlmatefAz5LXrt9Jzh3dN7ie6_fvl18725-_nt9ub6rjFi6EojwTInpJk4G0YmxABSUj6NwlnChDPWOic5pcSOk9B8ouNgnHTdyAUbjXT8En08zV1S_L2v6dTOZwPzrAPEfVZ06KiktB-7ir5_QvfTDqxaUo2eHtTz3Srw-QSYFHNO4JTx5TFOSdrPihJ17Elt1b-e1LEnRaiqLVR__5__ecXLzuuTE-qpDh6SysZDMGB9AlOUjf7FGX8BeYy1yQ
CitedBy_id crossref_primary_10_1016_j_nicl_2017_11_007
crossref_primary_10_1259_bjr_20181000
crossref_primary_10_1007_s00115_018_0557_6
crossref_primary_10_1016_j_pnpbp_2018_09_014
crossref_primary_10_1038_s41598_022_15539_2
crossref_primary_10_1002_widm_1248
crossref_primary_10_3389_fmicb_2025_1541942
crossref_primary_10_1016_j_compbiomed_2020_103764
crossref_primary_10_59324_stss_2025_2_4__10
crossref_primary_10_3389_fnins_2021_651920
crossref_primary_10_1016_j_cpr_2022_102193
crossref_primary_10_3389_fnagi_2020_00141
crossref_primary_10_1016_j_compbiomed_2021_104697
crossref_primary_10_1016_j_mri_2023_03_023
crossref_primary_10_1038_s41380_019_0365_9
crossref_primary_10_1080_21507740_2020_1740352
crossref_primary_10_3390_brainsci14121209
crossref_primary_10_1007_s11042_022_13686_2
crossref_primary_10_1093_gigascience_giac015
crossref_primary_10_1186_s40708_021_00129_1
crossref_primary_10_1109_TCBB_2021_3053181
crossref_primary_10_1186_s12868_024_00870_3
crossref_primary_10_1007_s00259_025_07228_9
crossref_primary_10_1007_s10598_023_09567_4
crossref_primary_10_1016_j_media_2021_101974
crossref_primary_10_1088_1361_6641_ac51b6
crossref_primary_10_1016_j_compbiomed_2025_110333
crossref_primary_10_1017_S0033291719001934
crossref_primary_10_1109_ACCESS_2025_3560395
crossref_primary_10_3389_fnbeh_2019_00122
crossref_primary_10_1038_s41467_020_20655_6
crossref_primary_10_1051_matecconf_201712502067
crossref_primary_10_1148_radiol_2017170706
crossref_primary_10_1080_10888438_2022_2095281
crossref_primary_10_3389_fninf_2021_742807
crossref_primary_10_1186_s12883_021_02331_4
crossref_primary_10_1002_jmri_29801
crossref_primary_10_1007_s11684_019_0718_4
crossref_primary_10_1016_j_procs_2022_09_065
crossref_primary_10_1109_JBHI_2022_3232811
crossref_primary_10_1038_s41598_022_24541_7
crossref_primary_10_1016_j_resourpol_2021_102520
crossref_primary_10_1093_brain_awaa160
crossref_primary_10_1080_13854046_2018_1523466
crossref_primary_10_1016_j_ins_2019_07_026
crossref_primary_10_3389_fnagi_2022_909029
crossref_primary_10_1016_j_engappai_2023_106103
crossref_primary_10_1109_ACCESS_2020_2989396
crossref_primary_10_1136_bmjopen_2020_047343
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_1007_s40596_020_01243_8
crossref_primary_10_3390_brainsci15050486
crossref_primary_10_1177_20552076221124432
crossref_primary_10_1177_1550059418782093
crossref_primary_10_1186_s12859_022_04776_x
crossref_primary_10_1016_j_media_2022_102430
crossref_primary_10_1016_j_nsa_2022_100103
crossref_primary_10_1002_hbm_25685
crossref_primary_10_1371_journal_pone_0308329
crossref_primary_10_1002_brb3_3348
crossref_primary_10_1111_exsy_13688
crossref_primary_10_1007_s11571_022_09897_w
crossref_primary_10_1016_j_jad_2024_11_035
crossref_primary_10_3233_JAD_210299
crossref_primary_10_1093_schbul_sby189
crossref_primary_10_3390_w10050585
crossref_primary_10_3390_a18080509
crossref_primary_10_3390_electronics10030249
crossref_primary_10_3389_fncom_2023_1334748
crossref_primary_10_1016_j_jneumeth_2019_108371
crossref_primary_10_1016_j_neuroimage_2022_119288
crossref_primary_10_4018_IJSSCI_318677
crossref_primary_10_5498_wjp_v12_i10_1287
crossref_primary_10_1016_j_neuroimage_2018_07_047
crossref_primary_10_1038_s41380_020_0679_7
crossref_primary_10_3389_fnins_2020_00476
crossref_primary_10_1038_s41598_025_08175_z
crossref_primary_10_3389_fpsyt_2022_993289
crossref_primary_10_1016_j_jad_2024_11_061
crossref_primary_10_1016_j_jneumeth_2019_01_011
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_1007_s10614_023_10393_4
crossref_primary_10_1038_s41398_025_03290_x
crossref_primary_10_1002_hbm_24891
crossref_primary_10_1017_pen_2021_2
crossref_primary_10_1109_TMI_2024_3507008
crossref_primary_10_1155_2021_3169456
crossref_primary_10_1186_s13195_021_00837_0
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_1007_s10916_023_01941_4
crossref_primary_10_1016_j_ebiom_2022_103977
crossref_primary_10_1016_j_jad_2025_119485
crossref_primary_10_3390_sym10110648
crossref_primary_10_1016_j_media_2020_101639
crossref_primary_10_3390_diagnostics10010027
crossref_primary_10_3389_fninf_2019_00053
crossref_primary_10_1093_gigascience_giy130
crossref_primary_10_3389_fnagi_2025_1547727
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_3389_fpsyt_2021_626677
crossref_primary_10_5765_jkacap_200021
crossref_primary_10_1093_psyrad_kkab009
crossref_primary_10_3390_diagnostics10060402
crossref_primary_10_1108_ECAM_08_2020_0614
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_1038_s41398_020_0798_6
crossref_primary_10_1007_s11126_022_09973_8
crossref_primary_10_1007_s11357_025_01626_5
crossref_primary_10_1016_j_ejrad_2018_08_014
crossref_primary_10_1016_j_artmed_2024_102897
crossref_primary_10_1186_s12938_025_01396_3
crossref_primary_10_1002_advs_202000675
crossref_primary_10_3389_fpsyg_2019_02970
crossref_primary_10_1016_j_brainresbull_2023_110794
crossref_primary_10_1016_j_imu_2021_100545
crossref_primary_10_1038_s41598_021_01681_w
crossref_primary_10_1002_hbm_25095
crossref_primary_10_1002_hbm_26182
crossref_primary_10_3390_jpm11090902
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1016_j_eswa_2018_09_056
crossref_primary_10_1016_j_ynirp_2021_100020
crossref_primary_10_1109_ACCESS_2019_2941912
crossref_primary_10_1016_j_jclepro_2021_129072
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1007_s00234_021_02706_x
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1016_j_neuroimage_2024_120646
crossref_primary_10_1016_j_trci_2018_03_007
crossref_primary_10_3389_fnagi_2019_00194
crossref_primary_10_1016_j_neuroimage_2022_119298
crossref_primary_10_1002_hbm_24554
crossref_primary_10_3390_diagnostics13162670
crossref_primary_10_1007_s11042_024_19677_9
crossref_primary_10_1016_j_arr_2022_101614
crossref_primary_10_1016_j_compbiomed_2023_107559
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1186_s12888_021_03063_y
crossref_primary_10_1016_j_compbiomed_2021_104245
crossref_primary_10_1093_schbul_sby026
crossref_primary_10_4018_IJSESD_313966
crossref_primary_10_1002_hbm_24423
crossref_primary_10_1016_j_pnucene_2021_104108
crossref_primary_10_1007_s10803_022_05767_w
crossref_primary_10_1016_j_ebiom_2023_104540
crossref_primary_10_1038_s41386_020_0767_z
crossref_primary_10_1080_13682199_2023_2182382
crossref_primary_10_1016_j_bpsc_2021_02_001
crossref_primary_10_3390_diagnostics11081416
crossref_primary_10_3233_JAD_201163
crossref_primary_10_3390_math9233101
crossref_primary_10_1002_hbm_26243
crossref_primary_10_1088_1741_2552_ad8b6c
crossref_primary_10_1177_03611981211066899
crossref_primary_10_1093_biomethods_bpae086
crossref_primary_10_1038_s44184_023_00040_z
crossref_primary_10_3390_pr8091071
crossref_primary_10_1016_j_pscychresns_2022_111576
crossref_primary_10_1016_j_heliyon_2024_e30008
crossref_primary_10_1155_2023_9020854
crossref_primary_10_1088_1361_6560_ac9d1e
crossref_primary_10_1016_j_eswa_2023_122767
crossref_primary_10_1109_ACCESS_2024_3360930
crossref_primary_10_1016_j_neuroimage_2022_119353
crossref_primary_10_3390_bioengineering11040337
crossref_primary_10_1038_s41398_020_0780_3
crossref_primary_10_1007_s11604_018_0794_4
crossref_primary_10_1111_jsr_13729
crossref_primary_10_3390_su14116651
crossref_primary_10_1016_j_nicl_2021_102712
crossref_primary_10_1111_jon_13012
crossref_primary_10_3938_jkps_75_597
crossref_primary_10_1007_s11277_024_11464_x
crossref_primary_10_1109_ACCESS_2025_3582805
crossref_primary_10_1002_brb3_2509
crossref_primary_10_1007_s00521_021_05799_w
crossref_primary_10_1109_TCDS_2023_3254209
crossref_primary_10_1051_e3sconf_202020210004
crossref_primary_10_1016_j_ebiom_2018_03_017
crossref_primary_10_1162_imag_a_00497
crossref_primary_10_1017_S0033291722000757
crossref_primary_10_1002_dad2_70026
crossref_primary_10_1007_s00521_020_04726_9
crossref_primary_10_3389_fneur_2021_690979
crossref_primary_10_1038_s41398_019_0600_9
crossref_primary_10_3389_fnins_2020_00251
crossref_primary_10_3389_fpsyt_2019_00371
crossref_primary_10_3390_s22124609
crossref_primary_10_1109_TRPMS_2018_2871760
crossref_primary_10_1016_j_neubiorev_2019_07_010
crossref_primary_10_1002_lsm_23414
crossref_primary_10_1109_MSP_2022_3155951
crossref_primary_10_1007_s11277_024_10920_y
crossref_primary_10_1002_hbm_25606
crossref_primary_10_1038_s41531_023_00494_0
crossref_primary_10_1155_2022_5766386
crossref_primary_10_1016_j_ajp_2025_104451
crossref_primary_10_1016_j_compmedimag_2024_102400
crossref_primary_10_1016_j_nic_2020_07_003
crossref_primary_10_1038_s41398_024_02954_4
crossref_primary_10_1007_s12021_024_09680_8
crossref_primary_10_3389_fninf_2020_00010
crossref_primary_10_1016_j_eswa_2021_115074
crossref_primary_10_1016_j_jneumeth_2023_110004
crossref_primary_10_1016_j_media_2021_102082
crossref_primary_10_3389_fnhum_2020_00245
crossref_primary_10_1016_j_bpsc_2019_11_007
crossref_primary_10_1016_j_brainres_2024_148876
crossref_primary_10_3390_computers13110293
crossref_primary_10_1007_s12021_022_09572_9
crossref_primary_10_1002_hbm_24863
crossref_primary_10_1016_j_bspc_2023_104917
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_3389_fnagi_2017_00329
crossref_primary_10_3389_fninf_2017_00061
crossref_primary_10_1016_j_neuroimage_2019_02_060
crossref_primary_10_3233_JAD_231135
crossref_primary_10_1007_s40808_021_01107_6
crossref_primary_10_1038_s41598_024_77687_x
crossref_primary_10_1093_sleep_zsad328
crossref_primary_10_1177_24705470231203655
crossref_primary_10_1016_j_jneumeth_2020_108701
crossref_primary_10_1111_exsy_12926
crossref_primary_10_1016_j_jpsychires_2021_02_021
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1117_1_NPh_9_4_041411
crossref_primary_10_3389_fnins_2019_01313
crossref_primary_10_1093_schbul_sbac047
crossref_primary_10_1002_da_23226
crossref_primary_10_1016_j_nicl_2018_101645
crossref_primary_10_1109_JBHI_2019_2914970
crossref_primary_10_1016_j_jairtraman_2021_102126
crossref_primary_10_1038_s41380_023_02334_2
crossref_primary_10_1038_s41598_019_54548_6
crossref_primary_10_1038_s41598_019_55861_w
crossref_primary_10_1016_j_media_2024_103388
crossref_primary_10_3389_fnins_2021_630747
crossref_primary_10_1186_s13244_024_01636_5
crossref_primary_10_1016_j_media_2023_102850
crossref_primary_10_1016_j_neuroimage_2019_116276
crossref_primary_10_2196_16669
crossref_primary_10_3389_fpsyg_2022_993162
crossref_primary_10_1002_hbm_25465
crossref_primary_10_1044_2024_JSLHR_24_00157
crossref_primary_10_1016_j_neuroimage_2018_05_049
crossref_primary_10_1016_j_compbiomed_2024_108874
crossref_primary_10_1259_bjr_20190389
crossref_primary_10_1007_s11682_019_00186_5
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_3390_math10152575
crossref_primary_10_1016_j_nicl_2019_101929
crossref_primary_10_1093_schbul_sbac030
crossref_primary_10_3389_fnins_2022_1036102
crossref_primary_10_1155_2021_9998819
crossref_primary_10_3389_fpsyt_2022_1075564
crossref_primary_10_1016_j_neunet_2020_03_017
crossref_primary_10_1016_j_neuroimage_2024_120815
crossref_primary_10_1186_s12888_021_03503_9
crossref_primary_10_1016_j_imu_2023_101176
crossref_primary_10_1109_ACCESS_2022_3180073
crossref_primary_10_35377_saucis___1444155
crossref_primary_10_1016_j_nic_2019_09_009
crossref_primary_10_1002_hbm_25013
crossref_primary_10_3389_fnagi_2022_810125
crossref_primary_10_1016_j_neuroimage_2020_117127
crossref_primary_10_3390_jpm13081214
crossref_primary_10_1016_j_bionps_2024_100102
crossref_primary_10_1155_2020_8891185
crossref_primary_10_1177_1550059420916634
crossref_primary_10_1016_j_neucom_2017_12_062
crossref_primary_10_1038_s41467_020_18037_z
crossref_primary_10_3389_fneur_2019_01346
crossref_primary_10_1016_j_asoc_2022_109038
crossref_primary_10_3389_fpsyt_2019_01029
crossref_primary_10_1016_j_pneurobio_2019_01_008
crossref_primary_10_1093_schbul_sbz067
crossref_primary_10_1186_s12883_020_02036_0
crossref_primary_10_3390_s21217169
crossref_primary_10_3389_fnins_2023_1333725
crossref_primary_10_1109_ACCESS_2023_3243178
crossref_primary_10_1016_j_jpsychires_2020_11_014
crossref_primary_10_1109_TBME_2020_3004548
crossref_primary_10_1016_j_neuroscience_2024_12_045
crossref_primary_10_1016_j_nicl_2019_102003
crossref_primary_10_1177_0165551519849516
crossref_primary_10_3389_ebm_2025_10238
crossref_primary_10_3390_a11030028
crossref_primary_10_1038_s41598_021_03785_9
crossref_primary_10_1162_netn_a_00334
crossref_primary_10_1109_ACCESS_2022_3197645
crossref_primary_10_3390_sym14071338
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_1016_j_ynirp_2025_100259
crossref_primary_10_1016_j_jad_2022_08_078
crossref_primary_10_3389_fnagi_2022_1019869
crossref_primary_10_1016_j_jneumeth_2021_109098
crossref_primary_10_3389_fnins_2021_652987
crossref_primary_10_1155_2022_6078223
crossref_primary_10_3389_fpsyt_2023_1068397
crossref_primary_10_4103_1673_5374_233433
crossref_primary_10_1016_j_media_2022_102585
crossref_primary_10_1089_brain_2020_0878
crossref_primary_10_1002_jcla_23833
crossref_primary_10_1007_s13369_020_05193_z
crossref_primary_10_3390_diagnostics11112034
Cites_doi 10.1007/978-3-319-10590-1_53
10.1016/j.neunet.2014.09.003
10.3389/fnins.2014.00229
10.1007/978-3-319-24888-2_37
10.1016/j.neubiorev.2012.07.012
10.1016/j.neuroimage.2007.10.052
10.1093/schbul/sbw053
10.1007/978-3-319-10581-9_30
10.1016/j.neubiorev.2015.12.007
10.1016/j.neuroimage.2008.11.007
10.1016/j.nic.2005.09.008
10.1109/TBME.2014.2372011
10.1016/j.neuroimage.2012.03.079
10.1016/j.neuroimage.2016.01.005
10.1016/j.neubiorev.2009.12.004
10.1016/j.neubiorev.2012.01.004
10.1073/pnas.0911855107
10.1016/j.neuroimage.2014.06.077
10.1371/journal.pone.0061562
10.1111/j.1525-1497.2004.30091.x
10.1017/S003329171300024X
10.3389/fpsyt.2016.00052
10.1109/TNN.2006.872343
10.1016/j.jalz.2005.06.003
10.1007/978-3-642-40763-5_78
10.1007/978-3-319-10581-9_9
10.1007/s00406-012-0360-5
10.1561/2200000006
10.1109/72.991427
10.1016/j.neuroimage.2010.03.051
10.1162/neco.1992.4.4.473
10.1016/j.neuroimage.2014.10.002
10.1016/j.neuroimage.2015.05.018
10.1016/j.neuroimage.2013.05.079
10.1016/j.drudis.2015.03.003
10.1016/j.neubiorev.2015.08.001
10.1109/5.726791
10.1016/j.nicl.2013.09.003
10.1007/978-3-319-23344-4_16
10.1109/TCYB.2014.2379621
10.1109/CVPR.2016.90
10.1016/j.neubiorev.2015.07.014
10.3389/fpsyt.2013.00187
10.1371/journal.pone.0033182
10.1016/j.neuroimage.2015.06.008
10.1016/j.pscychresns.2014.08.005
10.1609/aaai.v31i1.11231
10.1038/nature14539
10.1007/s00429-013-0687-3
10.1080/j.1440-1614.2005.01714.x
10.1038/npp.2013.251
10.1007/BF02478259
10.1162/neco.2006.18.7.1527
10.1073/pnas.0504136102
10.1145/1273496.1273556
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neubiorev.2017.01.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7528
EndPage 75
ExternalDocumentID 28087243
10_1016_j_neubiorev_2017_01_002
S0149763416305176
Genre Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
  grantid: ID99859
– fundername: Medical Research Council
  grantid: G1100574
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
9JO
AABNK
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAFTH
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABOYX
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACXNI
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OKEIE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSB
SSN
SSY
SSZ
T5K
TEORI
UQL
WUQ
XJT
YQT
ZGI
ZKB
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c486t-5ed2f45cb32892448e5513b94fd024fcddff53110d9b4a3b198cf5f693429c5f3
ISICitedReferencesCount 400
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395605200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0149-7634
IngestDate Sun Sep 28 00:12:35 EDT 2025
Mon Jul 21 06:02:31 EDT 2025
Sat Nov 29 02:59:14 EST 2025
Tue Nov 18 22:23:56 EST 2025
Fri Feb 23 02:22:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Deep learning
Neuroimaging
Autoencoders
Machine learning
Deep belief networks
Multilayer perceptron
Pattern recognition
Convolutional neural networks
Neurologic disorders
Psychiatric disorders
Language English
License This is an open access article under the CC BY license.
Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-5ed2f45cb32892448e5513b94fd024fcddff53110d9b4a3b198cf5f693429c5f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://dx.doi.org/10.1016/j.neubiorev.2017.01.002
PMID 28087243
PQID 1861511796
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_1861511796
pubmed_primary_28087243
crossref_citationtrail_10_1016_j_neubiorev_2017_01_002
crossref_primary_10_1016_j_neubiorev_2017_01_002
elsevier_sciencedirect_doi_10_1016_j_neubiorev_2017_01_002
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
2017-Mar
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience and biobehavioral reviews
PublicationTitleAlternate Neurosci Biobehav Rev
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Arbabshirani, Plis, Sui, Calhoun (bib0015) 2016
Suk, Lee, Shen (bib0380) 2015
Valli, Marquand, Mechelli, Raffin, Allen, Seal, McGuire (bib0400) 2016; 7
Hsu, Lin (bib0140) 2002; 13
Hao, He, Yin (bib0115) 2015
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0255) 2005; 15
Tognin, Pettersson-Yeo, Valli, Hutton, Woolley, Allen, McGuire, Mechelli (bib0395) 2014; 4
Moradi, Pepe, Gaser, Huttunen, Tohka (bib0245) 2015; 104
Gong, Li, Du, Pettersson-Yeo, Crossley, Yang, Li, Huang, Mechelli (bib0095) 2014; 39
Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib0305) 2014; 8
Sheffield, Barch (bib0335) 2016; 61
Moody, Hanson, Krogh, Hertz (bib0240) 1995; 4
Suk, Lee, Shen (bib0375) 2015; 220
Li, Tran, Thung, Ji, Shen, Li (bib0205) 2014
Kumar, Gopal (bib0180) 2011; 38
Alain, G., Bengio, Y., 2016. Understanding intermediate layers using linear classifier probes. arXiv preprint arXiv:1610.01644.
Suk, Wee, Lee, Shen (bib0385) 2016; 129
Willette, Calhoun, Egan, Kapogiannis (bib0420) 2014; 224
Alberg, Park, Hager, Brock, Diener‐West (bib0010) 2004; 19
Krizhevsky, Sutskever, Hinton (bib0165) 2012
Munsell, Wee, Keller, Weber, Elger, da Silva, Nesland, Styner, Shen, Bonilha (bib0265) 2015; 118
Nowlan, Hinton (bib0275) 1992; 4
Schmidhuber (bib0325) 2015; 61
Mulders, van Eijndhoven, Schene, Beckmann, Tendolkar (bib0260) 2015; 56
Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806.
Orrù, Pettersson-Yeo, Marquand, Sartori, Mechelli (bib0280) 2012; 36
Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R., 2015. Evaluating the visualization of what a deep neural network has learned. arXiv preprint arXiv:1509.06321.
Bengio (bib0020) 2009; 2
Brosch T., Tam R., Alzheimer’s Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg.
Hastie, Tibshirani, Friedman (bib0120) 2001
Larochelle, Erhan, Courville, Bergstra, Bengio (bib0185) 2007
Gupta, Ayhan, Maida (bib0105) 2013
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0250) 2005; 1
Calhoun, Sui (bib0055) 2016; 1
Szegedy, C., Ioffe, S., Vanhoucke, V., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261.
Yung, Yuen, McGorry, Phillips, Kelly, Dell'Olio, Francey, Cosgrave, Killackey, Stanford, Godfrey, Buckby (bib0440) 2005; 39
He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385.
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0355) 2014; 15
McCulloch, Pitts (bib0225) 1943; 7
Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks. arXiv preprint arXiv:1603.08631.
Bergstra, Bardenet, Bengio, Kégl (bib0025) 2011
Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv: 1502.02506.
Page, Turner, Mohsenin, Oates (bib0285) 2014
Liu, Liu, Cai, Pujol, Kikinis, Feng (bib0210) 2014
Radua, Borgwardt, Crescini, Mataix-Cols, Meyer-Lindenberg, McGuire, Fusar-Poli (bib0310) 2012; 36
Suk, Shen (bib0365) 2013
Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (bib0360) 2010; 51
Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, 818–833. Springer International Publishing.
Hinton, Osindero, Teh (bib0130) 2006; 18
LeCun, Bengio, Hinton (bib0200) 2015; 521
Cabral, Kambeitz-Ilankovic, Kambeitz, Calhoun, Dwyer, von Saldern, Urquijo, Falkai, Koutsouleris (bib0050) 2016; 42
Kennedy, Courchesne (bib0155) 2008; 39
Kuang, Guo, An, Zhao, He (bib0175) 2014
Schultz, Fusar-Poli, Wagner, Koch, Schachtzabel, Gruber, Sauer, Schlösser (bib0330) 2012; 262
Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579.
Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
Zhang, Shen (bib0455) 2012; 7
Brodersen, Ong, Stephan, Buhmann (bib0040) 2010
Pereira, Mitchell, Botvinick (bib0295) 2009; 45
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib0150) 2013; 80
Nieuwenhuis, van Haren, Pol, Cahn, Kahn, Schnack (bib0270) 2012; 61
Chen, Y., Shi, B., Smith, C.D., Liu, J., 2015. Nonlinear Feature Transformation and Deep Fusion for Alzheimer’s Disease Staging Analysis. In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing.
Kuang, He (bib0170) 2014
Kim, Calhoun, Shim, Lee (bib0160) 2016; 124
Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (bib0215) 2015; 62
Grün, F., Rupprecht, C., Navab, N., Tombari, F., 2016. A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks. arXiv preprint arXiv:1606.07757.
Fei, Liu (bib0075) 2006; 17
Pettersson-Yeo, Benetti, Marquand, Dell‘Acqua, Williams, Allen, Prata, McGuire, Mechelli (bib0300) 2013; 43
Gelbart, M.A., Snoek, J., Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607.
Vapnik (bib0410) 1995
Wolfers, Buitelaar, Beckmann, Franke, Marquand (bib0425) 2015; 57
Deshpande, Wang, Rangaprakash, Wilamowski (bib0065) 2015; 45
Zarogianni, Moorhead, Lawrie (bib0445) 2013; 3
Mechelli, Prata, Kefford, Kapur (bib0230) 2015; 20
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib0080) 2005; 102
Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network. arXiv preprint arXiv:1607.00556.
Donahue, Anne Hendricks, Guadarrama, Rohrbach, Venugopalan, Saenko, Darrell (bib0070) 2015
Yang, Zhong, Carass, Ying, Prince (bib0430) 2014
Hu, Ju, Shen, Zhou, Li (bib0145) 2016
Boulesteix, Lauer, Eugster (bib0035) 2013; 8
Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, Ng (bib0190) 2012; 103
Gao, Hui (bib0085) 2016
van der Meer, Costafreda, Aleman, David (bib0405) 2010; 34
Milham, Fair, Mennes, Mostofsky (bib0235) 2012; 6
Han X., Zhong Y., He L., Philip S.Y., Zhang L., 2015. The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing.
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0415) 2010; 11
Liu, Liu, Cai, Pujol, Kikinis, Feng (bib0220) 2015
Simonyan, K., Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Suk, Lee, Shen (bib0370) 2014; 101
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kotter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (bib0030) 2010; 107
LeCun, Bottou, Bengio, Haffner (bib0195) 1998; 86
Kuang (10.1016/j.neubiorev.2017.01.002_bib0170) 2014
Suk (10.1016/j.neubiorev.2017.01.002_bib0375) 2015; 220
Hastie (10.1016/j.neubiorev.2017.01.002_bib0120) 2001
Yang (10.1016/j.neubiorev.2017.01.002_bib0430) 2014
Munsell (10.1016/j.neubiorev.2017.01.002_bib0265) 2015; 118
Willette (10.1016/j.neubiorev.2017.01.002_bib0420) 2014; 224
Hutchison (10.1016/j.neubiorev.2017.01.002_bib0150) 2013; 80
Tognin (10.1016/j.neubiorev.2017.01.002_bib0395) 2014; 4
Liu (10.1016/j.neubiorev.2017.01.002_bib0220) 2015
Moody (10.1016/j.neubiorev.2017.01.002_bib0240) 1995; 4
Nieuwenhuis (10.1016/j.neubiorev.2017.01.002_bib0270) 2012; 61
Liu (10.1016/j.neubiorev.2017.01.002_bib0210) 2014
10.1016/j.neubiorev.2017.01.002_bib0390
Gong (10.1016/j.neubiorev.2017.01.002_bib0095) 2014; 39
Le (10.1016/j.neubiorev.2017.01.002_bib0190) 2012; 103
Plis (10.1016/j.neubiorev.2017.01.002_bib0305) 2014; 8
10.1016/j.neubiorev.2017.01.002_bib0350
10.1016/j.neubiorev.2017.01.002_bib0110
Bengio (10.1016/j.neubiorev.2017.01.002_bib0020) 2009; 2
Radua (10.1016/j.neubiorev.2017.01.002_bib0310) 2012; 36
Valli (10.1016/j.neubiorev.2017.01.002_bib0400) 2016; 7
10.1016/j.neubiorev.2017.01.002_bib0315
10.1016/j.neubiorev.2017.01.002_bib0435
Biswal (10.1016/j.neubiorev.2017.01.002_bib0030) 2010; 107
Wolfers (10.1016/j.neubiorev.2017.01.002_bib0425) 2015; 57
LeCun (10.1016/j.neubiorev.2017.01.002_bib0200) 2015; 521
Bergstra (10.1016/j.neubiorev.2017.01.002_bib0025) 2011
Suk (10.1016/j.neubiorev.2017.01.002_bib0365) 2013
Schultz (10.1016/j.neubiorev.2017.01.002_bib0330) 2012; 262
LeCun (10.1016/j.neubiorev.2017.01.002_bib0195) 1998; 86
Larochelle (10.1016/j.neubiorev.2017.01.002_bib0185) 2007
Deshpande (10.1016/j.neubiorev.2017.01.002_bib0065) 2015; 45
Nowlan (10.1016/j.neubiorev.2017.01.002_bib0275) 1992; 4
Arbabshirani (10.1016/j.neubiorev.2017.01.002_bib0015) 2016
Hao (10.1016/j.neubiorev.2017.01.002_bib0115) 2015
Mueller (10.1016/j.neubiorev.2017.01.002_bib0255) 2005; 15
Hsu (10.1016/j.neubiorev.2017.01.002_bib0140) 2002; 13
10.1016/j.neubiorev.2017.01.002_bib0045
10.1016/j.neubiorev.2017.01.002_bib0320
Yung (10.1016/j.neubiorev.2017.01.002_bib0440) 2005; 39
10.1016/j.neubiorev.2017.01.002_bib0005
Page (10.1016/j.neubiorev.2017.01.002_bib0285) 2014
Stonnington (10.1016/j.neubiorev.2017.01.002_bib0360) 2010; 51
10.1016/j.neubiorev.2017.01.002_bib0125
Orrù (10.1016/j.neubiorev.2017.01.002_bib0280) 2012; 36
Boulesteix (10.1016/j.neubiorev.2017.01.002_bib0035) 2013; 8
Brodersen (10.1016/j.neubiorev.2017.01.002_bib0040) 2010
Krizhevsky (10.1016/j.neubiorev.2017.01.002_bib0165) 2012
Suk (10.1016/j.neubiorev.2017.01.002_bib0370) 2014; 101
Vapnik (10.1016/j.neubiorev.2017.01.002_bib0410) 1995
Kim (10.1016/j.neubiorev.2017.01.002_bib0160) 2016; 124
10.1016/j.neubiorev.2017.01.002_bib0090
Zarogianni (10.1016/j.neubiorev.2017.01.002_bib0445) 2013; 3
Kumar (10.1016/j.neubiorev.2017.01.002_bib0180) 2011; 38
Mechelli (10.1016/j.neubiorev.2017.01.002_bib0230) 2015; 20
10.1016/j.neubiorev.2017.01.002_bib0290
Fei (10.1016/j.neubiorev.2017.01.002_bib0075) 2006; 17
Alberg (10.1016/j.neubiorev.2017.01.002_bib0010) 2004; 19
Moradi (10.1016/j.neubiorev.2017.01.002_bib0245) 2015; 104
10.1016/j.neubiorev.2017.01.002_bib0450
Sheffield (10.1016/j.neubiorev.2017.01.002_bib0335) 2016; 61
Hinton (10.1016/j.neubiorev.2017.01.002_bib0130) 2006; 18
10.1016/j.neubiorev.2017.01.002_bib0135
Kuang (10.1016/j.neubiorev.2017.01.002_bib0175) 2014
McCulloch (10.1016/j.neubiorev.2017.01.002_bib0225) 1943; 7
Pereira (10.1016/j.neubiorev.2017.01.002_bib0295) 2009; 45
Donahue (10.1016/j.neubiorev.2017.01.002_bib0070) 2015
Milham (10.1016/j.neubiorev.2017.01.002_bib0235) 2012; 6
Zhang (10.1016/j.neubiorev.2017.01.002_bib0455) 2012; 7
Srivastava (10.1016/j.neubiorev.2017.01.002_bib0355) 2014; 15
Kennedy (10.1016/j.neubiorev.2017.01.002_bib0155) 2008; 39
Mueller (10.1016/j.neubiorev.2017.01.002_bib0250) 2005; 1
Cabral (10.1016/j.neubiorev.2017.01.002_bib0050) 2016; 42
Calhoun (10.1016/j.neubiorev.2017.01.002_bib0055) 2016; 1
Liu (10.1016/j.neubiorev.2017.01.002_bib0215) 2015; 62
Vincent (10.1016/j.neubiorev.2017.01.002_bib0415) 2010; 11
Suk (10.1016/j.neubiorev.2017.01.002_bib0380) 2015
Gao (10.1016/j.neubiorev.2017.01.002_bib0085) 2016
10.1016/j.neubiorev.2017.01.002_bib0060
van der Meer (10.1016/j.neubiorev.2017.01.002_bib0405) 2010; 34
Gupta (10.1016/j.neubiorev.2017.01.002_bib0105) 2013
Pettersson-Yeo (10.1016/j.neubiorev.2017.01.002_bib0300) 2013; 43
10.1016/j.neubiorev.2017.01.002_bib0340
Mulders (10.1016/j.neubiorev.2017.01.002_bib0260) 2015; 56
10.1016/j.neubiorev.2017.01.002_bib0100
Suk (10.1016/j.neubiorev.2017.01.002_bib0385) 2016; 129
Schmidhuber (10.1016/j.neubiorev.2017.01.002_bib0325) 2015; 61
Li (10.1016/j.neubiorev.2017.01.002_bib0205) 2014
10.1016/j.neubiorev.2017.01.002_bib0345
Fox (10.1016/j.neubiorev.2017.01.002_bib0080) 2005; 102
Hu (10.1016/j.neubiorev.2017.01.002_bib0145) 2016
References_xml – volume: 51
  start-page: 1405
  year: 2010
  end-page: 1413
  ident: bib0360
  article-title: Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: Neuroimage
– volume: 39
  start-page: 1877
  year: 2008
  end-page: 1885
  ident: bib0155
  article-title: The intrinsic functional organization of the brain is altered in autism
  publication-title: Neuroimage
– volume: 6
  start-page: 62
  year: 2012
  ident: bib0235
  article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: bib0255
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
– volume: 19
  start-page: 460
  year: 2004
  end-page: 465
  ident: bib0010
  article-title: The use of overall accuracy to evaluate the validity of screening or diagnostic tests
  publication-title: J. Gen. Intern. Med.
– reference: Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks. arXiv preprint arXiv:1603.08631.
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: bib0025
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 924
  year: 2015
  end-page: 927
  ident: bib0230
  article-title: Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review
  publication-title: Drug Discovery Today
– reference: Szegedy, C., Ioffe, S., Vanhoucke, V., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261.
– volume: 224
  start-page: 81
  year: 2014
  end-page: 88
  ident: bib0420
  article-title: Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer’s disease: MRI independent component analysis
  publication-title: Psychiatry Res.: Neuroimag.
– volume: 43
  start-page: 2547
  year: 2013
  end-page: 2562
  ident: bib0300
  article-title: Using genetic: cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level
  publication-title: Psychol. Med.
– volume: 3
  start-page: 279
  year: 2013
  end-page: 289
  ident: bib0445
  article-title: Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level
  publication-title: NeuroImage: Clin.
– reference: Gelbart, M.A., Snoek, J., Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0200
  article-title: Deep learning
  publication-title: Nature
– volume: 36
  start-page: 2325
  year: 2012
  end-page: 2333
  ident: bib0310
  article-title: Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication
  publication-title: Neurosci. Biobehav. Rev.
– reference: Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579.
– year: 2016
  ident: bib0085
  article-title: A deep learning based approach to classification of CT brain images
  publication-title: Science and Information Conference
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0115
  article-title: Discrimination of ADHD children based on deep bayesian network
  publication-title: 2015 International Conference on Biomedical Image and Signal Processing
– start-page: 240
  year: 2014
  end-page: 247
  ident: bib0205
  article-title: Robust deep learning for improved classification of AD/MCI patients
  publication-title: International Workshop on Machine Learning in Medical Imaging
– reference: Chen, Y., Shi, B., Smith, C.D., Liu, J., 2015. Nonlinear Feature Transformation and Deep Fusion for Alzheimer’s Disease Staging Analysis. In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing.
– volume: 129
  start-page: 292
  year: 2016
  end-page: 307
  ident: bib0385
  article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI
  publication-title: Neuroimage
– reference: Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv: 1502.02506.
– start-page: 68
  year: 2014
  end-page: 76
  ident: bib0430
  article-title: Deep learning for cerebellar ataxia classification and functional score regression
  publication-title: International Workshop on Machine Learning in Medical Imaging
– volume: 7
  start-page: e33182
  year: 2012
  ident: bib0455
  article-title: Alzheimer’s Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS One
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: bib0370
  article-title: Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: Neuroimage
– reference: Brosch T., Tam R., Alzheimer’s Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg.
– reference: Alain, G., Bengio, Y., 2016. Understanding intermediate layers using linear classifier probes. arXiv preprint arXiv:1610.01644.
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib0140
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Netw.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385.
– volume: 262
  start-page: 97
  year: 2012
  end-page: 106
  ident: bib0330
  article-title: Multimodal functional and structural imaging investigations in psychosis research
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 45
  start-page: 2668
  year: 2015
  end-page: 2679
  ident: bib0065
  article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Trans. Cybernet.
– reference: Simonyan, K., Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0325
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– start-page: 583
  year: 2013
  end-page: 590
  ident: bib0365
  article-title: Deep learning-based feature representation for AD/MCI classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, 818–833. Springer International Publishing.
– start-page: 473
  year: 2007
  end-page: 480
  ident: bib0185
  article-title: An empirical evaluation of deep architectures on problems with many factors of variation
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– volume: 124
  start-page: 127
  year: 2016
  end-page: 146
  ident: bib0160
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
– volume: 57
  start-page: 328
  year: 2015
  end-page: 349
  ident: bib0425
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci. Biobehav. Rev.
– start-page: 27
  year: 2014
  end-page: 32
  ident: bib0170
  article-title: Classification on ADHD with deep learning
  publication-title: Proceedings of the International Conference on Cloud Computing and Big Data
– start-page: 1
  year: 2015
  end-page: 19
  ident: bib0380
  article-title: Alzheimer’s Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
  publication-title: Brain Struct. Funct.
– start-page: 3121
  year: 2010
  end-page: 3124
  ident: bib0040
  article-title: The balanced accuracy and its posterior distribution
  publication-title: Proceedings of the IEEE 20th International Conference on Pattern Recognition
– volume: 42
  start-page: S110
  year: 2016
  end-page: S117
  ident: bib0050
  article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance
  publication-title: Schizophr. Bull.
– volume: 56
  start-page: 330
  year: 2015
  end-page: 344
  ident: bib0260
  article-title: Resting-state functional connectivity in major depressive disorder: a review
  publication-title: Neurosci. Biobehav. Rev.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0165
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 137
  year: 2016
  end-page: 165
  ident: bib0015
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib0245
  article-title: Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
– start-page: 1015
  year: 2014
  end-page: 1018
  ident: bib0210
  article-title: Early diagnosis of Alzheimer’s Disease with deep learning
  publication-title: IEEE 11th International Symposium on Biomedical Imaging
– volume: 4
  start-page: 187
  year: 2014
  ident: bib0395
  article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis
  publication-title: Front. Psychiatry
– volume: 220
  start-page: 841
  year: 2015
  end-page: 859
  ident: bib0375
  article-title: Alzheimer’s disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0415
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 696
  year: 2006
  end-page: 704
  ident: bib0075
  article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm
  publication-title: IEEE Trans. Neural Netw.
– start-page: 987
  year: 2013
  end-page: 994
  ident: bib0105
  article-title: Natural image bases to represent neuroimaging data
  publication-title: International Conference on Machine Learning
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0355
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 1995
  ident: bib0410
  article-title: The Nature of Statistical Learning Theory
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0130
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0195
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 4
  start-page: 473
  year: 1992
  end-page: 493
  ident: bib0275
  article-title: Simplifying neural networks by soft weight-sharing
  publication-title: Neural Comput.
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: bib0030
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0305
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
– volume: 45
  start-page: S199
  year: 2009
  end-page: S209
  ident: bib0295
  article-title: Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview
  publication-title: Neuroimage
– reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0145
  article-title: Clinical decision support for Alzheimer’s disease based on deep learning and brain network
  publication-title: Proceedings of the IEEE International Conference on Communications
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib0080
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806.
– volume: 1
  start-page: 55
  year: 2005
  end-page: 66
  ident: bib0250
  article-title: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI)
  publication-title: Alzheimer's Dementia
– volume: 61
  start-page: 108
  year: 2016
  end-page: 120
  ident: bib0335
  article-title: Cognition and resting-state functional connectivity in schizophrenia
  publication-title: Neurosci. Biobehav. Rev.
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib0150
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 118
  start-page: 219
  year: 2015
  end-page: 230
  ident: bib0265
  article-title: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
  publication-title: Neuroimage
– reference: Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network. arXiv preprint arXiv:1607.00556.
– reference: Han X., Zhong Y., He L., Philip S.Y., Zhang L., 2015. The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing.
– start-page: 350
  year: 2015
  end-page: 359
  ident: bib0220
  article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis
  publication-title: Australasian Conference on Artificial Life and Computational Intelligence
– start-page: 225
  year: 2014
  end-page: 232
  ident: bib0175
  article-title: Discrimination of ADHD based on fMRI data with deep belief network
  publication-title: International Conference on Intelligent Computing
– year: 2014
  ident: bib0285
  article-title: Comparing raw data and feature extraction for seizure detection with deep learning methods
  publication-title: International Florida Artificial Intelligence Research Society Conference
– volume: 4
  start-page: 950
  year: 1995
  end-page: 957
  ident: bib0240
  article-title: A simple weight decay can improve generalization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: e61562
  year: 2013
  ident: bib0035
  article-title: A plea for neutral comparison studies in computational sciences
  publication-title: PLoS One
– volume: 34
  start-page: 935
  year: 2010
  end-page: 946
  ident: bib0405
  article-title: Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia
  publication-title: Neurosci. Biobehav. Rev.
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: bib0215
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R., 2015. Evaluating the visualization of what a deep neural network has learned. arXiv preprint arXiv:1509.06321.
– volume: 103
  year: 2012
  ident: bib0190
  article-title: Building high-level features using large scale unsupervised learning
  publication-title: International Conference on Machine Learning
– reference: Grün, F., Rupprecht, C., Navab, N., Tombari, F., 2016. A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks. arXiv preprint arXiv:1606.07757.
– volume: 39
  start-page: 964
  year: 2005
  end-page: 971
  ident: bib0440
  article-title: Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states
  publication-title: Aust. N. Z. J. Psychiatry
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0020
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends
– volume: 38
  start-page: 14238
  year: 2011
  end-page: 14248
  ident: bib0180
  article-title: Reduced one-against-all method for multiclass SVM classification
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 681
  year: 2014
  end-page: 687
  ident: bib0095
  article-title: Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI
  publication-title: Neuropsychopharmacology
– volume: 7
  start-page: 115
  year: 1943
  end-page: 133
  ident: bib0225
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 61
  start-page: 606
  year: 2012
  end-page: 612
  ident: bib0270
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: Neuroimage
– volume: 1
  start-page: 230
  year: 2016
  end-page: 244
  ident: bib0055
  article-title: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness
  publication-title: Biol. Psychiatry: Cogn. Neurosci.Neuroimag.
– volume: 36
  start-page: 1140
  year: 2012
  end-page: 1152
  ident: bib0280
  article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
  publication-title: Neurosci. Biobehav. Rev.
– year: 2001
  ident: bib0120
  article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
– volume: 7
  year: 2016
  ident: bib0400
  article-title: Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data
  publication-title: Front. Psychiatry
– start-page: 2625
  year: 2015
  end-page: 2634
  ident: bib0070
  article-title: Long-term recurrent convolutional networks for visual recognition and description
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.neubiorev.2017.01.002_bib0450
  doi: 10.1007/978-3-319-10590-1_53
– year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0285
  article-title: Comparing raw data and feature extraction for seizure detection with deep learning methods
  publication-title: International Florida Artificial Intelligence Research Society Conference
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0325
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0305
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– ident: 10.1016/j.neubiorev.2017.01.002_bib0060
  doi: 10.1007/978-3-319-24888-2_37
– start-page: 225
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0175
  article-title: Discrimination of ADHD based on fMRI data with deep belief network
  publication-title: International Conference on Intelligent Computing
– volume: 36
  start-page: 2325
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0310
  article-title: Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2012.07.012
– volume: 39
  start-page: 1877
  year: 2008
  ident: 10.1016/j.neubiorev.2017.01.002_bib0155
  article-title: The intrinsic functional organization of the brain is altered in autism
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.052
– year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0085
  article-title: A deep learning based approach to classification of CT brain images
– volume: 42
  start-page: S110
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0050
  article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbw053
– volume: 6
  start-page: 62
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0235
  article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
– start-page: 240
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0205
  article-title: Robust deep learning for improved classification of AD/MCI patients
  publication-title: International Workshop on Machine Learning in Medical Imaging
  doi: 10.1007/978-3-319-10581-9_30
– volume: 61
  start-page: 108
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0335
  article-title: Cognition and resting-state functional connectivity in schizophrenia
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.12.007
– volume: 45
  start-page: S199
  year: 2009
  ident: 10.1016/j.neubiorev.2017.01.002_bib0295
  article-title: Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.007
– ident: 10.1016/j.neubiorev.2017.01.002_bib0435
– volume: 15
  start-page: 869
  year: 2005
  ident: 10.1016/j.neubiorev.2017.01.002_bib0255
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: 62
  start-page: 1132
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0215
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2372011
– start-page: 27
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0170
  article-title: Classification on ADHD with deep learning
  publication-title: Proceedings of the International Conference on Cloud Computing and Big Data
– ident: 10.1016/j.neubiorev.2017.01.002_bib0005
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0355
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1015
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0210
  article-title: Early diagnosis of Alzheimer’s Disease with deep learning
  publication-title: IEEE 11th International Symposium on Biomedical Imaging
– ident: 10.1016/j.neubiorev.2017.01.002_bib0100
– year: 1995
  ident: 10.1016/j.neubiorev.2017.01.002_bib0410
– volume: 61
  start-page: 606
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0270
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.079
– ident: 10.1016/j.neubiorev.2017.01.002_bib0345
– volume: 129
  start-page: 292
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0385
  article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.005
– volume: 34
  start-page: 935
  issue: 6
  year: 2010
  ident: 10.1016/j.neubiorev.2017.01.002_bib0405
  article-title: Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2009.12.004
– start-page: 1
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0115
  article-title: Discrimination of ADHD children based on deep bayesian network
  publication-title: 2015 International Conference on Biomedical Image and Signal Processing
– start-page: 3121
  year: 2010
  ident: 10.1016/j.neubiorev.2017.01.002_bib0040
  article-title: The balanced accuracy and its posterior distribution
  publication-title: Proceedings of the IEEE 20th International Conference on Pattern Recognition
– volume: 36
  start-page: 1140
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0280
  article-title: Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2012.01.004
– volume: 107
  start-page: 4734
  year: 2010
  ident: 10.1016/j.neubiorev.2017.01.002_bib0030
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0911855107
– year: 2001
  ident: 10.1016/j.neubiorev.2017.01.002_bib0120
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0165
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0370
  article-title: Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 8
  start-page: e61562
  year: 2013
  ident: 10.1016/j.neubiorev.2017.01.002_bib0035
  article-title: A plea for neutral comparison studies in computational sciences
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061562
– volume: 103
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0190
  article-title: Building high-level features using large scale unsupervised learning
  publication-title: International Conference on Machine Learning
– volume: 19
  start-page: 460
  year: 2004
  ident: 10.1016/j.neubiorev.2017.01.002_bib0010
  article-title: The use of overall accuracy to evaluate the validity of screening or diagnostic tests
  publication-title: J. Gen. Intern. Med.
  doi: 10.1111/j.1525-1497.2004.30091.x
– start-page: 583
  year: 2013
  ident: 10.1016/j.neubiorev.2017.01.002_bib0365
  article-title: Deep learning-based feature representation for AD/MCI classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 43
  start-page: 2547
  year: 2013
  ident: 10.1016/j.neubiorev.2017.01.002_bib0300
  article-title: Using genetic: cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level
  publication-title: Psychol. Med.
  doi: 10.1017/S003329171300024X
– volume: 7
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0400
  article-title: Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2016.00052
– volume: 17
  start-page: 696
  year: 2006
  ident: 10.1016/j.neubiorev.2017.01.002_bib0075
  article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.872343
– volume: 1
  start-page: 55
  year: 2005
  ident: 10.1016/j.neubiorev.2017.01.002_bib0250
  article-title: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI)
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2005.06.003
– ident: 10.1016/j.neubiorev.2017.01.002_bib0045
  doi: 10.1007/978-3-642-40763-5_78
– volume: 4
  start-page: 950
  year: 1995
  ident: 10.1016/j.neubiorev.2017.01.002_bib0240
  article-title: A simple weight decay can improve generalization
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 68
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0430
  article-title: Deep learning for cerebellar ataxia classification and functional score regression
  publication-title: International Workshop on Machine Learning in Medical Imaging
  doi: 10.1007/978-3-319-10581-9_9
– volume: 262
  start-page: 97
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0330
  article-title: Multimodal functional and structural imaging investigations in psychosis research
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-012-0360-5
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.neubiorev.2017.01.002_bib0020
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– start-page: 1
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0380
  article-title: Alzheimer’s Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
  publication-title: Brain Struct. Funct.
– start-page: 2546
  year: 2011
  ident: 10.1016/j.neubiorev.2017.01.002_bib0025
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 415
  year: 2002
  ident: 10.1016/j.neubiorev.2017.01.002_bib0140
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991427
– start-page: 350
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0220
  article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis
  publication-title: Australasian Conference on Artificial Life and Computational Intelligence
– ident: 10.1016/j.neubiorev.2017.01.002_bib0090
– ident: 10.1016/j.neubiorev.2017.01.002_bib0315
– ident: 10.1016/j.neubiorev.2017.01.002_bib0340
– volume: 51
  start-page: 1405
  year: 2010
  ident: 10.1016/j.neubiorev.2017.01.002_bib0360
  article-title: Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.051
– volume: 4
  start-page: 473
  year: 1992
  ident: 10.1016/j.neubiorev.2017.01.002_bib0275
  article-title: Simplifying neural networks by soft weight-sharing
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.4.473
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0245
  article-title: Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 124
  start-page: 127
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0160
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.neubiorev.2017.01.002_bib0150
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 20
  start-page: 924
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0230
  article-title: Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2015.03.003
– volume: 57
  start-page: 328
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0425
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.08.001
– ident: 10.1016/j.neubiorev.2017.01.002_bib0135
– start-page: 1
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0145
  article-title: Clinical decision support for Alzheimer’s disease based on deep learning and brain network
  publication-title: Proceedings of the IEEE International Conference on Communications
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.neubiorev.2017.01.002_bib0195
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.neubiorev.2017.01.002_bib0350
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neubiorev.2017.01.002_bib0415
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 279
  year: 2013
  ident: 10.1016/j.neubiorev.2017.01.002_bib0445
  article-title: Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2013.09.003
– start-page: 2625
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0070
  article-title: Long-term recurrent convolutional networks for visual recognition and description
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.neubiorev.2017.01.002_bib0110
  doi: 10.1007/978-3-319-23344-4_16
– volume: 45
  start-page: 2668
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0065
  article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2014.2379621
– ident: 10.1016/j.neubiorev.2017.01.002_bib0320
– ident: 10.1016/j.neubiorev.2017.01.002_bib0125
  doi: 10.1109/CVPR.2016.90
– volume: 56
  start-page: 330
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0260
  article-title: Resting-state functional connectivity in major depressive disorder: a review
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.07.014
– volume: 4
  start-page: 187
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0395
  article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2013.00187
– volume: 7
  start-page: e33182
  year: 2012
  ident: 10.1016/j.neubiorev.2017.01.002_bib0455
  article-title: Alzheimer’s Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033182
– volume: 118
  start-page: 219
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0265
  article-title: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.06.008
– volume: 224
  start-page: 81
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0420
  article-title: Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer’s disease: MRI independent component analysis
  publication-title: Psychiatry Res.: Neuroimag.
  doi: 10.1016/j.pscychresns.2014.08.005
– ident: 10.1016/j.neubiorev.2017.01.002_bib0390
  doi: 10.1609/aaai.v31i1.11231
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0200
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 220
  start-page: 841
  year: 2015
  ident: 10.1016/j.neubiorev.2017.01.002_bib0375
  article-title: Alzheimer’s disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0687-3
– volume: 39
  start-page: 964
  year: 2005
  ident: 10.1016/j.neubiorev.2017.01.002_bib0440
  article-title: Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states
  publication-title: Aust. N. Z. J. Psychiatry
  doi: 10.1080/j.1440-1614.2005.01714.x
– ident: 10.1016/j.neubiorev.2017.01.002_bib0290
– volume: 39
  start-page: 681
  year: 2014
  ident: 10.1016/j.neubiorev.2017.01.002_bib0095
  article-title: Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.251
– volume: 7
  start-page: 115
  year: 1943
  ident: 10.1016/j.neubiorev.2017.01.002_bib0225
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– start-page: 137
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0015
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– start-page: 987
  year: 2013
  ident: 10.1016/j.neubiorev.2017.01.002_bib0105
  article-title: Natural image bases to represent neuroimaging data
  publication-title: International Conference on Machine Learning
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.neubiorev.2017.01.002_bib0130
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 1
  start-page: 230
  year: 2016
  ident: 10.1016/j.neubiorev.2017.01.002_bib0055
  article-title: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness
  publication-title: Biol. Psychiatry: Cogn. Neurosci.Neuroimag.
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neubiorev.2017.01.002_bib0080
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504136102
– volume: 38
  start-page: 14238
  year: 2011
  ident: 10.1016/j.neubiorev.2017.01.002_bib0180
  article-title: Reduced one-against-all method for multiclass SVM classification
  publication-title: Expert Syst. Appl.
– start-page: 473
  year: 2007
  ident: 10.1016/j.neubiorev.2017.01.002_bib0185
  article-title: An empirical evaluation of deep architectures on problems with many factors of variation
  publication-title: Proceedings of the 24th International Conference on Machine Learning
  doi: 10.1145/1273496.1273556
SSID ssj0002035
Score 2.6695154
SecondaryResourceType review_article
Snippet •Overview of deep learning basic concepts: architecture, learning and testing.•Literature review of deep learning in neuroimaging studies of brain-based...
Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 58
SubjectTerms Autoencoders
Convolutional neural networks
Deep belief networks
Deep learning
Humans
Machine Learning
Mental Disorders
Multilayer perceptron
Nervous System Diseases
Neural Networks, Computer
Neuroimaging
Neurologic disorders
Pattern recognition
Psychiatric disorders
Speech
Title Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
URI https://dx.doi.org/10.1016/j.neubiorev.2017.01.002
https://www.ncbi.nlm.nih.gov/pubmed/28087243
https://www.proquest.com/docview/1861511796
Volume 74
WOSCitedRecordID wos000395605200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-7528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002035
  issn: 0149-7634
  databaseCode: AIEXJ
  dateStart: 19941201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgdeEDAu5TIZCfEypUoTJ7b3NqGhgaCaxIC-RYkvU6Yuqbpu2l75U_w9ji9xM8E0EOIlqiKncXK--Jxjf_4OQq91UhKVVyJiIhMR-GMWlVToKC81lzGTMpHSFpug0ymbzfjhYPCj2wtzMadNwy4v-eK_mhrOgbHN1tm_MHf4UzgBv8HocASzw_GPDO9IAFKpRVcS4tgEmHUQ1FA22LRClvWpK1IkTI2OuQk7rzGgvZarbdqNkdLLdVoq3Sdbf9rJPPeXwvsh73StmOmWKqq67YkDeDnUzvBfa1Xb0kc7n6HtMjiNw7opr-z5b3aBf-dg_HEc0KIsn7UODM2yP5kBDjKwudwMW7fLZk1pcpOePIJx0E08KDdQM5pGNPMby_1ITklvKHaK8N6pu-osv7gLN3NxMob3CM9uiv6YTlkd1zhZe8jAWzRUOG56AlGsETfLN9BmQjPOhmhz7_3-7EMIApI49exZ1_Vr1MLf3u6mwOimxMcGQEf30T2fueA9h7gHaKCah2hrrylX7ekVfoMtl9gu0myh7xaE2IAQdyDEqxb3QIgBhLgPQrwGIW417oEQAxJwH4Q4gHAXewjaNn0IPkJf3u0fvT2IfLWPSBCWr6JMyUSTTFRpwjgEnUyZ2kMVJ1pCHKmFlFqDw5jEklekTKsJZ0JnOucphFQi0-ljNGzaRj1FOJUEEgkJmbiSBDL2CpIUTaggpawSqsgI5d2rLoSXwjcVWeZFx3k8KYKNCmOjIp4UYKMRisOFC6cGc_slu50tC_-tuWC1ABDefvGrzvoFDPtmLa9sVHt-VkyYSUXAm-Yj9MTBIvQoYTGjCUmf_cutn6O76w_0BRqulufqJbojLlb12XIbbdAZ2_ag_wmdjOnh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+learning+to+investigate+the+neuroimaging+correlates+of+psychiatric+and+neurological+disorders%3A+Methods+and+applications&rft.jtitle=Neuroscience+and+biobehavioral+reviews&rft.au=Vieira%2C+Sandra&rft.au=Pinaya%2C+Walter+H.L.&rft.au=Mechelli%2C+Andrea&rft.date=2017-03-01&rft.pub=Elsevier+Ltd&rft.issn=0149-7634&rft.eissn=1873-7528&rft.volume=74&rft.spage=58&rft.epage=75&rft_id=info:doi/10.1016%2Fj.neubiorev.2017.01.002&rft.externalDocID=S0149763416305176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-7634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-7634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-7634&client=summon