Regional brain blood flow in man during acute changes in arterial blood gases

Key points •  The partial pressures of arterial carbon dioxide () and oxygen () has a marked influence on brain blood flow. •  It is unclear if the larger brain arteries are also sensitive to changing and and if different areas of the brain possess different sensitivities. •  We separately altered a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology Jg. 590; H. 14; S. 3261 - 3275
Hauptverfasser: Willie, C. K., Macleod, D. B., Shaw, A. D., Smith, K. J., Tzeng, Y. C., Eves, N. D., Ikeda, K., Graham, J., Lewis, N. C., Day, T. A., Ainslie, P. N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.07.2012
Wiley Subscription Services, Inc
Blackwell Science Inc
Schlagworte:
ISSN:0022-3751, 1469-7793, 1469-7793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Key points •  The partial pressures of arterial carbon dioxide () and oxygen () has a marked influence on brain blood flow. •  It is unclear if the larger brain arteries are also sensitive to changing and and if different areas of the brain possess different sensitivities. •  We separately altered and and measured the diameter and blood flow in the main arteries delivering blood to the cortex and brainstem. •  During alterations in and , the large arteries changed diameter and blood flow to the brainstem changed more than that to the cortex. •  These findings change the basis of our understanding of brain blood flow control in humans.   Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases. We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady‐state changes in the partial pressures of CO2 () and O2 () in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range. We used near‐concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n= 16) examined iso‐oxic changes in , consisting of three hypocapnic stages (=∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages (=∼50, ∼55, ∼60 and ∼65 mmHg). In Part B (n= 10), during isocapnia, was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra‐arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar. With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in (R2, 0.63 ± 0.26; P < 0.05); VA diameter was unaltered in response to changed but yielded a diameter increase of +9% with severe hypoxia. (3) Intra‐ vs. extra‐cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.
AbstractList The partial pressures of arterial carbon dioxide ( ) and oxygen ( ) has a marked influence on brain blood flow. It is unclear if the larger brain arteries are also sensitive to changing and and if different areas of the brain possess different sensitivities. We separately altered and and measured the diameter and blood flow in the main arteries delivering blood to the cortex and brainstem. During alterations in and , the large arteries changed diameter and blood flow to the brainstem changed more than that to the cortex. These findings change the basis of our understanding of brain blood flow control in humans. Abstract  Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases. We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady‐state changes in the partial pressures of CO 2 ( ) and O 2 ( ) in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range. We used near‐concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A ( n = 16) examined iso‐oxic changes in , consisting of three hypocapnic stages ( =∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages ( =∼50, ∼55, ∼60 and ∼65 mmHg). In Part B ( n = 10), during isocapnia, was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra‐arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar. With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in ( R 2 , 0.63 ± 0.26; P < 0.05); VA diameter was unaltered in response to changed but yielded a diameter increase of +9% with severe hypoxia. (3) Intra‐ vs. extra‐cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.
Key points •  The partial pressures of arterial carbon dioxide () and oxygen () has a marked influence on brain blood flow. •  It is unclear if the larger brain arteries are also sensitive to changing and and if different areas of the brain possess different sensitivities. •  We separately altered and and measured the diameter and blood flow in the main arteries delivering blood to the cortex and brainstem. •  During alterations in and , the large arteries changed diameter and blood flow to the brainstem changed more than that to the cortex. •  These findings change the basis of our understanding of brain blood flow control in humans.   Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases. We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady‐state changes in the partial pressures of CO2 () and O2 () in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range. We used near‐concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n= 16) examined iso‐oxic changes in , consisting of three hypocapnic stages (=∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages (=∼50, ∼55, ∼60 and ∼65 mmHg). In Part B (n= 10), during isocapnia, was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra‐arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar. With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in (R2, 0.63 ± 0.26; P < 0.05); VA diameter was unaltered in response to changed but yielded a diameter increase of +9% with severe hypoxia. (3) Intra‐ vs. extra‐cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.
Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases. We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady-state changes in the partial pressures of CO2 () and O2 () in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range. We used near-concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n= 16) examined iso-oxic changes in , consisting of three hypocapnic stages (=∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages (=∼50, ∼55, ∼60 and ∼65 mmHg). In Part B (n= 10), during isocapnia, was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra-arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar. With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in (R2, 0.63 ± 0.26; P < 0.05); VA diameter was unaltered in response to changed but yielded a diameter increase of +9% with severe hypoxia. (3) Intra- vs. extra-cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.
Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases.We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady-state changes in the partial pressures of CO2 (PaCO2) and O2 (PaO2) in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range.We used near-concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n =16) examined iso-oxic changes in PaCO2, consisting of three hypocapnic stages (PaCO2 =∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages (PaCO2 =∼50, ∼55, ∼60 and ∼65 mmHg). In Part B (n =10), during isocapnia, PaO2 was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra-arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar.With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in PaCO2 (R2, 0.63±0.26; P<0.05); VA diameter was unaltered in response to changed PaCO2 but yielded a diameter increase of +9% with severe hypoxia. (3) Intra- vs. extra-cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases.We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady-state changes in the partial pressures of CO2 (PaCO2) and O2 (PaO2) in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range.We used near-concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n =16) examined iso-oxic changes in PaCO2, consisting of three hypocapnic stages (PaCO2 =∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages (PaCO2 =∼50, ∼55, ∼60 and ∼65 mmHg). In Part B (n =10), during isocapnia, PaO2 was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra-arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar.With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in PaCO2 (R2, 0.63±0.26; P<0.05); VA diameter was unaltered in response to changed PaCO2 but yielded a diameter increase of +9% with severe hypoxia. (3) Intra- vs. extra-cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.
Key points * The partial pressures of arterial carbon dioxide () and oxygen () has a marked influence on brain blood flow. * It is unclear if the larger brain arteries are also sensitive to changing and and if different areas of the brain possess different sensitivities. * We separately altered and and measured the diameter and blood flow in the main arteries delivering blood to the cortex and brainstem. * During alterations in and , the large arteries changed diameter and blood flow to the brainstem changed more than that to the cortex. * These findings change the basis of our understanding of brain blood flow control in humans. Abstract Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases. We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady-state changes in the partial pressures of CO2 () and O2 () in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range. We used near-concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n= 16) examined iso-oxic changes in , consisting of three hypocapnic stages (=15, 20 and 30 mmHg) and four hypercapnic stages (=50, 55, 60 and 65 mmHg). In Part B (n= 10), during isocapnia, was decreased to 60, 44, and 35 mmHg and increased to 320 mmHg and 430 mmHg. Stages lasted 15 min. Intra-arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar. With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (25%) of the ICA was positively related to changes in (R2, 0.63 ± 0.26; P < 0.05); VA diameter was unaltered in response to changed but yielded a diameter increase of +9% with severe hypoxia. (3) Intra- vs. extra-cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.
Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases.We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady-state changes in the partial pressures of CO2 (PaCO2) and O2 (PaO2) in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range.We used near-concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n =16) examined iso-oxic changes in PaCO2, consisting of three hypocapnic stages (PaCO2 =∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages (PaCO2 =∼50, ∼55, ∼60 and ∼65 mmHg). In Part B (n =10), during isocapnia, PaO2 was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra-arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar.With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in PaCO2 (R2, 0.63±0.26; P<0.05); VA diameter was unaltered in response to changed PaCO2 but yielded a diameter increase of +9% with severe hypoxia. (3) Intra- vs. extra-cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3) transcranial Doppler ultrasound may underestimate measurements of CBF during extreme hypoxia and/or hypercapnia.
Author Willie, C. K.
Tzeng, Y. C.
Ikeda, K.
Shaw, A. D.
Smith, K. J.
Day, T. A.
Macleod, D. B.
Eves, N. D.
Graham, J.
Lewis, N. C.
Ainslie, P. N.
Author_xml – sequence: 1
  givenname: C. K.
  surname: Willie
  fullname: Willie, C. K.
– sequence: 2
  givenname: D. B.
  surname: Macleod
  fullname: Macleod, D. B.
– sequence: 3
  givenname: A. D.
  surname: Shaw
  fullname: Shaw, A. D.
– sequence: 4
  givenname: K. J.
  surname: Smith
  fullname: Smith, K. J.
– sequence: 5
  givenname: Y. C.
  surname: Tzeng
  fullname: Tzeng, Y. C.
– sequence: 6
  givenname: N. D.
  surname: Eves
  fullname: Eves, N. D.
– sequence: 7
  givenname: K.
  surname: Ikeda
  fullname: Ikeda, K.
– sequence: 8
  givenname: J.
  surname: Graham
  fullname: Graham, J.
– sequence: 9
  givenname: N. C.
  surname: Lewis
  fullname: Lewis, N. C.
– sequence: 10
  givenname: T. A.
  surname: Day
  fullname: Day, T. A.
– sequence: 11
  givenname: P. N.
  surname: Ainslie
  fullname: Ainslie, P. N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22495584$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1OGzEUhS0EKoH2DVA1Ehs2k_p_xl0gIVQoFVWriq6tmxnPxJFjB3sGlLev05AK2NCVbd3vHB_dc4T2ffAGoROCp4QQ9mmxmq-TDW5KMaFTSmshyB6aEC5VWVWK7aMJxpSWrBLkEB2ltMCYMKzUO3RIKVdC1HyCvv8yvQ0eXDGLYH0xcyG0RefCY5FfS_BFO0br-wKacTBFMwffm7SZQRxMtBvhX0kPyaT36KADl8yHp_MY_b76cnf5tbz9cX1zeXFbNryWvATK24qz1mAqqSItq5oW8rWCjrGuNooIXGMCtJUSMAdF64rJjhup6IxLyY7R-dZ3Nc6Wpm2MHyI4vYp2CXGtA1j9cuLtXPfhQTMuFOYkG5w9GcRwP5o06KVNjXEOvAlj0gTTqmYcS5bR01foIowxbyxTgosMKawy9fF5on9RdpvOwOct0MSQUjSdbuwAQ959Dmhd_lFvatW7WvWmVr2tNYv5K_HO_w2Z2soerTPr_9Lou28_BcGc_QHsILo3
CODEN JPHYA7
CitedBy_id crossref_primary_10_1038_jcbfm_2015_4
crossref_primary_10_1080_02699052_2019_1644375
crossref_primary_10_1152_japplphysiol_00490_2015
crossref_primary_10_1152_japplphysiol_00658_2020
crossref_primary_10_1088_1361_6579_ac96cb
crossref_primary_10_1113_EP091820
crossref_primary_10_1113_JP281517
crossref_primary_10_1113_JP285555
crossref_primary_10_1038_s41598_023_40321_3
crossref_primary_10_1089_ham_2014_1075
crossref_primary_10_1113_EP089982
crossref_primary_10_1007_s00424_012_1148_1
crossref_primary_10_1113_JP274304
crossref_primary_10_1152_japplphysiol_00376_2024
crossref_primary_10_3389_fphys_2021_656746
crossref_primary_10_1113_JP280312
crossref_primary_10_1177_0271678X231165842
crossref_primary_10_1113_EP089196
crossref_primary_10_1113_EP085706
crossref_primary_10_1113_EP091279
crossref_primary_10_1016_j_medengphy_2014_08_001
crossref_primary_10_3389_fmed_2019_00186
crossref_primary_10_1113_jphysiol_2014_272104
crossref_primary_10_14814_phy2_13285
crossref_primary_10_1007_s10143_015_0617_3
crossref_primary_10_14814_phy2_14372
crossref_primary_10_3390_jcm9124088
crossref_primary_10_1113_EP086249
crossref_primary_10_1152_japplphysiol_00854_2014
crossref_primary_10_1016_j_bja_2024_01_043
crossref_primary_10_14814_phy2_14367
crossref_primary_10_1152_japplphysiol_01024_2024
crossref_primary_10_1152_japplphysiol_00292_2017
crossref_primary_10_1093_bja_aeu377
crossref_primary_10_1113_JP272012
crossref_primary_10_1113_JP275887
crossref_primary_10_1111_apha_12706
crossref_primary_10_1113_JP287181
crossref_primary_10_3389_fphys_2021_740792
crossref_primary_10_1113_jphysiol_2012_244772
crossref_primary_10_1113_EP088192
crossref_primary_10_1113_JP280682
crossref_primary_10_1007_s10286_018_0522_2
crossref_primary_10_1152_japplphysiol_00637_2013
crossref_primary_10_1152_japplphysiol_00285_2014
crossref_primary_10_1177_19417381231217744
crossref_primary_10_1152_japplphysiol_00606_2013
crossref_primary_10_1111_cpf_12179
crossref_primary_10_1016_j_mehy_2014_11_009
crossref_primary_10_1177_0271678X18762880
crossref_primary_10_1152_japplphysiol_00499_2020
crossref_primary_10_1016_j_resp_2017_02_014
crossref_primary_10_14814_phy2_14952
crossref_primary_10_1152_japplphysiol_00107_2025
crossref_primary_10_1016_j_physbeh_2017_09_023
crossref_primary_10_1088_1361_6579_aac812
crossref_primary_10_1113_jphysiol_2012_235937
crossref_primary_10_1113_expphysiol_2013_077362
crossref_primary_10_1038_jcbfm_2014_184
crossref_primary_10_1152_japplphysiol_00310_2018
crossref_primary_10_1177_0271678X211033732
crossref_primary_10_1113_EP087663
crossref_primary_10_1038_s41393_017_0021_7
crossref_primary_10_1113_JP271182
crossref_primary_10_1016_j_autneu_2019_102581
crossref_primary_10_1152_japplphysiol_00880_2013
crossref_primary_10_3389_fphys_2018_00869
crossref_primary_10_3389_fphys_2019_01146
crossref_primary_10_1152_japplphysiol_00114_2014
crossref_primary_10_1038_jcbfm_2013_83
crossref_primary_10_1097_EJA_0000000000001189
crossref_primary_10_1113_JP282998
crossref_primary_10_1113_jphysiol_2012_241802
crossref_primary_10_1177_0271678X241235878
crossref_primary_10_1152_japplphysiol_00328_2024
crossref_primary_10_1161_HYPERTENSIONAHA_116_07698
crossref_primary_10_1113_EP085813
crossref_primary_10_1113_JP275545
crossref_primary_10_1002_j_2040_4603_2015_tb00645_x
crossref_primary_10_1113_JP271981
crossref_primary_10_14814_phy2_12647
crossref_primary_10_1007_s00421_024_05621_0
crossref_primary_10_1113_EP086585
crossref_primary_10_1113_EP085498
crossref_primary_10_1089_ham_2016_0083
crossref_primary_10_1113_JP279876
crossref_primary_10_1089_ham_2016_0081
crossref_primary_10_3389_fendo_2022_874007
crossref_primary_10_1113_EP088293
crossref_primary_10_1113_JP279751
crossref_primary_10_3389_fphys_2021_640075
crossref_primary_10_1016_j_mito_2015_03_002
crossref_primary_10_3389_fphys_2019_00061
crossref_primary_10_1152_japplphysiol_01462_2012
crossref_primary_10_1152_japplphysiol_00651_2014
crossref_primary_10_14814_phy2_15274
crossref_primary_10_3389_fnins_2018_00409
crossref_primary_10_4103_mgr_MEDGASRES_D_23_00050
crossref_primary_10_1113_EP087647
crossref_primary_10_1111_1440_1681_12421
crossref_primary_10_3389_fphys_2022_847969
crossref_primary_10_1113_JP271914
crossref_primary_10_1093_ckj_sfae392
crossref_primary_10_1152_jn_00608_2015
crossref_primary_10_1002_j_2040_4603_2015_tb00657_x
crossref_primary_10_1177_0271678X211032029
crossref_primary_10_1088_1361_6579_ad0425
crossref_primary_10_1113_jphysiol_2014_284521
crossref_primary_10_1152_japplphysiol_01116_2018
crossref_primary_10_1371_journal_pone_0241248
crossref_primary_10_3389_fphys_2021_665821
crossref_primary_10_1002_j_2040_4603_2019_tb00083_x
crossref_primary_10_1113_expphysiol_2013_075184
crossref_primary_10_1016_j_bja_2019_10_021
crossref_primary_10_1097_ALN_0000000000002838
crossref_primary_10_1113_jphysiol_2013_259150
crossref_primary_10_3389_fnins_2020_596084
crossref_primary_10_1002_brb3_275
crossref_primary_10_1139_apnm_2021_0220
crossref_primary_10_1249_JES_0000000000000063
crossref_primary_10_1016_j_brainres_2016_07_013
crossref_primary_10_1089_ham_2018_0083
crossref_primary_10_1177_0271678X221119442
crossref_primary_10_1113_EP088746
crossref_primary_10_1097_j_pain_0000000000002114
crossref_primary_10_1038_srep21667
crossref_primary_10_1152_japplphysiol_00353_2015
crossref_primary_10_3390_nu11030489
crossref_primary_10_1016_j_jpeds_2016_09_003
crossref_primary_10_1164_rccm_202007_2729LE
crossref_primary_10_1177_0271678X18818291
crossref_primary_10_1038_jcbfm_2014_3
crossref_primary_10_1152_japplphysiol_00623_2018
crossref_primary_10_1016_j_resp_2016_01_004
crossref_primary_10_3109_00365513_2015_1137350
crossref_primary_10_1152_japplphysiol_00494_2023
crossref_primary_10_1002_nbm_3026
crossref_primary_10_1007_s43032_019_00020_9
crossref_primary_10_1177_0271678X15617954
crossref_primary_10_1016_j_resp_2013_05_020
crossref_primary_10_1113_JP284449
crossref_primary_10_1152_japplphysiol_00024_2013
crossref_primary_10_1016_j_jad_2021_08_061
crossref_primary_10_1089_ham_2013_1138
crossref_primary_10_1111_sms_12379
crossref_primary_10_1097_ALN_0000000000005651
crossref_primary_10_1177_0271678X16629486
crossref_primary_10_1016_j_sleep_2017_10_010
crossref_primary_10_1113_EP089127
crossref_primary_10_1179_1743132813Y_0000000174
crossref_primary_10_1038_s41598_024_63609_4
crossref_primary_10_1113_JP277122
crossref_primary_10_1371_journal_pone_0062628
crossref_primary_10_1016_j_ptsp_2021_06_008
crossref_primary_10_1186_s40798_021_00314_w
crossref_primary_10_1016_j_neuroscience_2022_10_018
crossref_primary_10_1007_s10877_018_0207_3
crossref_primary_10_1016_j_autneu_2017_04_001
crossref_primary_10_5665_sleep_4894
crossref_primary_10_1113_EP090122
crossref_primary_10_1161_HYPERTENSIONAHA_113_01867
crossref_primary_10_1080_21641846_2014_909963
crossref_primary_10_1088_1741_2552_ada4de
crossref_primary_10_1088_1361_6579_aae469
crossref_primary_10_1113_JP283362
crossref_primary_10_14814_phy2_13656
crossref_primary_10_1038_jcbfm_2013_178
crossref_primary_10_1113_EP086429
crossref_primary_10_1139_facets_2016_0012
crossref_primary_10_1152_japplphysiol_00976_2014
crossref_primary_10_1016_j_arr_2016_09_007
crossref_primary_10_1371_journal_pone_0289716
crossref_primary_10_1016_j_cjca_2017_07_008
crossref_primary_10_1111_sms_13573
crossref_primary_10_1152_japplphysiol_00995_2016
crossref_primary_10_1016_j_bja_2022_08_032
crossref_primary_10_1152_jn_00513_2024
crossref_primary_10_1113_EP090690
crossref_primary_10_1097_PSY_0000000000000800
crossref_primary_10_1136_neurintsurg_2019_015499
crossref_primary_10_1016_j_neuroimage_2015_04_029
crossref_primary_10_1007_s00421_018_3887_y
crossref_primary_10_1177_02676591241239823
crossref_primary_10_1089_ham_2013_1079
crossref_primary_10_3389_fphys_2021_642850
crossref_primary_10_1152_japplphysiol_00127_2015
crossref_primary_10_1016_j_resp_2013_05_036
crossref_primary_10_1152_japplphysiol_00045_2021
crossref_primary_10_3389_fphys_2014_00092
crossref_primary_10_1113_EP085789
crossref_primary_10_1113_EP088938
crossref_primary_10_1017_cjn_2023_3
crossref_primary_10_3389_fnagi_2019_00079
crossref_primary_10_1113_jphysiol_2014_281212
crossref_primary_10_1152_japplphysiol_00389_2015
crossref_primary_10_3389_fnhum_2023_1115355
crossref_primary_10_1007_s00421_024_05450_1
crossref_primary_10_1007_s00134_025_08111_9
crossref_primary_10_1088_1361_6579_aac76b
crossref_primary_10_1111_psyp_13923
crossref_primary_10_1007_s10334_021_00980_7
crossref_primary_10_1093_humrep_deaa379
crossref_primary_10_1152_japplphysiol_00841_2015
crossref_primary_10_1113_EP091314
crossref_primary_10_1152_japplphysiol_00400_2022
crossref_primary_10_3389_fphys_2018_01657
crossref_primary_10_3389_fphys_2022_1035452
crossref_primary_10_1109_TUFFC_2022_3188803
crossref_primary_10_1177_0271678X231210430
crossref_primary_10_1016_j_jneumeth_2025_110381
crossref_primary_10_1007_s00421_021_04864_5
crossref_primary_10_1113_EP085671
crossref_primary_10_1152_ajpregu_00270_2015
crossref_primary_10_1002_jmri_25996
crossref_primary_10_1016_j_physbeh_2018_02_035
crossref_primary_10_1177_0271678X211065924
crossref_primary_10_1161_STROKEAHA_121_037343
crossref_primary_10_1186_s13054_019_2671_7
crossref_primary_10_1016_j_heliyon_2025_e42521
crossref_primary_10_3389_fphys_2021_772456
crossref_primary_10_1113_EP085764
crossref_primary_10_14814_phy2_12378
crossref_primary_10_1016_j_xkme_2025_101096
crossref_primary_10_14814_phy2_15406
crossref_primary_10_14814_phy2_13108
crossref_primary_10_1016_j_resp_2019_01_013
crossref_primary_10_3389_fphys_2021_668662
crossref_primary_10_1371_journal_pone_0143059
crossref_primary_10_3389_fneur_2021_620757
crossref_primary_10_1007_s00701_023_05646_y
crossref_primary_10_1113_EP085084
crossref_primary_10_1016_j_ejphar_2014_03_020
crossref_primary_10_1586_14737175_2015_996552
crossref_primary_10_1113_EP088236
crossref_primary_10_1164_rccm_202409_1813SO
crossref_primary_10_1113_EP089446
crossref_primary_10_1038_s41598_025_13016_0
crossref_primary_10_1113_jphysiol_2014_280586
crossref_primary_10_1111_cpf_12568
crossref_primary_10_3389_fphys_2021_665049
crossref_primary_10_1002_hbm_26131
crossref_primary_10_3390_technologies9040102
crossref_primary_10_1016_j_resp_2014_03_003
crossref_primary_10_1177_1742271X20976965
crossref_primary_10_1007_s00421_020_04506_2
crossref_primary_10_1016_j_resp_2012_07_014
crossref_primary_10_1111_apha_14197
crossref_primary_10_14814_phy2_14421
crossref_primary_10_14814_phy2_14664
crossref_primary_10_1213_ANE_0b013e318297d763
crossref_primary_10_1177_0271678X18789273
crossref_primary_10_14814_phy2_15639
crossref_primary_10_1089_neu_2013_2972
crossref_primary_10_1113_JP272557
crossref_primary_10_1038_jcbfm_2014_170
crossref_primary_10_1113_JP279237
crossref_primary_10_3892_mmr_2016_5555
crossref_primary_10_1007_s00421_013_2667_y
crossref_primary_10_1096_fj_12_222687
crossref_primary_10_1177_0300060518791691
crossref_primary_10_3389_fphys_2017_00846
crossref_primary_10_14814_phy2_13131
crossref_primary_10_1038_jcbfm_2015_51
crossref_primary_10_14814_phy2_13372
crossref_primary_10_1113_JP272967
crossref_primary_10_1016_j_smrv_2017_08_006
crossref_primary_10_1113_expphysiol_2012_068015
crossref_primary_10_1152_japplphysiol_00851_2023
crossref_primary_10_1186_s13054_018_2304_6
crossref_primary_10_1007_s00134_023_07165_x
crossref_primary_10_1016_j_biopsycho_2017_04_011
crossref_primary_10_1371_journal_pone_0070751
crossref_primary_10_14814_phy2_12957
crossref_primary_10_1111_sms_12674
crossref_primary_10_1113_JP278827
crossref_primary_10_1113_EP089660
crossref_primary_10_1113_jphysiol_2013_268953
crossref_primary_10_1113_JP281446
crossref_primary_10_1007_s10237_023_01772_9
crossref_primary_10_1249_MSS_0000000000002608
crossref_primary_10_1038_jcbfm_2015_49
crossref_primary_10_1152_japplphysiol_00394_2013
crossref_primary_10_1152_japplphysiol_00594_2013
crossref_primary_10_1038_s41598_017_10332_y
crossref_primary_10_1038_jcbfm_2015_142
crossref_primary_10_1097_MCC_0000000000001246
crossref_primary_10_3389_fneur_2022_1021536
crossref_primary_10_1111_cpf_12742
crossref_primary_10_1152_japplphysiol_01078_2013
crossref_primary_10_1002_jmri_26737
crossref_primary_10_1177_0271678X231152734
crossref_primary_10_1113_expphysiol_2014_081190
crossref_primary_10_1177_0271678X16648711
crossref_primary_10_1007_s00421_017_3612_2
crossref_primary_10_1113_JP271884
crossref_primary_10_1038_s41593_021_00904_7
crossref_primary_10_1002_brb3_426
crossref_primary_10_1152_japplphysiol_01090_2013
crossref_primary_10_1113_JP284608
crossref_primary_10_1002_hbm_23751
crossref_primary_10_1152_japplphysiol_00963_2020
crossref_primary_10_3389_fphys_2024_1384113
crossref_primary_10_1007_s40279_018_1033_y
crossref_primary_10_1371_journal_pone_0238224
crossref_primary_10_1007_s00421_018_3971_3
crossref_primary_10_1097_CPT_0000000000000110
crossref_primary_10_1113_EP092014
crossref_primary_10_1515_tnsci_2016_0003
crossref_primary_10_1111_apha_12241
crossref_primary_10_1113_JP280369
crossref_primary_10_1113_JP282427
crossref_primary_10_1152_japplphysiol_00840_2016
crossref_primary_10_1186_s41984_021_00102_4
crossref_primary_10_14814_phy2_12059
crossref_primary_10_1016_j_anclin_2020_11_007
crossref_primary_10_1007_s11307_023_01815_8
crossref_primary_10_1007_s11682_019_00240_2
crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_08_035
crossref_primary_10_1016_j_resp_2016_08_001
crossref_primary_10_1002_phy2_280
crossref_primary_10_1016_j_bone_2015_11_001
crossref_primary_10_1152_japplphysiol_00434_2024
crossref_primary_10_3390_ani14233500
crossref_primary_10_1038_srep30500
crossref_primary_10_1002_brb3_2176
crossref_primary_10_1016_j_resp_2021_103770
crossref_primary_10_1007_s00421_017_3711_0
crossref_primary_10_1007_s00421_019_04206_6
crossref_primary_10_1016_j_medengphy_2016_03_007
crossref_primary_10_1177_0271678X16659497
crossref_primary_10_1007_s10286_014_0241_2
crossref_primary_10_1113_expphysiol_2012_067751
crossref_primary_10_3390_ijms21051632
crossref_primary_10_1089_neu_2017_5188
crossref_primary_10_1113_JP287320
crossref_primary_10_14814_phy2_14467
crossref_primary_10_14814_phy2_12969
crossref_primary_10_1016_j_mri_2015_12_016
crossref_primary_10_1016_j_neuroimage_2015_04_014
crossref_primary_10_1113_EP087232
crossref_primary_10_1113_expphysiol_2013_074104
crossref_primary_10_1177_0271678X17691986
crossref_primary_10_1152_japplphysiol_00787_2015
crossref_primary_10_1152_japplphysiol_00050_2018
crossref_primary_10_1007_s00421_017_3674_1
Cites_doi 10.1152/japplphysiol.00257.2010
10.1038/jcbfm.1994.126
10.1152/japplphysiol.00498.2009
10.1152/jappl.1980.48.2.213
10.1136/jnnp.1.3.187
10.1113/expphysiol.2008.045575
10.1152/japplphysiol.01359.2009
10.2170/jjphysiol.38.445
10.1152/jappl.1990.68.4.1727
10.1016/S1569-9048(02)00152-0
10.1016/0301-5629(85)90107-3
10.1113/jphysiol.2010.192534
10.1016/j.jneumeth.2011.01.011
10.1152/ajpregu.91008.2008
10.1152/japplphysiol.01186.2002
10.1113/jphysiol.2005.087320
10.1161/HYPERTENSIONAHA.107.101014
10.1152/ajpheart.1978.234.4.H371
10.1113/jphysiol.2008.154716
10.1001/archneurpsyc.1930.02220120002001
10.1016/0301-5629(88)90108-1
10.1152/japplphysiol.90914.2008
10.1152/ajpheart.1998.274.1.H233
10.1111/j.1748-1716.1980.tb06647.x
10.1172/JCI101995
10.1161/01.STR.4.5.742
10.1113/jphysiol.2011.206052
10.1113/jphysiol.2010.204461
10.1161/01.STR.11.3.240
10.1161/01.RES.66.1.8
10.1038/jcbfm.2011.81
10.1136/jnnp.28.5.449
10.1113/jphysiol.2007.129395
10.1161/01.STR.20.1.45
10.1001/archneurpsyc.1928.02210120090008
10.1016/0034-5687(96)00011-4
10.1113/jphysiol.2002.029678
10.1164/rccm.200406-807OC
10.1161/01.STR.25.1.17
10.1172/JCI104359
10.1172/JCI109187
10.1152/japplphysiol.91292.2008
10.1254/jjp.76.349
10.1172/JCI100470
10.1152/jappl.1996.80.4.1214
10.1113/jphysiol.2007.137075
10.1227/00006123-199305000-00006
ContentType Journal Article
Copyright 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
Copyright_xml – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
– notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2012.228551
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 3275
ExternalDocumentID PMC3459041
3374395511
22495584
10_1113_jphysiol_2012_228551
TJP5104
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OC
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADXHL
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
1OB
AAYXX
ABUFD
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c4864-a24d743de026291d37cda2627af33f8e9150801a2d66a04a928736f4e692b4663
IEDL.DBID WIN
ISICitedReferencesCount 406
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000306737500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3751
1469-7793
IngestDate Tue Nov 04 02:00:39 EST 2025
Fri Jul 11 16:39:04 EDT 2025
Fri Jul 25 12:14:07 EDT 2025
Mon Jul 21 05:18:01 EDT 2025
Tue Nov 18 21:05:29 EST 2025
Sat Nov 29 06:40:36 EST 2025
Wed Aug 20 07:25:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4864-a24d743de026291d37cda2627af33f8e9150801a2d66a04a928736f4e692b4663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2012.228551
PMID 22495584
PQID 1545340909
PQPubID 1086388
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3459041
proquest_miscellaneous_1027834063
proquest_journals_1545340909
pubmed_primary_22495584
crossref_citationtrail_10_1113_jphysiol_2012_228551
crossref_primary_10_1113_jphysiol_2012_228551
wiley_primary_10_1113_jphysiol_2012_228551_TJP5104
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 1980; 48
1928; 19
2005; 172
1989; 20
2010; 109
2010; 108
2010; 589
1988; 14
2007; 584
2002; 133
2007; 581
1988; 38
2011; 31
1994; 25
1932; 11
1978; 234
2009; 296
2002
2008; 586
1996; 104
2011; 196
2008; 51
2003; 95
1980; 110
1934
1998; 274
2011; 589
1938; 1
1990; 66
2003; 548
1990; 68
1930; 23
2005; 566
1993; 32
1978; 62
1980; 11
1994; 14
1961; 40
1996; 80
1985; 11
2009; 107
1965; 28
1998; 76
2010; 95
1948; 27
1973; 4
2009; 106
e_1_2_6_32_1
e_1_2_6_30_1
Edvinsson L (e_1_2_6_9_1) 2002
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Fog M (e_1_2_6_12_1) 1934
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Przybyowski T (e_1_2_6_34_1) 2003; 548
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
Gross PM (e_1_2_6_16_1) 1980; 48
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
5838479 - J Neurol Neurosurg Psychiatry. 1965 Oct;28(5):449-52
19278048 - J Appl Physiol (1985). 2003 Jul;95(1):129-37
2403863 - Circ Res. 1990 Jan;66(1):8-17
19118158 - J Appl Physiol (1985). 2009 Mar;106(3):850-6
12588894 - J Physiol. 2003 Apr 1;548(Pt 1):323-32
19617269 - Exp Physiol. 2010 Feb;95(2):251-62
21521758 - J Physiol. 2011 Jun 15;589(Pt 12):3039-48
20595539 - J Appl Physiol (1985). 2010 Sep;109(3):864-9
8865384 - Respir Physiol. 1996 Apr-May;104(1):71-5
3147551 - Ultrasound Med Biol. 1988;14(6):479-83
8492848 - Neurosurgery. 1993 May;32(5):737-41; discussion 741-2
2112130 - J Appl Physiol (1985). 1990 Apr;68(4):1727-31
8266366 - Stroke. 1994 Jan;25(1):17-22
3148777 - Jpn J Physiol. 1988;38(4):445-57
6782831 - Acta Physiol Scand. 1980 Oct;110(2):167-73
22826302 - J Physiol. 2012 Jul 15;590(14):3217
18565992 - J Physiol. 2008 Aug 1;586(15):3675-82
16695569 - J Clin Invest. 1948 Jul;27(4):484-92
2932831 - Ultrasound Med Biol. 1985 Sep-Oct;11(5):735-41
17446225 - J Physiol. 2007 Jun 15;581(Pt 3):1207-19
701475 - J Clin Invest. 1978 Oct;62(4):761-8
15901613 - Am J Respir Crit Care Med. 2005 Aug 1;172(3):371-8
19131474 - J Appl Physiol (1985). 2009 Mar;106(3):880-6
12385732 - Respir Physiol Neurobiol. 2002 Oct 23;133(1-2):65-74
20299620 - J Appl Physiol (1985). 2010 Jun;108(6):1447-9
19211719 - Am J Physiol Regul Integr Comp Physiol. 2009 May;296(5):R1473-95
6771898 - Stroke. 1980 May-Jun;11(3):240-8
18086954 - Hypertension. 2008 Feb;51(2):203-10
7929657 - J Cereb Blood Flow Metab. 1994 Nov;14(6):944-51
21486813 - J Physiol. 2011 Jun 1;589(Pt 11):2847-56
15890697 - J Physiol. 2005 Jul 15;566(Pt 2):613-24
9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
8926248 - J Appl Physiol (1985). 1996 Apr;80(4):1214-8
21654697 - J Cereb Blood Flow Metab. 2011 Oct;31(10):2019-29
16694095 - J Clin Invest. 1932 Nov;11(6):1155-77
645875 - Am J Physiol. 1978 Apr;234(4):H371-83
2492126 - Stroke. 1989 Jan;20(1):45-52
9623714 - Jpn J Pharmacol. 1998 Apr;76(4):349-67
21276818 - J Neurosci Methods. 2011 Mar 30;196(2):221-37
13783303 - J Clin Invest. 1961 Jul;40:1297-303
19661450 - J Appl Physiol (1985). 2009 Oct;107(4):1165-71
17690148 - J Physiol. 2007 Oct 1;584(Pt 1):347-57
6767665 - J Appl Physiol Respir Environ Exerc Physiol. 1980 Feb;48(2):213-7
4751085 - Stroke. 1973 Sep-Oct;4(5):742-50
21041534 - J Physiol. 2011 Feb 1;589(Pt 3):741-53
21610927 - J Neurol Psychiatry. 1938 Jul;1(3):187-97
References_xml – volume: 548
  start-page: 323
  year: 2003
  end-page: 332
  article-title: Mechanisms of the cerebrovascular response to apnoea in humans
  publication-title: J Physiol
– volume: 19
  start-page: 1057
  year: 1928
  end-page: 1086
  article-title: Cerebral circulation. III. The vasomotor control of cerebral vessels
  publication-title: Arch Neuro Psychiat
– volume: 584
  start-page: 347
  year: 2007
  end-page: 357
  article-title: Human cerebrovascular and ventilatory CO reactivity to end‐tidal, arterial and internal jugular vein
  publication-title: J Physiol
– volume: 62
  start-page: 761
  year: 1978
  end-page: 768
  article-title: Role of large arteries in regulation of cerebral blood flow in dogs
  publication-title: J Clin Invest
– volume: 11
  start-page: 735
  year: 1985
  end-page: 741
  article-title: On the measurement of the mean velocity of blood flow over the cardiac cycle using Doppler ultrasound
  publication-title: Ultrasound Med Biol
– volume: 11
  start-page: 240
  year: 1980
  end-page: 248
  article-title: Physiological mechanisms controlling cerebral blood flow
  publication-title: Stroke
– volume: 48
  start-page: 213
  year: 1980
  end-page: 217
  article-title: Regional distribution of cerebral blood flow during exercise in dogs
  publication-title: J Appl Physiol
– volume: 589
  start-page: 741
  year: 2010
  end-page: 753
  article-title: Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m
  publication-title: J Physiol
– volume: 95
  start-page: 129
  year: 2003
  end-page: 137
  article-title: Relationship between middle cerebral artery blood velocity and end‐tidal PCO in the hypocapnic‐hypercapnic range in humans
  publication-title: J Appl Physiol
– volume: 196
  start-page: 221
  year: 2011
  end-page: 237
  article-title: Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function
  publication-title: J Neurosci Methods
– volume: 172
  start-page: 371
  year: 2005
  end-page: 378
  article-title: Cerebrovascular response to carbon dioxide in patients with congestive heart failure
  publication-title: Am J Respir Crit Care Med
– volume: 104
  start-page: 71
  year: 1996
  end-page: 75
  article-title: CO response for the brain stem artery blood flow velocity in man
  publication-title: Respir Physiol
– volume: 4
  start-page: 742
  year: 1973
  end-page: 750
  article-title: Vascular mechanisms controlling a constant blood supply to the brain
  publication-title: Stroke
– volume: 589
  start-page: 2847
  year: 2011
  end-page: 2856
  article-title: The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans
  publication-title: J Physiol
– year: 1934
– volume: 133
  start-page: 65
  year: 2002
  end-page: 74
  article-title: Basilar artery blood flow velocity and the ventilatory response to acute hypoxia in mountaineers
  publication-title: Resp Physiol Neurobiol
– volume: 25
  start-page: 17
  year: 1994
  end-page: 22
  article-title: Estimation of cerebral blood flow through colour duplex sonography of the carotid and vertebral arteries in healthy adults
  publication-title: Stroke
– volume: 68
  start-page: 1727
  year: 1990
  end-page: 1731
  article-title: A comparison of indirect methods for continuous estimation of arterial PCO in men
  publication-title: J Appl Physiol
– volume: 32
  start-page: 737
  year: 1993
  end-page: 741
  article-title: Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy
  publication-title: Neurosurgery
– volume: 20
  start-page: 45
  year: 1989
  end-page: 52
  article-title: Cerebral autoregulation dynamics in humans
  publication-title: Stroke
– volume: 14
  start-page: 944
  year: 1994
  end-page: 951
  article-title: The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to CO in vivo
  publication-title: J Cereb Blood Flow Metab
– volume: 76
  start-page: 349
  year: 1998
  end-page: 367
  article-title: Cerebral vasodilators
  publication-title: Jpn J Pharmacol
– volume: 296
  start-page: R1473
  year: 2009
  end-page: R1495
  article-title: Integration of cerebrovascular CO reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 110
  start-page: 167
  year: 1980
  end-page: 173
  article-title: Changes in cerebral blood flow during hyperventilation and CO ‐breathing measured transcutaneously in humans by a bidirectional, pulsed, ultrasound Doppler blood velocitymeter
  publication-title: Acta Physiol Scand
– volume: 586
  start-page: 3675
  year: 2008
  end-page: 3682
  article-title: Non‐invasive prospective targeting of arterial in subjects at rest
  publication-title: J Physiol
– volume: 107
  start-page: 1165
  year: 2009
  end-page: 1171
  article-title: Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques
  publication-title: J Appl Physiol
– volume: 38
  start-page: 445
  year: 1988
  end-page: 457
  article-title: Arterial to end‐tidal PCO difference varies with different ventilatory conditions during steady state hypercapnia in the rat
  publication-title: Jpn J Physiol
– volume: 27
  start-page: 484
  year: 1948
  end-page: 492
  article-title: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men
  publication-title: J Clin Invest
– volume: 40
  start-page: 1297
  year: 1961
  end-page: 1303
  article-title: The cerebral vascular response to reduction in arterial carbon dioxide tension
  publication-title: J Clin Invest
– volume: 234
  start-page: H371
  year: 1978
  end-page: 383
  article-title: Responses of cerebral arteries and arterioles to acute hypotension and hypertension
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 274
  start-page: H233
  year: 1998
  end-page: 241
  article-title: Transfer function analysis of dynamic cerebral autoregulation in humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 66
  start-page: 8
  year: 1990
  end-page: 17
  article-title: Regulation of large cerebral arteries and cerebral microvascular pressure
  publication-title: Circ Res
– volume: 11
  start-page: 1155
  year: 1932
  end-page: 1177
  article-title: The blood flow in the brain and the leg of man, and the changes induced by alteration of blood gases
  publication-title: J Clin Invest
– volume: 28
  start-page: 449
  year: 1965
  end-page: 452
  article-title: Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures
  publication-title: J Neurol Neurosurg Psychiatr
– volume: 108
  start-page: 1447
  year: 2010
  end-page: 1449
  article-title: On the regulation of the blood supply to the brain: old age concepts and new age ideas
  publication-title: J Appl Physiol
– volume: 106
  start-page: 880
  year: 2009
  end-page: 886
  article-title: Onset responses of ventilation and cerebral blood flow to hypercapnia in humans: rest and exercise
  publication-title: J Appl Physiol
– volume: 23
  start-page: 1097
  year: 1930
  end-page: 1120
  article-title: Cerebral circulation. XII. The effect on pial vessels of variations in the oxygen and carbon dioxide content of the blood
  publication-title: Arch Neuro and Psychiat
– volume: 1
  start-page: 187
  year: 1938
  end-page: 197
  article-title: The relationship between the blood pressure and the tonic regulation of the pial arteries
  publication-title: J Neurol Psychiatry
– volume: 80
  start-page: 1214
  year: 1996
  end-page: 1218
  article-title: Augmented hypoxic cerebral vasodilation in men during 5 days at 3,810 m altitude
  publication-title: J Appl Physiol
– volume: 566
  start-page: 613
  year: 2005
  end-page: 624
  article-title: Differential responses to CO and sympathetic stimulation in the cerebral and femoral circulations in humans
  publication-title: J Physiol
– year: 2002
– volume: 51
  start-page: 203
  year: 2008
  end-page: 210
  article-title: Importance of measuring the time course of flow‐mediated dilatation in humans
  publication-title: Hypertension
– volume: 581
  start-page: 1207
  year: 2007
  end-page: 1219
  article-title: Prospective targeting and control of end‐tidal CO and O concentrations
  publication-title: J Physiol
– volume: 31
  start-page: 2019
  year: 2011
  end-page: 2029
  article-title: Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia‐an ultrasound and MRI study
  publication-title: J Cereb Bloodl Flow Metab
– volume: 589
  start-page: 3039
  year: 2011
  end-page: 3048
  article-title: The cerebrovascular response to carbon dioxide in humans
  publication-title: J Physiol
– volume: 109
  start-page: 864
  year: 2010
  end-page: 869
  article-title: Different blood flow responses to dynamic exercise between internal carotid and vertebral arteries in women
  publication-title: J Appl Physiol
– volume: 106
  start-page: 850
  year: 2009
  end-page: 856
  article-title: Influence of cerebral blood flow on breathing stability
  publication-title: J Appl Physiol
– volume: 14
  start-page: 479
  year: 1988
  end-page: 483
  article-title: Carbondioxide reactivity of the blood flow in human basilar artery estimated by the transcranial Doppler method in normal men: a comparison with that of the middle cerebral artery
  publication-title: Ultrasound Med Biol
– volume: 95
  start-page: 251
  year: 2010
  end-page: 262
  article-title: Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance
  publication-title: Exp Physiol
– ident: e_1_2_6_3_1
  doi: 10.1152/japplphysiol.00257.2010
– ident: e_1_2_6_43_1
  doi: 10.1038/jcbfm.1994.126
– ident: e_1_2_6_40_1
  doi: 10.1152/japplphysiol.00498.2009
– volume: 48
  start-page: 213
  year: 1980
  ident: e_1_2_6_16_1
  article-title: Regional distribution of cerebral blood flow during exercise in dogs
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1980.48.2.213
– ident: e_1_2_6_13_1
  doi: 10.1136/jnnp.1.3.187
– ident: e_1_2_6_5_1
  doi: 10.1113/expphysiol.2008.045575
– ident: e_1_2_6_37_1
  doi: 10.1152/japplphysiol.01359.2009
– ident: e_1_2_6_42_1
  doi: 10.2170/jjphysiol.38.445
– ident: e_1_2_6_35_1
  doi: 10.1152/jappl.1990.68.4.1727
– ident: e_1_2_6_23_1
  doi: 10.1016/S1569-9048(02)00152-0
– ident: e_1_2_6_10_1
  doi: 10.1016/0301-5629(85)90107-3
– ident: e_1_2_6_28_1
  doi: 10.1113/jphysiol.2010.192534
– ident: e_1_2_6_45_1
  doi: 10.1016/j.jneumeth.2011.01.011
– ident: e_1_2_6_4_1
  doi: 10.1152/ajpregu.91008.2008
– ident: e_1_2_6_21_1
  doi: 10.1152/japplphysiol.01186.2002
– ident: e_1_2_6_6_1
  doi: 10.1113/jphysiol.2005.087320
– ident: e_1_2_6_8_1
  doi: 10.1161/HYPERTENSIONAHA.107.101014
– ident: e_1_2_6_26_1
  doi: 10.1152/ajpheart.1978.234.4.H371
– ident: e_1_2_6_22_1
  doi: 10.1113/jphysiol.2008.154716
– ident: e_1_2_6_47_1
  doi: 10.1001/archneurpsyc.1930.02220120002001
– ident: e_1_2_6_31_1
  doi: 10.1016/0301-5629(88)90108-1
– ident: e_1_2_6_48_1
  doi: 10.1152/japplphysiol.90914.2008
– ident: e_1_2_6_50_1
  doi: 10.1152/ajpheart.1998.274.1.H233
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1748-1716.1980.tb06647.x
– ident: e_1_2_6_25_1
  doi: 10.1172/JCI101995
– ident: e_1_2_6_30_1
  doi: 10.1161/01.STR.4.5.742
– ident: e_1_2_6_7_1
  doi: 10.1113/jphysiol.2011.206052
– ident: e_1_2_6_36_1
  doi: 10.1113/jphysiol.2010.204461
– ident: e_1_2_6_29_1
  doi: 10.1161/01.STR.11.3.240
– ident: e_1_2_6_11_1
  doi: 10.1161/01.RES.66.1.8
– ident: e_1_2_6_46_1
  doi: 10.1038/jcbfm.2011.81
– ident: e_1_2_6_17_1
  doi: 10.1136/jnnp.28.5.449
– ident: e_1_2_6_39_1
  doi: 10.1113/jphysiol.2007.129395
– ident: e_1_2_6_2_1
  doi: 10.1161/01.STR.20.1.45
– volume-title: Om Piarrteriernes vasomotoriske Reaktioner
  year: 1934
  ident: e_1_2_6_12_1
– ident: e_1_2_6_14_1
  doi: 10.1001/archneurpsyc.1928.02210120090008
– ident: e_1_2_6_20_1
  doi: 10.1016/0034-5687(96)00011-4
– volume: 548
  start-page: 323
  year: 2003
  ident: e_1_2_6_34_1
  article-title: Mechanisms of the cerebrovascular response to apnoea in humans
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2002.029678
– ident: e_1_2_6_49_1
  doi: 10.1164/rccm.200406-807OC
– ident: e_1_2_6_38_1
  doi: 10.1161/01.STR.25.1.17
– ident: e_1_2_6_44_1
  doi: 10.1172/JCI104359
– ident: e_1_2_6_19_1
  doi: 10.1172/JCI109187
– ident: e_1_2_6_32_1
  doi: 10.1152/japplphysiol.91292.2008
– ident: e_1_2_6_41_1
  doi: 10.1254/jjp.76.349
– ident: e_1_2_6_27_1
  doi: 10.1172/JCI100470
– ident: e_1_2_6_24_1
  doi: 10.1152/jappl.1996.80.4.1214
– ident: e_1_2_6_33_1
  doi: 10.1113/jphysiol.2007.137075
– volume-title: Cerebral Blood Flow and Metabolism
  year: 2002
  ident: e_1_2_6_9_1
– ident: e_1_2_6_15_1
  doi: 10.1227/00006123-199305000-00006
– reference: 5838479 - J Neurol Neurosurg Psychiatry. 1965 Oct;28(5):449-52
– reference: 16694095 - J Clin Invest. 1932 Nov;11(6):1155-77
– reference: 8266366 - Stroke. 1994 Jan;25(1):17-22
– reference: 6782831 - Acta Physiol Scand. 1980 Oct;110(2):167-73
– reference: 701475 - J Clin Invest. 1978 Oct;62(4):761-8
– reference: 21486813 - J Physiol. 2011 Jun 1;589(Pt 11):2847-56
– reference: 7929657 - J Cereb Blood Flow Metab. 1994 Nov;14(6):944-51
– reference: 19118158 - J Appl Physiol (1985). 2009 Mar;106(3):850-6
– reference: 21521758 - J Physiol. 2011 Jun 15;589(Pt 12):3039-48
– reference: 2492126 - Stroke. 1989 Jan;20(1):45-52
– reference: 4751085 - Stroke. 1973 Sep-Oct;4(5):742-50
– reference: 8926248 - J Appl Physiol (1985). 1996 Apr;80(4):1214-8
– reference: 3147551 - Ultrasound Med Biol. 1988;14(6):479-83
– reference: 6767665 - J Appl Physiol Respir Environ Exerc Physiol. 1980 Feb;48(2):213-7
– reference: 19661450 - J Appl Physiol (1985). 2009 Oct;107(4):1165-71
– reference: 2403863 - Circ Res. 1990 Jan;66(1):8-17
– reference: 19617269 - Exp Physiol. 2010 Feb;95(2):251-62
– reference: 17690148 - J Physiol. 2007 Oct 1;584(Pt 1):347-57
– reference: 16695569 - J Clin Invest. 1948 Jul;27(4):484-92
– reference: 21276818 - J Neurosci Methods. 2011 Mar 30;196(2):221-37
– reference: 21654697 - J Cereb Blood Flow Metab. 2011 Oct;31(10):2019-29
– reference: 20595539 - J Appl Physiol (1985). 2010 Sep;109(3):864-9
– reference: 21041534 - J Physiol. 2011 Feb 1;589(Pt 3):741-53
– reference: 645875 - Am J Physiol. 1978 Apr;234(4):H371-83
– reference: 3148777 - Jpn J Physiol. 1988;38(4):445-57
– reference: 12385732 - Respir Physiol Neurobiol. 2002 Oct 23;133(1-2):65-74
– reference: 19131474 - J Appl Physiol (1985). 2009 Mar;106(3):880-6
– reference: 8865384 - Respir Physiol. 1996 Apr-May;104(1):71-5
– reference: 18086954 - Hypertension. 2008 Feb;51(2):203-10
– reference: 20299620 - J Appl Physiol (1985). 2010 Jun;108(6):1447-9
– reference: 6771898 - Stroke. 1980 May-Jun;11(3):240-8
– reference: 9623714 - Jpn J Pharmacol. 1998 Apr;76(4):349-67
– reference: 15890697 - J Physiol. 2005 Jul 15;566(Pt 2):613-24
– reference: 8492848 - Neurosurgery. 1993 May;32(5):737-41; discussion 741-2
– reference: 12588894 - J Physiol. 2003 Apr 1;548(Pt 1):323-32
– reference: 2932831 - Ultrasound Med Biol. 1985 Sep-Oct;11(5):735-41
– reference: 21610927 - J Neurol Psychiatry. 1938 Jul;1(3):187-97
– reference: 19278048 - J Appl Physiol (1985). 2003 Jul;95(1):129-37
– reference: 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
– reference: 2112130 - J Appl Physiol (1985). 1990 Apr;68(4):1727-31
– reference: 18565992 - J Physiol. 2008 Aug 1;586(15):3675-82
– reference: 22826302 - J Physiol. 2012 Jul 15;590(14):3217
– reference: 19211719 - Am J Physiol Regul Integr Comp Physiol. 2009 May;296(5):R1473-95
– reference: 17446225 - J Physiol. 2007 Jun 15;581(Pt 3):1207-19
– reference: 13783303 - J Clin Invest. 1961 Jul;40:1297-303
– reference: 15901613 - Am J Respir Crit Care Med. 2005 Aug 1;172(3):371-8
SSID ssj0013099
Score 2.5609844
Snippet Key points •  The partial pressures of arterial carbon dioxide () and oxygen () has a marked influence on brain blood flow. •  It is unclear if the larger...
The partial pressures of arterial carbon dioxide ( ) and oxygen ( ) has a marked influence on brain blood flow. It is unclear if the larger brain arteries are...
Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF)...
Key points * The partial pressures of arterial carbon dioxide () and oxygen () has a marked influence on brain blood flow. * It is unclear if the larger brain...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3261
SubjectTerms Adult
Blood Flow Velocity - physiology
Blood Gas Analysis
Brain - blood supply
Cardiovascular
Carotid Artery, Internal - diagnostic imaging
Cerebral Arteries - diagnostic imaging
Female
Humans
Hypercapnia - blood
Hypercapnia - diagnostic imaging
Hypocapnia - blood
Hypocapnia - diagnostic imaging
Hypoxia - blood
Hypoxia - diagnostic imaging
Male
Regional Blood Flow - physiology
Ultrasonography, Doppler, Transcranial
Vasoconstriction - physiology
Vasodilation - physiology
Vertebral Artery - diagnostic imaging
Title Regional brain blood flow in man during acute changes in arterial blood gases
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.228551
https://www.ncbi.nlm.nih.gov/pubmed/22495584
https://www.proquest.com/docview/1545340909
https://www.proquest.com/docview/1027834063
https://pubmed.ncbi.nlm.nih.gov/PMC3459041
Volume 590
WOSCitedRecordID wos000306737500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VlgMXKC2PQLsyUsUtED_y8LGirEoFq1XVir1Fju1sF7VJ1d0t6r9nbGcDqyKBELck9jh-jecb2zMDcOClLlVZnHFbxbhK1nFVsSqW1gkjxBOpNj7YRD4aFZOJHG_AcGULE_xD9BtujjP8eu0YXFVdFBLqnA1886p_644PKHvHWJF6S2oqqAtk8PXT6OdhQiJl7zQ8T2lnQYfFvP9dIesS6h7svH978ldU68XS8Mn_atA2PO6AKTkMM-kpbNhmB3YPG1TKr-7IWzIOZO30bhe-nNqp30IklYswQfztd1Jftt8Jvl2phgTrR6L0cmFJMC6euzR_g3TmCD3JFGXo_BmcDz-efTiOu7gMsRZFJmLFhEHgYSzqb0xSw3NtFD7mqua8Lqx0PuYTqpjJMpUIJVEr41ktbCZZJRDiPIfNpm3sSyDSIOSseV5TI4ROeUWLXAvUOVPNtUlUBHw1FqXunJa72BmXZVBeeLnqtdL1Whl6LYK4p7oOTjv-kH9vNcxlx8Lz0mFLjjVJZARv-mRkPneiohrbLjFP4gOVIMyL4EWYFf0PmYvqjfAugnxtvvQZnGPv9ZRmduEdfHORykRgtZifL3_VhvLsZIzrq3j1L0Sv4ZH7Gq4h78Hm4mZp9-Ghvl3M5jcDeJBPigFsHZ0Ozz8PPG_9AGd6JjU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VLRJcoFAegQJGQtwCie08fKxQSwvtaoUW0Vvk2M6yqE1Qd7eo_54ZOxtYFQmEuCWyJ_FrPN_Y8wB46aVuqvM4F66OcZds4rrmdawcCSPEE5mxPtlEMRqVp6dqvAHvVr4wIT7EcOBGnOH3a2JwOpDuuZyiDXz1un9H9wcpf815mZEr9ZZEzEE5HD4fjX5eJyRKDWHDiyztfejwO29-95V1GXUNeF63n_wV13rBdHDnv3VpG2732JTthcV0FzZcew929lrUy8-v2Cs2DmTd9GoHTj66qT9FZDUlmWDeAJ41Z913hm_numXBAZJps1w4FvyL51TmjUhnROhJpihG5_fh08H-5O1h3KdmiI0scxlrLi1iD-tQheMqtaIwVuNjoRshmtIpCjOfpJrbPNeJ1AoVM5E30uWK1xJRzgPYbLvWPQKmLKLORhRNaqU0majTsjAS1c7MCGMTHYFYTUZl-rjllD7jrAr6i6hWo1bRqFVh1CKIB6pvIW7HH-rvrua56rl4XhG8FNiSREXwYihG_qNLFd26bol1Ep-rBJFeBA_Dshh-yCmxNyK8CIq1BTNUoNje6yXt7IuP8S1kphKJzeJ-wfxVH6rJ-zFusfLxvxA9h5uHk5Pj6vho9OEJ3KIawSp5FzYXF0v3FG6Yy8VsfvHMs9YPjKMnyw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5VW4R44SpHoICREG-BxHYOP1aU5SqrVdVKfYsc21kWtUnV3QX13zNjZwOrIoEQb4nsSXzMeL6xPTMAL7zWTXUe58LVMa6STVzXvI6VI2WEeCIz1iebKCaT8uRETbfg3doXJsSHGDbcSDL8ek0C7s5t00s5RRv46m3_js4PUv6K8zIjV-ptSflkRrC9fzg-Pvh5oJAoNQQOL7K096LDL73-3Xc2tdQV6Hn1BuWvyNarpvGt_9ap23CzR6dsL7DTHdhy7V3Y2WvRMj-7ZC_ZNJB1s8sd-HzoZn4fkdWUZoL5K_CsOe2-M3w70y0LLpBMm9XSseBhvKAyf410ToSeZIaKdHEPjsdvj968j_vkDLGRZS5jzaVF9GEdGnFcpVYUxmp8LHQjRFM6RYHmk1Rzm-c6kVqhaSbyRrpc8VoizrkPo7Zr3UNgyiLubETRpFZKk4k6LQsj0fDMjDA20RGI9WRUpo9cTgk0TqtgwYhqPWoVjVoVRi2CeKA6D5E7_lB_dz3PVS_Hi4oApsCWJCqC50MxSiAdq-jWdSusk_hsJYj1IngQ2GL4IafU3ojxIig2GGaoQNG9N0va-Rcf5VsgIycSm8U9w_xVH6qjj1NcZOWjfyF6Bten--Pq4MPk02O4QRXCteRdGC0vVu4JXDPflvPFxdNetn4AilcodA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+brain+blood+flow+in+man+during+acute+changes+in+arterial+blood+gases&rft.jtitle=The+Journal+of+physiology&rft.au=Willie%2C+C.+K.&rft.au=Macleod%2C+D.+B.&rft.au=Shaw%2C+A.+D.&rft.au=Smith%2C+K.+J.&rft.date=2012-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=590&rft.issue=14&rft.spage=3261&rft.epage=3275&rft_id=info:doi/10.1113%2Fjphysiol.2012.228551&rft.externalDBID=10.1113%252Fjphysiol.2012.228551&rft.externalDocID=TJP5104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon