Research on Deep Reinforcement Learning Control Algorithm for Active Suspension Considering Uncertain Time Delay
The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 23; číslo 18; s. 7827 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2023
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm’s potential for practical application. |
|---|---|
| AbstractList | The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm’s potential for practical application. The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm's potential for practical application.The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study presents a novel active suspension control algorithm based on deep reinforcement learning (DRL) that specifically addresses the issue of uncertain delay. In this approach, a twin-delayed deep deterministic policy gradient (TD3) algorithm with system delay is employed to obtain the optimal control policy by iteratively solving the dynamic model of the active suspension system, considering the delay. Furthermore, three different operating conditions were designed for simulation to evaluate the control performance: deterministic delay, semi-regular delay, and uncertain delay. The experimental results demonstrate that the proposed algorithm achieves excellent control performance under various operating conditions. Compared to passive suspension, the optimization of body vertical acceleration is improved by more than 30%, and the proposed algorithm effectively mitigates body vibration in the low frequency range. It consistently maintains a more than 30% improvement in ride comfort optimization even under the most severe operating conditions and at different speeds, demonstrating the algorithm's potential for practical application. |
| Audience | Academic |
| Author | Wang, Yang Wang, Cheng Guo, Konghui Zhao, Shijie |
| AuthorAffiliation | 2 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China 1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China |
| AuthorAffiliation_xml | – name: 1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China – name: 2 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China |
| Author_xml | – sequence: 1 givenname: Yang surname: Wang fullname: Wang, Yang – sequence: 2 givenname: Cheng surname: Wang fullname: Wang, Cheng – sequence: 3 givenname: Shijie surname: Zhao fullname: Zhao, Shijie – sequence: 4 givenname: Konghui surname: Guo fullname: Guo, Konghui |
| BookMark | eNptkk1r3DAQhkVJaZJtD_0Hhl7awybWhyX5VJbtRwILhTQ5i7E83tViS65kB_Lvq-2G0ISgg8TMM69Go_ecnPjgkZCPtLzgvC4vE-NUK83UG3JGBRNLzVh58t_5lJyntC9LxjnX78gpV0pWWoszMt5gQoh2VwRffEMcixt0vgvR4oB-KjY56Z3fFuvgpxj6YtVvQ3TTbigyVKzs5O6x-D2nEX1yWSNzybUYDzV33mKcwPni1g2Y5Xt4eE_edtAn_PC4L8jdj--366vl5tfP6_Vqs7RCy2nJS6HahuvO8pY3UresljXnWGtBma2YkI3ECoCLrpatrjVU0jIAVaFtSt3xBbk-6rYB9maMboD4YAI48y8Q4tZAnJzt0TS1zHK0o4J2AhoJtW5E27VMU2uphaz19ag1zs2Arc2DidA_E32e8W5ntuHe0LLimubGF-Tzo0IMf2ZMkxlcstj34DHMyTCtSioEFyqjn16g-zBHn2eVKVlLLmWtM3VxpLaQX3D4sXyxzavFwdlsj87l-EopqilnkuWCL8cCG0NKEbun9mlpDi4yTy7K7OUL1roJJnewALj-lYq_JejKQw |
| CitedBy_id | crossref_primary_10_1007_s42417_025_01796_8 crossref_primary_10_1109_ACCESS_2024_3445663 crossref_primary_10_21595_jve_2025_24982 crossref_primary_10_1016_j_engappai_2024_108630 crossref_primary_10_1016_j_heliyon_2024_e39077 crossref_primary_10_1088_1361_665X_addf22 crossref_primary_10_1016_j_ymssp_2025_112645 crossref_primary_10_3390_app14167066 crossref_primary_10_1016_j_aei_2023_102328 crossref_primary_10_1016_j_arcontrol_2024_100974 |
| Cites_doi | 10.1080/00051144.2022.2059205 10.1080/21642583.2023.2188406 10.1109/TIE.2022.3231281 10.1016/j.jsv.2006.09.022 10.1109/CVCI54083.2021.9661158 10.1609/aaai.v30i1.10295 10.1002/acs.3590 10.1109/TIE.2022.3153805 10.1002/stc.128 10.1109/ACCESS.2023.3250643 10.1177/1045389X231157353 10.23919/ACC53348.2022.9867835 10.1016/j.conengprac.2023.105584 10.1016/j.sna.2006.03.015 10.1109/ACCESS.2020.2964116 10.1115/1.2745846 10.1002/asjc.1419 10.3390/app12063078 10.1109/TITS.2015.2414657 10.1002/rnc.6681 10.1109/TIE.2019.2926056 10.1109/TIE.2013.2242418 10.3390/app10228060 10.1049/iet-cta.2016.1139 10.1061/JTEPBS.TEENG-7478 10.1016/S0167-2789(03)00049-6 10.1109/TVT.2022.3207510 10.1016/j.neucom.2021.04.015 10.1109/TAC.1980.1102288 10.1109/TITS.2023.3263239 10.1049/cth2.12317 10.1111/mice.12934 10.1007/s12083-023-01487-9 10.1038/nature14236 10.1080/00207179.2023.2284254 10.1177/09544070211063081 10.1080/10584587.2016.1165574 10.1109/TSMC.2021.3089768 10.1177/16878132231180480 10.4028/www.scientific.net/AMR.706-708.901 10.1007/s12555-015-2009-4 10.1080/21642583.2021.1949403 10.1177/10775463231160807 10.3390/en16041677 10.3390/app10248892 10.1109/TSMC.2016.2523935 10.1061/(ASCE)0733-9399(1992)118:7(1423) 10.1109/TSMC.2018.2870724 10.1109/TSMC.2022.3224739 10.1007/s40815-023-01549-3 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23187827 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b9646b1f141f4ab6a98b4dfd281cc1ca PMC10538169 A771813262 10_3390_s23187827 |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation Funded Project grantid: 2022M720433 – fundername: The National Key Research and Development Program of China grantid: 2022YFB3206602 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c486t-3047db38fc3d3b68d296933e98412c5246b6e5aa34f96d898a56c2aa75ecb08f3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072602900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:09 EST 2025 Tue Nov 04 02:06:25 EST 2025 Wed Oct 01 13:18:48 EDT 2025 Tue Oct 07 07:11:39 EDT 2025 Tue Nov 04 18:36:22 EST 2025 Tue Nov 18 21:41:05 EST 2025 Sat Nov 29 07:16:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-3047db38fc3d3b68d296933e98412c5246b6e5aa34f96d898a56c2aa75ecb08f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2869636698?pq-origsite=%requestingapplication% |
| PMID | 37765884 |
| PQID | 2869636698 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b9646b1f141f4ab6a98b4dfd281cc1ca pubmedcentral_primary_oai_pubmedcentral_nih_gov_10538169 proquest_miscellaneous_2870144347 proquest_journals_2869636698 gale_infotracacademiconefile_A771813262 crossref_primary_10_3390_s23187827 crossref_citationtrail_10_3390_s23187827 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lei (ref_14) 2016; 170 ref_50 Yan (ref_1) 2013; 706–708 Ma (ref_30) 2023; 237 Theunissen (ref_52) 2020; 67 Li (ref_55) 2020; 50 Lee (ref_41) 2023; 72 ref_58 ref_12 Du (ref_20) 2007; 301 ref_54 ref_53 Yong (ref_40) 2023; 70 ref_51 Klockiewicz (ref_11) 2023; 17 Bououden (ref_15) 2016; 14 Lee (ref_31) 2023; 11 Reddy (ref_9) 2023; 11 Zhu (ref_56) 2022; 2022 Dridi (ref_44) 2023; 15 Mnih (ref_49) 2015; 518 Li (ref_38) 2022; 52 Savaresi (ref_47) 2006; 129 Kwok (ref_45) 2006; 132 Xu (ref_2) 2003; 180 ref_24 Du (ref_42) 2022; 38 Wang (ref_25) 2022; 10 Samiayya (ref_8) 2023; 16 Xie (ref_27) 2023; 37 Han (ref_13) 2017; 19 Wang (ref_10) 2023; 70 Li (ref_6) 2023; 149 Lin (ref_39) 2022; 16 Yang (ref_18) 1992; 118 Zhang (ref_26) 2023; 53 Sakthivel (ref_28) 2023; 33 Kim (ref_22) 2023; 137 ref_36 ref_34 ref_32 ref_37 Chen (ref_57) 2021; 450 Kwon (ref_19) 1980; 25 Liu (ref_35) 2020; 8 Gao (ref_33) 2022; 236 Pan (ref_17) 2015; 16 Min (ref_4) 2017; 11 Chen (ref_5) 2023; 24 ref_46 ref_43 Gu (ref_29) 2022; 63 Zhang (ref_3) 2017; 47 Xu (ref_7) 2023; 15 Udwadia (ref_16) 2006; 13 Li (ref_21) 2014; 61 Wu (ref_23) 2023; 96 ref_48 |
| References_xml | – volume: 63 start-page: 627 year: 2022 ident: ref_29 article-title: A Novel Robust Finite Time Control Approach for a Nonlinear Disturbed Quarter-Vehicle Suspension System with Time Delay Actuation publication-title: Automatika doi: 10.1080/00051144.2022.2059205 – volume: 11 start-page: 2188406 year: 2023 ident: ref_9 article-title: Hybrid AC/DC Control Techniques with Improved Harmonic Conditions Using DBN Based Fuzzy Controller and Compensator Modules publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2023.2188406 – volume: 70 start-page: 11401 year: 2023 ident: ref_10 article-title: Voltage Balancing of Series-Connected SiC Mosfets with Adaptive-Impedance Self-Powered Gate Drivers publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2022.3231281 – volume: 301 start-page: 236 year: 2007 ident: ref_20 article-title: H∞ Control of Active Vehicle Suspensions with Actuator Time Delay publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2006.09.022 – ident: ref_32 – ident: ref_53 doi: 10.1109/CVCI54083.2021.9661158 – ident: ref_50 doi: 10.1609/aaai.v30i1.10295 – ident: ref_51 – volume: 37 start-page: 1608 year: 2023 ident: ref_27 article-title: Robust Fuzzy Fault Tolerant Control for Nonlinear Active Suspension Systems via Adaptive Hybrid Triggered Scheme publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.3590 – volume: 70 start-page: 824 year: 2023 ident: ref_40 article-title: Suspension Control Strategies Using Switched Soft Actor-Critic Models for Real Roads publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2022.3153805 – volume: 13 start-page: 536 year: 2006 ident: ref_16 article-title: Active Control of Structures Using Time Delayed Positive Feedback Proportional Control Designs publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.128 – volume: 11 start-page: 21068 year: 2023 ident: ref_31 article-title: Sampled-Data L-2 - L-8 Filter-Based Fuzzy Control for Active Suspensions publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3250643 – volume: 15 start-page: 1 year: 2023 ident: ref_7 article-title: Car Following Models for Alleviating the Degeneration of CACC Function of CAVs in Weak Platoon Intensity publication-title: Transp. Lett. – ident: ref_24 doi: 10.1177/1045389X231157353 – ident: ref_58 – ident: ref_54 doi: 10.23919/ACC53348.2022.9867835 – volume: 137 start-page: 105584 year: 2023 ident: ref_22 article-title: Model Predictive Control of a Semi-Active Suspension with a Shift Delay Compensation Using Preview Road Information publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2023.105584 – volume: 132 start-page: 441 year: 2006 ident: ref_45 article-title: A Novel Hysteretic Model for Magnetorheological Fluid Dampers and Parameter Identification Using Particle Swarm Optimization publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.03.015 – volume: 8 start-page: 9978 year: 2020 ident: ref_35 article-title: Semi-Active Suspension Control Based on Deep Reinforcement Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964116 – volume: 129 start-page: 382 year: 2006 ident: ref_47 article-title: Mixed Sky-Hook and ADD: Approaching the Filtering Limits of a Semi-Active Suspension publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.2745846 – volume: 19 start-page: 983 year: 2017 ident: ref_13 article-title: Approximation Optimal Vibration for Networked Nonlinear Vehicle Active Suspension with Actuator Time Delay publication-title: Asian J. Control. doi: 10.1002/asjc.1419 – ident: ref_48 – ident: ref_43 doi: 10.3390/app12063078 – volume: 16 start-page: 2663 year: 2015 ident: ref_17 article-title: Finite-Time Stabilization for Vehicle Active Suspension Systems with Hard Constraints publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2414657 – volume: 33 start-page: 6052 year: 2023 ident: ref_28 article-title: State Observer-Based Predictive Proportional-Integral Tracking Control for Fuzzy Input Time-Delay Systems publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.6681 – volume: 67 start-page: 4877 year: 2020 ident: ref_52 article-title: Regionless Explicit Model Predictive Control of Active Suspension Systems with Preview publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2926056 – volume: 61 start-page: 436 year: 2014 ident: ref_21 article-title: Output-Feedback-Based Hınfty Control for Vehicle Suspension Systems with Control Delay publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2242418 – volume: 237 start-page: 335 year: 2023 ident: ref_30 article-title: Multi-Objective H-2/H-8 Control of Uncertain Active Suspension Systems with Interval Time-Varying Delay publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. – ident: ref_34 doi: 10.3390/app10228060 – volume: 11 start-page: 1578 year: 2017 ident: ref_4 article-title: Neural Network-Based Output-Feedback Control for Stochastic High-Order Non-Linear Time-Delay Systems with Application to Robot System publication-title: IET Control. Theory Appl. doi: 10.1049/iet-cta.2016.1139 – volume: 17 start-page: 1 year: 2023 ident: ref_11 article-title: Comparison of Vehicle Suspension Dynamic Responses for Simplified and Advanced Adjustable Damper Models with Friction, Hysteresis and Actuation Delay for Different Comfort-Oriented Control Strategies publication-title: Acta Mech. Autom. – volume: 149 start-page: 04023066 year: 2023 ident: ref_6 article-title: A Planning Control Strategy Based on Dynamic Safer Buffer to Avoid Traffic Collisions in an Emergency for CAVs at Nonsignalized Intersections publication-title: J. Transp. Eng. Part A Syst. doi: 10.1061/JTEPBS.TEENG-7478 – volume: 180 start-page: 17 year: 2003 ident: ref_2 article-title: Effects of Time Delayed Position Feedback on a van Der Pol–Duffing Oscillator publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/S0167-2789(03)00049-6 – volume: 72 start-page: 327 year: 2023 ident: ref_41 article-title: Deep Reinforcement Learning of Semi-Active Suspension Controller for Vehicle Ride Comfort publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3207510 – volume: 450 start-page: 119 year: 2021 ident: ref_57 article-title: Delay-Aware Model-Based Reinforcement Learning for Continuous Control publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.015 – volume: 25 start-page: 266 year: 1980 ident: ref_19 article-title: Feedback Stabilization of Linear Systems with Delayed Control publication-title: IEEE Trans. Autom. Control. doi: 10.1109/TAC.1980.1102288 – volume: 24 start-page: 6874 year: 2023 ident: ref_5 article-title: The Upper Bounds of Cellular Vehicle-to-Vehicle Communication Latency for Platoon-Based Autonomous Driving publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3263239 – volume: 16 start-page: 1417 year: 2022 ident: ref_39 article-title: A Reinforcement Learning Backstepping-Based Control Design for a Full Vehicle Active Macpherson Suspension System publication-title: IET Control Theory Appl. doi: 10.1049/cth2.12317 – volume: 38 start-page: 1059 year: 2022 ident: ref_42 article-title: A Hierarchical Framework for Improving Ride Comfort of Autonomous Vehicles via Deep Reinforcement Learning with External Knowledge publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12934 – volume: 16 start-page: 1959 year: 2023 ident: ref_8 article-title: An Optimal Model for Enhancing Network Lifetime and Cluster Head Selection Using Hybrid Snake Whale Optimization publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-023-01487-9 – volume: 518 start-page: 529 year: 2015 ident: ref_49 article-title: Human-Level Control through Deep Reinforcement Learning publication-title: Nature doi: 10.1038/nature14236 – volume: 96 start-page: 1 year: 2023 ident: ref_23 article-title: Experimental Research on Vehicle Active Suspension Based on Time-Delay Control publication-title: Int. J. Control doi: 10.1080/00207179.2023.2284254 – volume: 236 start-page: 3060 year: 2022 ident: ref_33 article-title: Driver-like Decision-Making Method for Vehicle Longitudinal Autonomous Driving Based on Deep Reinforcement Learning publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng. doi: 10.1177/09544070211063081 – volume: 170 start-page: 10 year: 2016 ident: ref_14 article-title: Optimal Vibration Control of Nonlinear Systems with Multiple Time-Delays: An Application to Vehicle Suspension publication-title: Integr. Ferroelectr. doi: 10.1080/10584587.2016.1165574 – volume: 52 start-page: 4021 year: 2022 ident: ref_38 article-title: Neural Network Adaptive Output-Feedback Optimal Control for Active Suspension Systems publication-title: IEEE Trans. Syst. Man Cybern Syst. doi: 10.1109/TSMC.2021.3089768 – volume: 2022 start-page: 7844719 year: 2022 ident: ref_56 article-title: Application Research of Time Delay System Control in Mobile Sensor Networks Based on Deep Reinforcement Learning publication-title: Wirel. Commun. Mob. Comput. – volume: 15 start-page: 16878132231180480 year: 2023 ident: ref_44 article-title: A New Approach to Controlling an Active Suspension System Based on Reinforcement Learning publication-title: Adv. Mech. Eng. doi: 10.1177/16878132231180480 – volume: 706–708 start-page: 901 year: 2013 ident: ref_1 article-title: PID Control Strategy of Vehicle Active Suspension Based on Considering Time-Delay and Stability publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.706-708.901 – volume: 14 start-page: 51 year: 2016 ident: ref_15 article-title: Constrained Model Predictive Control for Time-Varying Delay Systems: Application to an Active Car Suspension publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-015-2009-4 – volume: 10 start-page: 208 year: 2022 ident: ref_25 article-title: Adaptive Control for the Nonlinear Suspension Systems with Stochastic Disturbances and Unknown Time Delay publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2021.1949403 – ident: ref_36 doi: 10.1177/10775463231160807 – ident: ref_37 doi: 10.3390/en16041677 – ident: ref_46 doi: 10.3390/app10248892 – volume: 47 start-page: 885 year: 2017 ident: ref_3 article-title: Topology Identification and Module–Phase Synchronization of Neural Network with Time Delay publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2523935 – volume: 118 start-page: 1423 year: 1992 ident: ref_18 article-title: Aseismic Hybrid Control of Nonlinear and Hysteretic Structures I publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1992)118:7(1423) – volume: 50 start-page: 4171 year: 2020 ident: ref_55 article-title: Reinforcement Learning Neural Network-Based Adaptive Control for State and Input Time-Delayed Wheeled Mobile Robots publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2870724 – volume: 53 start-page: 3255 year: 2023 ident: ref_26 article-title: A New Optimization Control Policy for Fuzzy Vehicle Suspension Systems Under Membership Functions Online Learning publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3224739 – ident: ref_12 doi: 10.1007/s40815-023-01549-3 |
| SSID | ssj0023338 |
| Score | 2.4623444 |
| Snippet | The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7827 |
| SubjectTerms | active suspension Actuators Algorithms Control algorithms Controllers Decision making Deep learning deep reinforcement learning Design Machine learning Roads & highways Robust control Simulation suspension control uncertain time delay Vehicles Working conditions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCAqIQKkMQoJL1MR2nPFxaak4oAoBlXqz_GxX2mZX-0Di3zN2ktUuIHHpNZ5Yk5mxZyYef0PIOy4sNCxCaWOAUggrSwielY5H1oYE6GZy15Iv7cUFXF2przutvlJNWA8P3AvuxCoppK1jLeoojJVGgRU-ega1c7XLoVHVqjGZGlItjplXjyPEMak_WWEUA-gL2z3vk0H6_96K_yyP3PE354_JoyFQpJOewSfkXugOycMd-MCnZDGWzdF5R89CWNBvIQOhuvzPjw7Yqdf0tK9Hp5PZ9Xw5Xd_cUiSik7zV0e-b1SJVseMcY_fO9M4lWkOuFqDplghOPzO_npHL808_Tj-XQweF0gmQ6zKdqXnLITruuZXgmZKK86BA1Mw1DCUrQ2MMF1FJDwpMIx0zpm2CsxVE_pwcdPMuvCC04VYYxWMD3IjK1iZW0oBzPmDMB74qyIdRstoN8OKpy8VMY5qRlKC3SijI2y3posfU-BfRx6SeLUGCwc4P0Dj0YBz6f8ZRkPdJuTrJHplxZrhzgJ-UYK_0pEXXjPm4ZAU5GvWvh1W80gwk7k9SKijIm-0wrr90qGK6MN8kmjYlpVwgx7BnN3us749005uM5I3BbTq4VS_v4mNfkQcMLb8vgDsiB-vlJrwm993P9XS1PM7r4zdchxnP priority: 102 providerName: Directory of Open Access Journals |
| Title | Research on Deep Reinforcement Learning Control Algorithm for Active Suspension Considering Uncertain Time Delay |
| URI | https://www.proquest.com/docview/2869636698 https://www.proquest.com/docview/2870144347 https://pubmed.ncbi.nlm.nih.gov/PMC10538169 https://doaj.org/article/b9646b1f141f4ab6a98b4dfd281cc1ca |
| Volume | 23 |
| WOSCitedRecordID | wos001072602900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5QAH3hWBEhmEBJdVs7bXOz6htKQCiUZRoVI4rWyvnVZKN2k2QeLCb2fs7KYNIC5cfLBn_ViPxzP2-BtC3nBhIGMeEuMdJEIYmYArWWK5Z7kLgG46Ri35nA-HMB6rUXPgVjdula1MjIK6nNlwRn7AQCKvSKng_fwqCVGjwu1qE0LjNtkNYbMDn-fja4OLo_21RhPiaNof1KjLAO6I-dYeFKH6_xTIvztJ3th1jh_8b38fkvuNvkn7awZ5RG656jG5dwOF8AmZt953dFbRD87N6amLeKo2Hh3SBoJ1Qo_Wbu20P51gS8vzS4pEtB8lJv2yqufBGR7raIOAhm_OkKmi0wENj02w-qn-8ZScHQ--Hn1MmkAMiRUgl0m4misNB295yY2EkimpOHcKRMpsxoQ00mVac-GVLEGBzqRlWueZs6YHnu-RnWpWuWeEZtwIrbjPgGvRM6n2PanB2tKh6ghlr0PetVNT2AalPATLmBZorYRZLDaz2CGvN6TzNTTH34gOw_xuCAKadsyYLSZFszgLoyQOIfWpSL3QRmoFRpS-ZJBam1rdIW8DdxTh32NnrG6eLuCQAnpW0c9xh0ezXrIO2W-5oWiEQV1cs0KHvNoU4zIOdzO6crNVoMmDbcsF9hi2GG-r69sl1cV5BARHHTnc_6rn_279BbnLcFGsPeT2yc5ysXIvyR37fXlRL7px6cQUumT3cDAcnXbjCQWmJz8HmDf6dDL69gs5oi0_ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwn2wB0RGGAQCF6iNbbj2A8IlY1p00qFYJP6FmzH7iZ1aekFtD_Fb-Q4l24FxNseeG1OXDv5zi0-_g7AS8aNTKmXsfFOxpwbEUtX0NgyTzMXCN101bWkl_X7cjBQn9bgZ3sWJpRVtjaxMtTF2IZv5FtUCsSKEEq-m3yLQ9eosLvattCoYXHgzn5gyjZ7u7-D7_cVpbsfDrf34qarQGy5FPM47DMVhklvWcGMkAVVArN6pyRPqE0pF0a4VGvGvRKFVFKnwlKts9RZ05Ge4bhX4Cra8Swke9ngPMFjmO_V7EWMqc7WDGMniR44W_F5VWuAPx3A70WZF7zc7q3_7fnchptNPE26tQLcgTVX3oWNCyyL92DSVheScUl2nJuQz67ii7XVp1HSUMwOyXZdtk-6oyGubH58SlCIdCuPQL4sZpNQ7I9jtE1Owz1HqDRVUQUJh2lw-JE-uw9Hl7LkB7Bejkv3EEjKDNeK-VQyzTsm0b4jtLS2cBgay6ITwZsWCrltWNhDM5BRjtlYQE2-RE0EL5aik5p65G9C7wOelgKBLbz6YTwd5o3xyY0SuITEJzzxXBuhlTS88AWVibWJ1RG8DmjMw7PHyVjdHM3AJQV2sLybYQSTYKBPI9hs0Zc3xm6Wn0MvgufLy2imwt6TLt14EWSykLszjjOWK0BfmfrqlfLkuCI8xxwg7G-rR__-92dwfe_wYy_v7fcPHsMNigpZVwNuwvp8unBP4Jr9Pj-ZTZ9Wakvg62XrwS-MLYNL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCE48EYEChgEgssqWdvrtQ8IhYaKqCWKgErltNheO60UNiEPUP8av47xPkIDiFsPXLOzjr37zWs9_gbgKeNGJtTLyHgnI86NiKTLaWSZp6kLhG667FpykA6H8uhIjbbgR3MWJpRVNjaxNNT51IZv5B0qBWJFCCU7vi6LGPX3Xs2-RqGDVNhpbdppVBDZd6ffMX1bvBz08V0_o3Tvzcfdt1HdYSCyXIplFPaccsOktyxnRsicKoEZvlOSx9QmlAsjXKI1416JXCqpE2Gp1mnirOlKz3DcC7CNITmnLdgeDd6NPq3TPYbZX8VlxJjqdhYYSUn0x-mGBywbBfzpDn4v0Tzj8_au_c9P6zpcrSNt0qtU4wZsueImXDnDv3gLZk3dIZkWpO_cjLx3JZOsLT-akpp8dkx2q4J-0puMcWXL4y8EhUiv9BXkw2oxC8cAcIym_Wm45xDVqSy3IOGYDQ4_0ae34fBclnwHWsW0cHeBJMxwrZhPJNO8a2Ltu0JLa3OHQbPMu2140cAiszU_e2gTMskwTwsIytYIasOTteisIiX5m9DrgK21QOARL3-YzsdZbZYyowQuIfYxjz3XRmglDc99TmVsbWx1G54HZGbh2eNkrK4PbeCSAm9Y1ksxtokxBaBt2GmQmNVmcJH9gmEbHq8vowELu1K6cNNVkElDVs84zlhugH5j6ptXipPjkgods4Ow863u_fvfH8ElhH92MBju34fLFHWzKhPcgdZyvnIP4KL9tjxZzB_WOkzg83krwk8kCo2a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Deep+Reinforcement+Learning+Control+Algorithm+for+Active+Suspension+Considering+Uncertain+Time+Delay&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yang&rft.au=Wang%2C+Cheng&rft.au=Zhao%2C+Shijie&rft.au=Guo%2C+Konghui&rft.date=2023-09-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft_id=info:doi/10.3390%2Fs23187827&rft_id=info%3Apmid%2F37765884&rft.externalDocID=PMC10538169 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |