Research on Deep Reinforcement Learning Control Algorithm for Active Suspension Considering Uncertain Time Delay

The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 23; číslo 18; s. 7827
Hlavní autoři: Wang, Yang, Wang, Cheng, Zhao, Shijie, Guo, Konghui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2023
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm’s potential for practical application.
AbstractList The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm’s potential for practical application.
The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm's potential for practical application.The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm's potential for practical application.
Audience Academic
Author Wang, Yang
Wang, Cheng
Guo, Konghui
Zhao, Shijie
AuthorAffiliation 2 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China
AuthorAffiliation_xml – name: 1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China
– name: 2 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
Author_xml – sequence: 1
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
– sequence: 2
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
– sequence: 3
  givenname: Shijie
  surname: Zhao
  fullname: Zhao, Shijie
– sequence: 4
  givenname: Konghui
  surname: Guo
  fullname: Guo, Konghui
BookMark eNptkk1r3DAQhkVJaZJtD_0Hhl7awybWhyX5VJbtRwILhTQ5i7E83tViS65kB_Lvq-2G0ISgg8TMM69Go_ecnPjgkZCPtLzgvC4vE-NUK83UG3JGBRNLzVh58t_5lJyntC9LxjnX78gpV0pWWoszMt5gQoh2VwRffEMcixt0vgvR4oB-KjY56Z3fFuvgpxj6YtVvQ3TTbigyVKzs5O6x-D2nEX1yWSNzybUYDzV33mKcwPni1g2Y5Xt4eE_edtAn_PC4L8jdj--366vl5tfP6_Vqs7RCy2nJS6HahuvO8pY3UresljXnWGtBma2YkI3ECoCLrpatrjVU0jIAVaFtSt3xBbk-6rYB9maMboD4YAI48y8Q4tZAnJzt0TS1zHK0o4J2AhoJtW5E27VMU2uphaz19ag1zs2Arc2DidA_E32e8W5ntuHe0LLimubGF-Tzo0IMf2ZMkxlcstj34DHMyTCtSioEFyqjn16g-zBHn2eVKVlLLmWtM3VxpLaQX3D4sXyxzavFwdlsj87l-EopqilnkuWCL8cCG0NKEbun9mlpDi4yTy7K7OUL1roJJnewALj-lYq_JejKQw
CitedBy_id crossref_primary_10_1007_s42417_025_01796_8
crossref_primary_10_1109_ACCESS_2024_3445663
crossref_primary_10_21595_jve_2025_24982
crossref_primary_10_1016_j_engappai_2024_108630
crossref_primary_10_1016_j_heliyon_2024_e39077
crossref_primary_10_1088_1361_665X_addf22
crossref_primary_10_1016_j_ymssp_2025_112645
crossref_primary_10_3390_app14167066
crossref_primary_10_1016_j_aei_2023_102328
crossref_primary_10_1016_j_arcontrol_2024_100974
Cites_doi 10.1080/00051144.2022.2059205
10.1080/21642583.2023.2188406
10.1109/TIE.2022.3231281
10.1016/j.jsv.2006.09.022
10.1109/CVCI54083.2021.9661158
10.1609/aaai.v30i1.10295
10.1002/acs.3590
10.1109/TIE.2022.3153805
10.1002/stc.128
10.1109/ACCESS.2023.3250643
10.1177/1045389X231157353
10.23919/ACC53348.2022.9867835
10.1016/j.conengprac.2023.105584
10.1016/j.sna.2006.03.015
10.1109/ACCESS.2020.2964116
10.1115/1.2745846
10.1002/asjc.1419
10.3390/app12063078
10.1109/TITS.2015.2414657
10.1002/rnc.6681
10.1109/TIE.2019.2926056
10.1109/TIE.2013.2242418
10.3390/app10228060
10.1049/iet-cta.2016.1139
10.1061/JTEPBS.TEENG-7478
10.1016/S0167-2789(03)00049-6
10.1109/TVT.2022.3207510
10.1016/j.neucom.2021.04.015
10.1109/TAC.1980.1102288
10.1109/TITS.2023.3263239
10.1049/cth2.12317
10.1111/mice.12934
10.1007/s12083-023-01487-9
10.1038/nature14236
10.1080/00207179.2023.2284254
10.1177/09544070211063081
10.1080/10584587.2016.1165574
10.1109/TSMC.2021.3089768
10.1177/16878132231180480
10.4028/www.scientific.net/AMR.706-708.901
10.1007/s12555-015-2009-4
10.1080/21642583.2021.1949403
10.1177/10775463231160807
10.3390/en16041677
10.3390/app10248892
10.1109/TSMC.2016.2523935
10.1061/(ASCE)0733-9399(1992)118:7(1423)
10.1109/TSMC.2018.2870724
10.1109/TSMC.2022.3224739
10.1007/s40815-023-01549-3
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23187827
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b9646b1f141f4ab6a98b4dfd281cc1ca
PMC10538169
A771813262
10_3390_s23187827
GrantInformation_xml – fundername: China Postdoctoral Science Foundation Funded Project
  grantid: 2022M720433
– fundername: The National Key Research and Development Program of China
  grantid: 2022YFB3206602
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c486t-3047db38fc3d3b68d296933e98412c5246b6e5aa34f96d898a56c2aa75ecb08f3
IEDL.DBID 7X7
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072602900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:09 EST 2025
Tue Nov 04 02:06:25 EST 2025
Wed Oct 01 13:18:48 EDT 2025
Tue Oct 07 07:11:39 EDT 2025
Tue Nov 04 18:36:22 EST 2025
Tue Nov 18 21:41:05 EST 2025
Sat Nov 29 07:16:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-3047db38fc3d3b68d296933e98412c5246b6e5aa34f96d898a56c2aa75ecb08f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2869636698?pq-origsite=%requestingapplication%
PMID 37765884
PQID 2869636698
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b9646b1f141f4ab6a98b4dfd281cc1ca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10538169
proquest_miscellaneous_2870144347
proquest_journals_2869636698
gale_infotracacademiconefile_A771813262
crossref_primary_10_3390_s23187827
crossref_citationtrail_10_3390_s23187827
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lei (ref_14) 2016; 170
ref_50
Yan (ref_1) 2013; 706–708
Ma (ref_30) 2023; 237
Theunissen (ref_52) 2020; 67
Li (ref_55) 2020; 50
Lee (ref_41) 2023; 72
ref_58
ref_12
Du (ref_20) 2007; 301
ref_54
ref_53
Yong (ref_40) 2023; 70
ref_51
Klockiewicz (ref_11) 2023; 17
Bououden (ref_15) 2016; 14
Lee (ref_31) 2023; 11
Reddy (ref_9) 2023; 11
Zhu (ref_56) 2022; 2022
Dridi (ref_44) 2023; 15
Mnih (ref_49) 2015; 518
Li (ref_38) 2022; 52
Savaresi (ref_47) 2006; 129
Kwok (ref_45) 2006; 132
Xu (ref_2) 2003; 180
ref_24
Du (ref_42) 2022; 38
Wang (ref_25) 2022; 10
Samiayya (ref_8) 2023; 16
Xie (ref_27) 2023; 37
Han (ref_13) 2017; 19
Wang (ref_10) 2023; 70
Li (ref_6) 2023; 149
Lin (ref_39) 2022; 16
Yang (ref_18) 1992; 118
Zhang (ref_26) 2023; 53
Sakthivel (ref_28) 2023; 33
Kim (ref_22) 2023; 137
ref_36
ref_34
ref_32
ref_37
Chen (ref_57) 2021; 450
Kwon (ref_19) 1980; 25
Liu (ref_35) 2020; 8
Gao (ref_33) 2022; 236
Pan (ref_17) 2015; 16
Min (ref_4) 2017; 11
Chen (ref_5) 2023; 24
ref_46
ref_43
Gu (ref_29) 2022; 63
Zhang (ref_3) 2017; 47
Xu (ref_7) 2023; 15
Udwadia (ref_16) 2006; 13
Li (ref_21) 2014; 61
Wu (ref_23) 2023; 96
ref_48
References_xml – volume: 63
  start-page: 627
  year: 2022
  ident: ref_29
  article-title: A Novel Robust Finite Time Control Approach for a Nonlinear Disturbed Quarter-Vehicle Suspension System with Time Delay Actuation
  publication-title: Automatika
  doi: 10.1080/00051144.2022.2059205
– volume: 11
  start-page: 2188406
  year: 2023
  ident: ref_9
  article-title: Hybrid AC/DC Control Techniques with Improved Harmonic Conditions Using DBN Based Fuzzy Controller and Compensator Modules
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2023.2188406
– volume: 70
  start-page: 11401
  year: 2023
  ident: ref_10
  article-title: Voltage Balancing of Series-Connected SiC Mosfets with Adaptive-Impedance Self-Powered Gate Drivers
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3231281
– volume: 301
  start-page: 236
  year: 2007
  ident: ref_20
  article-title: H∞ Control of Active Vehicle Suspensions with Actuator Time Delay
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2006.09.022
– ident: ref_32
– ident: ref_53
  doi: 10.1109/CVCI54083.2021.9661158
– ident: ref_50
  doi: 10.1609/aaai.v30i1.10295
– ident: ref_51
– volume: 37
  start-page: 1608
  year: 2023
  ident: ref_27
  article-title: Robust Fuzzy Fault Tolerant Control for Nonlinear Active Suspension Systems via Adaptive Hybrid Triggered Scheme
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3590
– volume: 70
  start-page: 824
  year: 2023
  ident: ref_40
  article-title: Suspension Control Strategies Using Switched Soft Actor-Critic Models for Real Roads
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3153805
– volume: 13
  start-page: 536
  year: 2006
  ident: ref_16
  article-title: Active Control of Structures Using Time Delayed Positive Feedback Proportional Control Designs
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.128
– volume: 11
  start-page: 21068
  year: 2023
  ident: ref_31
  article-title: Sampled-Data L-2 - L-8 Filter-Based Fuzzy Control for Active Suspensions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3250643
– volume: 15
  start-page: 1
  year: 2023
  ident: ref_7
  article-title: Car Following Models for Alleviating the Degeneration of CACC Function of CAVs in Weak Platoon Intensity
  publication-title: Transp. Lett.
– ident: ref_24
  doi: 10.1177/1045389X231157353
– ident: ref_58
– ident: ref_54
  doi: 10.23919/ACC53348.2022.9867835
– volume: 137
  start-page: 105584
  year: 2023
  ident: ref_22
  article-title: Model Predictive Control of a Semi-Active Suspension with a Shift Delay Compensation Using Preview Road Information
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2023.105584
– volume: 132
  start-page: 441
  year: 2006
  ident: ref_45
  article-title: A Novel Hysteretic Model for Magnetorheological Fluid Dampers and Parameter Identification Using Particle Swarm Optimization
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2006.03.015
– volume: 8
  start-page: 9978
  year: 2020
  ident: ref_35
  article-title: Semi-Active Suspension Control Based on Deep Reinforcement Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964116
– volume: 129
  start-page: 382
  year: 2006
  ident: ref_47
  article-title: Mixed Sky-Hook and ADD: Approaching the Filtering Limits of a Semi-Active Suspension
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.2745846
– volume: 19
  start-page: 983
  year: 2017
  ident: ref_13
  article-title: Approximation Optimal Vibration for Networked Nonlinear Vehicle Active Suspension with Actuator Time Delay
  publication-title: Asian J. Control.
  doi: 10.1002/asjc.1419
– ident: ref_48
– ident: ref_43
  doi: 10.3390/app12063078
– volume: 16
  start-page: 2663
  year: 2015
  ident: ref_17
  article-title: Finite-Time Stabilization for Vehicle Active Suspension Systems with Hard Constraints
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2414657
– volume: 33
  start-page: 6052
  year: 2023
  ident: ref_28
  article-title: State Observer-Based Predictive Proportional-Integral Tracking Control for Fuzzy Input Time-Delay Systems
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.6681
– volume: 67
  start-page: 4877
  year: 2020
  ident: ref_52
  article-title: Regionless Explicit Model Predictive Control of Active Suspension Systems with Preview
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2926056
– volume: 61
  start-page: 436
  year: 2014
  ident: ref_21
  article-title: Output-Feedback-Based Hınfty Control for Vehicle Suspension Systems with Control Delay
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2242418
– volume: 237
  start-page: 335
  year: 2023
  ident: ref_30
  article-title: Multi-Objective H-2/H-8 Control of Uncertain Active Suspension Systems with Interval Time-Varying Delay
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
– ident: ref_34
  doi: 10.3390/app10228060
– volume: 11
  start-page: 1578
  year: 2017
  ident: ref_4
  article-title: Neural Network-Based Output-Feedback Control for Stochastic High-Order Non-Linear Time-Delay Systems with Application to Robot System
  publication-title: IET Control. Theory Appl.
  doi: 10.1049/iet-cta.2016.1139
– volume: 17
  start-page: 1
  year: 2023
  ident: ref_11
  article-title: Comparison of Vehicle Suspension Dynamic Responses for Simplified and Advanced Adjustable Damper Models with Friction, Hysteresis and Actuation Delay for Different Comfort-Oriented Control Strategies
  publication-title: Acta Mech. Autom.
– volume: 149
  start-page: 04023066
  year: 2023
  ident: ref_6
  article-title: A Planning Control Strategy Based on Dynamic Safer Buffer to Avoid Traffic Collisions in an Emergency for CAVs at Nonsignalized Intersections
  publication-title: J. Transp. Eng. Part A Syst.
  doi: 10.1061/JTEPBS.TEENG-7478
– volume: 180
  start-page: 17
  year: 2003
  ident: ref_2
  article-title: Effects of Time Delayed Position Feedback on a van Der Pol–Duffing Oscillator
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/S0167-2789(03)00049-6
– volume: 72
  start-page: 327
  year: 2023
  ident: ref_41
  article-title: Deep Reinforcement Learning of Semi-Active Suspension Controller for Vehicle Ride Comfort
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3207510
– volume: 450
  start-page: 119
  year: 2021
  ident: ref_57
  article-title: Delay-Aware Model-Based Reinforcement Learning for Continuous Control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.015
– volume: 25
  start-page: 266
  year: 1980
  ident: ref_19
  article-title: Feedback Stabilization of Linear Systems with Delayed Control
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/TAC.1980.1102288
– volume: 24
  start-page: 6874
  year: 2023
  ident: ref_5
  article-title: The Upper Bounds of Cellular Vehicle-to-Vehicle Communication Latency for Platoon-Based Autonomous Driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3263239
– volume: 16
  start-page: 1417
  year: 2022
  ident: ref_39
  article-title: A Reinforcement Learning Backstepping-Based Control Design for a Full Vehicle Active Macpherson Suspension System
  publication-title: IET Control Theory Appl.
  doi: 10.1049/cth2.12317
– volume: 38
  start-page: 1059
  year: 2022
  ident: ref_42
  article-title: A Hierarchical Framework for Improving Ride Comfort of Autonomous Vehicles via Deep Reinforcement Learning with External Knowledge
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12934
– volume: 16
  start-page: 1959
  year: 2023
  ident: ref_8
  article-title: An Optimal Model for Enhancing Network Lifetime and Cluster Head Selection Using Hybrid Snake Whale Optimization
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-023-01487-9
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_49
  article-title: Human-Level Control through Deep Reinforcement Learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 96
  start-page: 1
  year: 2023
  ident: ref_23
  article-title: Experimental Research on Vehicle Active Suspension Based on Time-Delay Control
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2023.2284254
– volume: 236
  start-page: 3060
  year: 2022
  ident: ref_33
  article-title: Driver-like Decision-Making Method for Vehicle Longitudinal Autonomous Driving Based on Deep Reinforcement Learning
  publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
  doi: 10.1177/09544070211063081
– volume: 170
  start-page: 10
  year: 2016
  ident: ref_14
  article-title: Optimal Vibration Control of Nonlinear Systems with Multiple Time-Delays: An Application to Vehicle Suspension
  publication-title: Integr. Ferroelectr.
  doi: 10.1080/10584587.2016.1165574
– volume: 52
  start-page: 4021
  year: 2022
  ident: ref_38
  article-title: Neural Network Adaptive Output-Feedback Optimal Control for Active Suspension Systems
  publication-title: IEEE Trans. Syst. Man Cybern Syst.
  doi: 10.1109/TSMC.2021.3089768
– volume: 2022
  start-page: 7844719
  year: 2022
  ident: ref_56
  article-title: Application Research of Time Delay System Control in Mobile Sensor Networks Based on Deep Reinforcement Learning
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 15
  start-page: 16878132231180480
  year: 2023
  ident: ref_44
  article-title: A New Approach to Controlling an Active Suspension System Based on Reinforcement Learning
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/16878132231180480
– volume: 706–708
  start-page: 901
  year: 2013
  ident: ref_1
  article-title: PID Control Strategy of Vehicle Active Suspension Based on Considering Time-Delay and Stability
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.706-708.901
– volume: 14
  start-page: 51
  year: 2016
  ident: ref_15
  article-title: Constrained Model Predictive Control for Time-Varying Delay Systems: Application to an Active Car Suspension
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-015-2009-4
– volume: 10
  start-page: 208
  year: 2022
  ident: ref_25
  article-title: Adaptive Control for the Nonlinear Suspension Systems with Stochastic Disturbances and Unknown Time Delay
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2021.1949403
– ident: ref_36
  doi: 10.1177/10775463231160807
– ident: ref_37
  doi: 10.3390/en16041677
– ident: ref_46
  doi: 10.3390/app10248892
– volume: 47
  start-page: 885
  year: 2017
  ident: ref_3
  article-title: Topology Identification and Module–Phase Synchronization of Neural Network with Time Delay
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2523935
– volume: 118
  start-page: 1423
  year: 1992
  ident: ref_18
  article-title: Aseismic Hybrid Control of Nonlinear and Hysteretic Structures I
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1992)118:7(1423)
– volume: 50
  start-page: 4171
  year: 2020
  ident: ref_55
  article-title: Reinforcement Learning Neural Network-Based Adaptive Control for State and Input Time-Delayed Wheeled Mobile Robots
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2870724
– volume: 53
  start-page: 3255
  year: 2023
  ident: ref_26
  article-title: A New Optimization Control Policy for Fuzzy Vehicle Suspension Systems Under Membership Functions Online Learning
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3224739
– ident: ref_12
  doi: 10.1007/s40815-023-01549-3
SSID ssj0023338
Score 2.4623444
Snippet The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7827
SubjectTerms active suspension
Actuators
Algorithms
Control algorithms
Controllers
Decision making
Deep learning
deep reinforcement learning
Design
Machine learning
Roads & highways
Robust control
Simulation
suspension control
uncertain time delay
Vehicles
Working conditions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCAqIQKkMQoJL1MR2nPFxaak4oAoBlXqz_GxX2mZX-0Di3zN2ktUuIHHpNZ5Yk5mxZyYef0PIOy4sNCxCaWOAUggrSwielY5H1oYE6GZy15Iv7cUFXF2przutvlJNWA8P3AvuxCoppK1jLeoojJVGgRU-ega1c7XLoVHVqjGZGlItjplXjyPEMak_WWEUA-gL2z3vk0H6_96K_yyP3PE354_JoyFQpJOewSfkXugOycMd-MCnZDGWzdF5R89CWNBvIQOhuvzPjw7Yqdf0tK9Hp5PZ9Xw5Xd_cUiSik7zV0e-b1SJVseMcY_fO9M4lWkOuFqDplghOPzO_npHL808_Tj-XQweF0gmQ6zKdqXnLITruuZXgmZKK86BA1Mw1DCUrQ2MMF1FJDwpMIx0zpm2CsxVE_pwcdPMuvCC04VYYxWMD3IjK1iZW0oBzPmDMB74qyIdRstoN8OKpy8VMY5qRlKC3SijI2y3posfU-BfRx6SeLUGCwc4P0Dj0YBz6f8ZRkPdJuTrJHplxZrhzgJ-UYK_0pEXXjPm4ZAU5GvWvh1W80gwk7k9SKijIm-0wrr90qGK6MN8kmjYlpVwgx7BnN3us749005uM5I3BbTq4VS_v4mNfkQcMLb8vgDsiB-vlJrwm993P9XS1PM7r4zdchxnP
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on Deep Reinforcement Learning Control Algorithm for Active Suspension Considering Uncertain Time Delay
URI https://www.proquest.com/docview/2869636698
https://www.proquest.com/docview/2870144347
https://pubmed.ncbi.nlm.nih.gov/PMC10538169
https://doaj.org/article/b9646b1f141f4ab6a98b4dfd281cc1ca
Volume 23
WOSCitedRecordID wos001072602900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5QAH3hWBEhmEBJdVs7bXOz6htKQCiUZRoVI4rWyvnVZKN2k2QeLCb2fs7KYNIC5cfLBn_ViPxzP2-BtC3nBhIGMeEuMdJEIYmYArWWK5Z7kLgG46Ri35nA-HMB6rUXPgVjdula1MjIK6nNlwRn7AQCKvSKng_fwqCVGjwu1qE0LjNtkNYbMDn-fja4OLo_21RhPiaNof1KjLAO6I-dYeFKH6_xTIvztJ3th1jh_8b38fkvuNvkn7awZ5RG656jG5dwOF8AmZt953dFbRD87N6amLeKo2Hh3SBoJ1Qo_Wbu20P51gS8vzS4pEtB8lJv2yqufBGR7raIOAhm_OkKmi0wENj02w-qn-8ZScHQ--Hn1MmkAMiRUgl0m4misNB295yY2EkimpOHcKRMpsxoQ00mVac-GVLEGBzqRlWueZs6YHnu-RnWpWuWeEZtwIrbjPgGvRM6n2PanB2tKh6ghlr0PetVNT2AalPATLmBZorYRZLDaz2CGvN6TzNTTH34gOw_xuCAKadsyYLSZFszgLoyQOIfWpSL3QRmoFRpS-ZJBam1rdIW8DdxTh32NnrG6eLuCQAnpW0c9xh0ezXrIO2W-5oWiEQV1cs0KHvNoU4zIOdzO6crNVoMmDbcsF9hi2GG-r69sl1cV5BARHHTnc_6rn_279BbnLcFGsPeT2yc5ysXIvyR37fXlRL7px6cQUumT3cDAcnXbjCQWmJz8HmDf6dDL69gs5oi0_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwn2wB0RGGAQCF6iNbbj2A8IlY1p00qFYJP6FmzH7iZ1aekFtD_Fb-Q4l24FxNseeG1OXDv5zi0-_g7AS8aNTKmXsfFOxpwbEUtX0NgyTzMXCN101bWkl_X7cjBQn9bgZ3sWJpRVtjaxMtTF2IZv5FtUCsSKEEq-m3yLQ9eosLvattCoYXHgzn5gyjZ7u7-D7_cVpbsfDrf34qarQGy5FPM47DMVhklvWcGMkAVVArN6pyRPqE0pF0a4VGvGvRKFVFKnwlKts9RZ05Ge4bhX4Cra8Swke9ngPMFjmO_V7EWMqc7WDGMniR44W_F5VWuAPx3A70WZF7zc7q3_7fnchptNPE26tQLcgTVX3oWNCyyL92DSVheScUl2nJuQz67ii7XVp1HSUMwOyXZdtk-6oyGubH58SlCIdCuPQL4sZpNQ7I9jtE1Owz1HqDRVUQUJh2lw-JE-uw9Hl7LkB7Bejkv3EEjKDNeK-VQyzTsm0b4jtLS2cBgay6ITwZsWCrltWNhDM5BRjtlYQE2-RE0EL5aik5p65G9C7wOelgKBLbz6YTwd5o3xyY0SuITEJzzxXBuhlTS88AWVibWJ1RG8DmjMw7PHyVjdHM3AJQV2sLybYQSTYKBPI9hs0Zc3xm6Wn0MvgufLy2imwt6TLt14EWSykLszjjOWK0BfmfrqlfLkuCI8xxwg7G-rR__-92dwfe_wYy_v7fcPHsMNigpZVwNuwvp8unBP4Jr9Pj-ZTZ9Wakvg62XrwS-MLYNL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCE48EYEChgEgssqWdvrtQ8IhYaKqCWKgErltNheO60UNiEPUP8av47xPkIDiFsPXLOzjr37zWs9_gbgKeNGJtTLyHgnI86NiKTLaWSZp6kLhG667FpykA6H8uhIjbbgR3MWJpRVNjaxNNT51IZv5B0qBWJFCCU7vi6LGPX3Xs2-RqGDVNhpbdppVBDZd6ffMX1bvBz08V0_o3Tvzcfdt1HdYSCyXIplFPaccsOktyxnRsicKoEZvlOSx9QmlAsjXKI1416JXCqpE2Gp1mnirOlKz3DcC7CNITmnLdgeDd6NPq3TPYbZX8VlxJjqdhYYSUn0x-mGBywbBfzpDn4v0Tzj8_au_c9P6zpcrSNt0qtU4wZsueImXDnDv3gLZk3dIZkWpO_cjLx3JZOsLT-akpp8dkx2q4J-0puMcWXL4y8EhUiv9BXkw2oxC8cAcIym_Wm45xDVqSy3IOGYDQ4_0ae34fBclnwHWsW0cHeBJMxwrZhPJNO8a2Ltu0JLa3OHQbPMu2140cAiszU_e2gTMskwTwsIytYIasOTteisIiX5m9DrgK21QOARL3-YzsdZbZYyowQuIfYxjz3XRmglDc99TmVsbWx1G54HZGbh2eNkrK4PbeCSAm9Y1ksxtokxBaBt2GmQmNVmcJH9gmEbHq8vowELu1K6cNNVkElDVs84zlhugH5j6ptXipPjkgods4Ow863u_fvfH8ElhH92MBju34fLFHWzKhPcgdZyvnIP4KL9tjxZzB_WOkzg83krwk8kCo2a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Deep+Reinforcement+Learning+Control+Algorithm+for+Active+Suspension+Considering+Uncertain+Time+Delay&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yang&rft.au=Wang%2C+Cheng&rft.au=Zhao%2C+Shijie&rft.au=Guo%2C+Konghui&rft.date=2023-09-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft_id=info:doi/10.3390%2Fs23187827&rft_id=info%3Apmid%2F37765884&rft.externalDocID=PMC10538169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon