Control of water distribution networks with dynamic DMA topology using strictly feasible sequential convex programming

The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage mana...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 51; no. 12; pp. 9925 - 9941
Main Authors: Wright, Robert, Abraham, Edo, Parpas, Panos, Stoianov, Ivan
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 01.12.2015
John Wiley & Sons, Inc
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. Key Points: A novel approach for the operation of water distribution networks A novel optimization method with reliable convergence for valve control Hydraulic data demonstrating the optimization method and operations approach
AbstractList The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. A novel approach for the operation of water distribution networks A novel optimization method with reliable convergence for valve control Hydraulic data demonstrating the optimization method and operations approach
The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. Key Points: A novel approach for the operation of water distribution networks A novel optimization method with reliable convergence for valve control Hydraulic data demonstrating the optimization method and operations approach
The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs.
The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. Key Points: * A novel approach for the operation of water distribution networks * A novel optimization method with reliable convergence for valve control * Hydraulic data demonstrating the optimization method and operations approach
Author Abraham, Edo
Parpas, Panos
Stoianov, Ivan
Wright, Robert
Author_xml – sequence: 1
  givenname: Robert
  surname: Wright
  fullname: Wright, Robert
  email: robert.wright07@imperial.ac.uk
  organization: InfraSense Labs, Department of Civil and Environmental Engineering, Imperial College London, London, UK
– sequence: 2
  givenname: Edo
  surname: Abraham
  fullname: Abraham, Edo
  organization: InfraSense Labs, Department of Civil and Environmental Engineering, Imperial College London, London, UK
– sequence: 3
  givenname: Panos
  surname: Parpas
  fullname: Parpas, Panos
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 4
  givenname: Ivan
  surname: Stoianov
  fullname: Stoianov, Ivan
  organization: InfraSense Labs, Department of Civil and Environmental Engineering, Imperial College London, London, UK
BookMark eNp9kUFvFCEYhompidvqzR9A4sWDozDAAMdmtdW0atzUbOKFMAyz0jKwBabb-feddY0xTfT0XZ7n-9587zE4CjFYAF5i9BYjVL-rEWbrFcKcNs0TsMCS0opLTo7AAiFKKkwkfwaOc75GCFPW8AW4W8ZQUvQw9nCni02wc7kk147FxQCDLbuYbjLcufITdlPQgzPw_edTWOI2-riZ4Jhd2MC9Y4qfYG91dq23MNvb0YbitIcmhjt7D7cpbpIehpl_Dp722mf74vc8Ad_PPlwtP1aXX88_LU8vK0NFg6uOUyuJNJYyppvGWlprQQTqOm0Q7SxvSS91X6NeYo6JZW0rjBAUMYk1J5KcgNeHvfPtOU4uanDZWO91sHHMCnOBWE3lL_TVI_Q6jinM6WaKccE4k2im6gNlUsw52V4ZV_T-VyVp5xVGal-F-ruKWXrzSNomN-g0_QsnB3znvJ3-y6r1armqsajxbFUHa-7P3v-xdLpRDSecqfWXc0Xwt6sfgpypC_IA6YereA
CitedBy_id crossref_primary_10_1016_j_heliyon_2025_e42306
crossref_primary_10_1007_s11269_024_03985_8
crossref_primary_10_1029_2020WR028285
crossref_primary_10_1016_j_ifacol_2017_08_1069
crossref_primary_10_1029_2021WR031919
crossref_primary_10_1061__ASCE_WR_1943_5452_0001500
crossref_primary_10_1016_j_ress_2018_04_003
crossref_primary_10_3390_w8050179
crossref_primary_10_2166_hydro_2017_080
crossref_primary_10_1007_s41109_018_0079_y
crossref_primary_10_1109_JSYST_2019_2961104
crossref_primary_10_1061__ASCE_WR_1943_5452_0001139
crossref_primary_10_1109_TCST_2022_3201334
crossref_primary_10_1061_JWRMD5_WRENG_6515
crossref_primary_10_2166_hydro_2019_099
crossref_primary_10_2166_hydro_2017_157
crossref_primary_10_3390_w10040368
crossref_primary_10_1007_s11081_021_09598_z
crossref_primary_10_1016_j_ejor_2019_07_060
crossref_primary_10_1061__ASCE_WR_1943_5452_0001055
crossref_primary_10_1109_TCNS_2016_2548418
crossref_primary_10_1109_JSYST_2022_3159764
crossref_primary_10_1061__ASCE_WR_1943_5452_0000878
crossref_primary_10_1061__ASCE_WR_1943_5452_0000835
crossref_primary_10_1007_s00158_024_03776_0
crossref_primary_10_1016_j_proeng_2016_11_097
crossref_primary_10_1016_j_renene_2019_04_067
crossref_primary_10_1016_j_watres_2022_118914
crossref_primary_10_1109_TCNS_2023_3259103
crossref_primary_10_1029_2024WR038237
crossref_primary_10_1007_s11081_018_9412_7
crossref_primary_10_1016_j_scs_2023_104391
crossref_primary_10_3390_su14127282
crossref_primary_10_1007_s00158_016_1537_8
crossref_primary_10_2166_hydro_2024_108
crossref_primary_10_1007_s11269_016_1245_6
crossref_primary_10_1061__ASCE_WR_1943_5452_0001237
crossref_primary_10_1061_JWRMD5_WRENG_5924
crossref_primary_10_1016_j_ejor_2019_12_011
crossref_primary_10_1007_s11269_023_03592_z
crossref_primary_10_1016_j_enconman_2019_02_051
crossref_primary_10_3390_su14063692
crossref_primary_10_1007_s10669_021_09807_1
crossref_primary_10_1016_j_proeng_2017_03_272
crossref_primary_10_1108_BEPAM_05_2020_0097
crossref_primary_10_1007_s11269_021_03056_2
crossref_primary_10_1016_j_aei_2018_02_004
crossref_primary_10_1007_s11269_023_03576_z
crossref_primary_10_1016_j_watres_2023_119602
crossref_primary_10_1016_j_physa_2023_129303
crossref_primary_10_1061__ASCE_WR_1943_5452_0001233
crossref_primary_10_1287_opre_2021_2180
crossref_primary_10_3390_w12051323
crossref_primary_10_1061__ASCE_WR_1943_5452_0001273
crossref_primary_10_1007_s10589_016_9888_z
crossref_primary_10_1061__ASCE_WR_1943_5452_0000934
crossref_primary_10_1016_j_arcontrol_2023_03_014
crossref_primary_10_1016_j_ejor_2021_03_004
crossref_primary_10_1016_j_cor_2023_106181
crossref_primary_10_1061__ASCE_WR_1943_5452_0001509
Cites_doi 10.1007/978-3-642-25707-0_8
10.1017/CBO9780511804441
10.2166/hydro.2014.086
10.1061/40685(2003)113
10.1016/j.envsoft.2011.07.016
10.1016/j.proeng.2015.08.902
10.1061/(ASCE)WR.1943-5452.0000431
10.1007/0-387-24255-4_14
10.1109/CDC.2011.6160919
10.1061/(ASCE)0733-9429(1998)124:11(1146)
10.1049/ic.2010.0416
10.1007/978-0-387-74503-9
10.1016/j.proeng.2014.02.090
10.1061/(ASCE)0733-9496(1990)116:4(455)
10.1061/(ASCE)0733-9496(2009)135:3(178)
10.1061/9780784412947.067
10.1016/S1462-0758(00)00048-0
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
DOI 10.1002/2015WR017466
DatabaseName Istex
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 9941
ExternalDocumentID 3924769131
10_1002_2015WR017466
WRCR21821
ark_67375_WNG_31QTZ83F_K
Genre article
GrantInformation_xml – fundername: Bristol Water plc
– fundername: Cla‐Val Ltd
– fundername: Evidence‐based Healthcare Collaborating Agency)?>NEC‐Imperial
– fundername: Engineering and Physical Sciences Research Council
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFFHD
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIQQE
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
3V.
A00
AAHHS
AAYOK
ABTAH
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
GROUPED_ABI_INFORM_COMPLETE
WYJ
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
ID FETCH-LOGICAL-c4861-d74e939ce455a66ee42a8380ddac04de7b3f9af20f91713e5bb8c8840591a7393
IEDL.DBID WIN
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368421500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Tue Oct 07 09:50:48 EDT 2025
Wed Aug 13 11:16:27 EDT 2025
Sat Nov 29 07:51:50 EST 2025
Tue Nov 18 22:34:28 EST 2025
Wed Jan 22 16:31:34 EST 2025
Tue Nov 11 03:32:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4861-d74e939ce455a66ee42a8380ddac04de7b3f9af20f91713e5bb8c8840591a7393
Notes Cla-Val Ltd
Bristol Water plc
ArticleID:WRCR21821
Supporting Information S1Data Set S1Data Set S2
Evidence-based Healthcare Collaborating Agency)?>NEC-Imperial
ark:/67375/WNG-31QTZ83F-K
istex:50743AA09608109590B908D23314E269A3112B21
This article was corrected on 12 JAN 2016. See the end of the full text for details.
Engineering and Physical Sciences Research Council
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015WR017466
PQID 1757857590
PQPubID 105507
PageCount 17
ParticipantIDs proquest_miscellaneous_1780524939
proquest_journals_1757857590
crossref_citationtrail_10_1002_2015WR017466
crossref_primary_10_1002_2015WR017466
wiley_primary_10_1002_2015WR017466_WRCR21821
istex_primary_ark_67375_WNG_31QTZ83F_K
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Boyd, S., and L. Vandenberghe (2004), Convex Optimization, Cambridge Univ. Press, Cambridge, U. K.
Luenberger, D. G., and Y. Ye (2008), Linear and Nonlinear Programming, vol. 116, Springer, USA.
Jowitt, P. W., and C. Xu (1990), Optimal valve control in water-distribution networks, J. Water Resour. Plann. Manage., 116(4), 455-472.
Ulanicki, B., P. Bounds, J. Rance, and L. Reynolds (2000), Open and closed loop pressure control for leakage reduction, Urban Water, 2(2), 105-114.
Wright, R., I. Stoianov, P. Parpas, K. Henderson, and J. King (2014), Adaptive water distribution networks with dynamically reconfigurable topology, J. Hydroinf., 16(6), 1280-1301.
Nicolini, M., and L. Zovatto (2009), Optimal location and control of pressure reducing valves in water networks, J. Water Resour. Plann. Manage., 135(3), 178-187.
Ni, Q., C. Zillober, and K. Schittkowski (2005), Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results, J. Comput. Math., 23(5), 491.
Armand, H., I. Stoianov, and N. Graham (2015), Investigating the impact of sectorized networks on discoloration, Procedia Eng., 119, 407-415.
Bertsekas, D. (1999), Nonlinear Programming, 2nd ed., Athena Sci., Belmont, Mass.
Abraham, E., and I. Stoianov (2015), Sparse null space algorithms for hydraulica analysis of large scale water supply networks, J. Hydraul. Eng., 11(1), 1111.
Hoskins, A., and I. Stoianov (2014), Infrasense: A distributed system for the continuous analysis of hydraulic transients, Procedia Eng., 70, 823-832.
Vairavamoorthy, K., and J. Lumbers (1998), Leakage reduction in water distribution systems: Optimal valve control, J. Hydraul. Eng., 124(11), 1146-1154.
Elhay, S., A. R. Simpson, J. Deuerlein, B. Alexander, and W. H. Schilders (2014), Reformulated co-tree flows method competitive with the global gradient algorithm for solving water distribution system equations, J. Water Resour. Plann. Manage., 140(12), 04014040-1-04014040-10.
Yazdani, A., R. A. Otoo, and P. Jeffrey (2011), Resilience enhancing expansion strategies for water distribution systems: A network theory approach, Environ. Modell. Software, 26(12), 1574-1582.
Nocedal, J., and S. J. Wright (2006), Numerical Optimization, Springer, Springer-Verlag, N. Y.
2014; 70
2012
2011
2010
2015; 11
2009
2008
2007
1996
2009; 135
2006
2005
2000; 2
2004
2015c
2003
2015b
2005; 23
1999
1990; 116
2015a
2014; 16
2015; 119
2008; 116
2014; 140
2015
2014
2011; 26
2013
1998; 124
1988
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
Ni Q. (e_1_2_7_21_1) 2005; 23
Abraham E. (e_1_2_7_2_1) 2015; 11
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Bertsekas D. (e_1_2_7_5_1) 1999
Todini E. (e_1_2_7_34_1) 1988
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Nocedal J. (e_1_2_7_23_1) 2006
References_xml – reference: Ni, Q., C. Zillober, and K. Schittkowski (2005), Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results, J. Comput. Math., 23(5), 491.
– reference: Nocedal, J., and S. J. Wright (2006), Numerical Optimization, Springer, Springer-Verlag, N. Y.
– reference: Ulanicki, B., P. Bounds, J. Rance, and L. Reynolds (2000), Open and closed loop pressure control for leakage reduction, Urban Water, 2(2), 105-114.
– reference: Luenberger, D. G., and Y. Ye (2008), Linear and Nonlinear Programming, vol. 116, Springer, USA.
– reference: Abraham, E., and I. Stoianov (2015), Sparse null space algorithms for hydraulica analysis of large scale water supply networks, J. Hydraul. Eng., 11(1), 1111.
– reference: Bertsekas, D. (1999), Nonlinear Programming, 2nd ed., Athena Sci., Belmont, Mass.
– reference: Vairavamoorthy, K., and J. Lumbers (1998), Leakage reduction in water distribution systems: Optimal valve control, J. Hydraul. Eng., 124(11), 1146-1154.
– reference: Elhay, S., A. R. Simpson, J. Deuerlein, B. Alexander, and W. H. Schilders (2014), Reformulated co-tree flows method competitive with the global gradient algorithm for solving water distribution system equations, J. Water Resour. Plann. Manage., 140(12), 04014040-1-04014040-10.
– reference: Jowitt, P. W., and C. Xu (1990), Optimal valve control in water-distribution networks, J. Water Resour. Plann. Manage., 116(4), 455-472.
– reference: Hoskins, A., and I. Stoianov (2014), Infrasense: A distributed system for the continuous analysis of hydraulic transients, Procedia Eng., 70, 823-832.
– reference: Armand, H., I. Stoianov, and N. Graham (2015), Investigating the impact of sectorized networks on discoloration, Procedia Eng., 119, 407-415.
– reference: Wright, R., I. Stoianov, P. Parpas, K. Henderson, and J. King (2014), Adaptive water distribution networks with dynamically reconfigurable topology, J. Hydroinf., 16(6), 1280-1301.
– reference: Boyd, S., and L. Vandenberghe (2004), Convex Optimization, Cambridge Univ. Press, Cambridge, U. K.
– reference: Nicolini, M., and L. Zovatto (2009), Optimal location and control of pressure reducing valves in water networks, J. Water Resour. Plann. Manage., 135(3), 178-187.
– reference: Yazdani, A., R. A. Otoo, and P. Jeffrey (2011), Resilience enhancing expansion strategies for water distribution systems: A network theory approach, Environ. Modell. Software, 26(12), 1574-1582.
– year: 2009
– start-page: 305
  year: 2005
  end-page: 330
– year: 2007
– volume: 23
  start-page: 491
  issue: 5
  year: 2005
  article-title: Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results
  publication-title: J. Comput. Math.
– year: 2015c
– start-page: 493
  year: 1996
  end-page: 500
– year: 2014
– year: 2015a
– volume: 26
  start-page: 1574
  issue: 12
  year: 2011
  end-page: 1582
  article-title: Resilience enhancing expansion strategies for water distribution systems: A network theory approach
  publication-title: Environ. Modell. Software
– volume: 124
  start-page: 1146
  issue: 11
  year: 1998
  end-page: 1154
  article-title: Leakage reduction in water distribution systems: Optimal valve control
  publication-title: J. Hydraul. Eng.
– volume: 16
  start-page: 1280
  issue: 6
  year: 2014
  end-page: 1301
  article-title: Adaptive water distribution networks with dynamically reconfigurable topology
  publication-title: J. Hydroinf.
– year: 2012
– volume: 116
  start-page: 455
  issue: 4
  year: 1990
  end-page: 472
  article-title: Optimal valve control in water‐distribution networks
  publication-title: J. Water Resour. Plann. Manage.
– volume: 2
  start-page: 105
  issue: 2
  year: 2000
  end-page: 114
  article-title: Open and closed loop pressure control for leakage reduction
  publication-title: Urban Water
– volume: 135
  start-page: 178
  issue: 3
  year: 2009
  end-page: 187
  article-title: Optimal location and control of pressure reducing valves in water networks
  publication-title: J. Water Resour. Plann. Manage.
– volume: 116
  year: 2008
– start-page: 1
  year: 2010
  end-page: 6
– year: 2008
– year: 2006
– start-page: 19
  year: 2003
  end-page: 30
– volume: 11
  start-page: 1111
  issue: 1
  year: 2015
  article-title: Sparse null space algorithms for hydraulica analysis of large scale water supply networks
  publication-title: J. Hydraul. Eng.
– year: 2004
– start-page: 5905
  year: 2011
  end-page: 5910
– volume: 70
  start-page: 823
  year: 2014
  end-page: 832
  article-title: Infrasense: A distributed system for the continuous analysis of hydraulic transients
  publication-title: Procedia Eng.
– start-page: 1
  year: 1988
  end-page: 20
– start-page: 91
  year: 2012
  end-page: 102,
– year: 2015b
– volume: 140
  start-page: 04014040-1
  issue: 12
  year: 2014
  end-page: 04014040-10
  article-title: Reformulated co‐tree flows method competitive with the global gradient algorithm for solving water distribution system equations
  publication-title: J. Water Resour. Plann. Manage.
– year: 2015
– volume: 119
  start-page: 407
  year: 2015
  end-page: 415
  article-title: Investigating the impact of sectorized networks on discoloration
  publication-title: Procedia Eng.
– year: 1999
– year: 2013
– volume: 23
  start-page: 491
  issue: 5
  year: 2005
  ident: e_1_2_7_21_1
  article-title: Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results
  publication-title: J. Comput. Math.
– volume: 11
  start-page: 1111
  issue: 1
  year: 2015
  ident: e_1_2_7_2_1
  article-title: Sparse null space algorithms for hydraulica analysis of large scale water supply networks
  publication-title: J. Hydraul. Eng.
– start-page: 1
  volume-title: Computer Applications in Water Supply, vol. 1, Systems Analysis and Simulation
  year: 1988
  ident: e_1_2_7_34_1
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-642-25707-0_8
– ident: e_1_2_7_6_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_7_11_1
– ident: e_1_2_7_25_1
– ident: e_1_2_7_39_1
  doi: 10.2166/hydro.2014.086
– ident: e_1_2_7_28_1
– volume-title: Numerical Optimization
  year: 2006
  ident: e_1_2_7_23_1
– ident: e_1_2_7_29_1
  doi: 10.1061/40685(2003)113
– ident: e_1_2_7_33_1
– ident: e_1_2_7_40_1
  doi: 10.1016/j.envsoft.2011.07.016
– ident: e_1_2_7_4_1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.proeng.2015.08.902
– ident: e_1_2_7_7_1
– ident: e_1_2_7_8_1
– volume-title: Nonlinear Programming
  year: 1999
  ident: e_1_2_7_5_1
– ident: e_1_2_7_14_1
  doi: 10.1061/(ASCE)WR.1943-5452.0000431
– ident: e_1_2_7_31_1
  doi: 10.1007/0-387-24255-4_14
– ident: e_1_2_7_10_1
  doi: 10.1109/CDC.2011.6160919
– ident: e_1_2_7_16_1
– ident: e_1_2_7_37_1
  doi: 10.1061/(ASCE)0733-9429(1998)124:11(1146)
– ident: e_1_2_7_32_1
  doi: 10.1049/ic.2010.0416
– ident: e_1_2_7_38_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_27_1
– ident: e_1_2_7_35_1
– ident: e_1_2_7_20_1
  doi: 10.1007/978-0-387-74503-9
– ident: e_1_2_7_18_1
– ident: e_1_2_7_9_1
– ident: e_1_2_7_17_1
  doi: 10.1016/j.proeng.2014.02.090
– ident: e_1_2_7_26_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_19_1
  doi: 10.1061/(ASCE)0733-9496(1990)116:4(455)
– ident: e_1_2_7_22_1
  doi: 10.1061/(ASCE)0733-9496(2009)135:3(178)
– ident: e_1_2_7_13_1
  doi: 10.1061/9780784412947.067
– ident: e_1_2_7_15_1
– ident: e_1_2_7_36_1
  doi: 10.1016/S1462-0758(00)00048-0
SSID ssj0014567
Score 2.4521253
Snippet The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9925
SubjectTerms dynamic topology
flow modulation
Hydraulics
Optimization
pressure management
Topology
Valves
Water distribution
water distribution networks
Title Control of water distribution networks with dynamic DMA topology using strictly feasible sequential convex programming
URI https://api.istex.fr/ark:/67375/WNG-31QTZ83F-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015WR017466
https://www.proquest.com/docview/1757857590
https://www.proquest.com/docview/1780524939
Volume 51
WOSCitedRecordID wos000368421500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1daxQxFA3SCvpi_aTT1hJBfdGhk0kykzyWrauiLrq0bPElZJKMiuts2dl-7L9v7iQ7bh8UxJdhIDcQknuTm-TkHISec1HJghuZykwwv0GxLNWEmrTKSmuZ83uSPIhNlKOROD2Vn-OBG7yFCfwQ_YEbREY3X0OA66o9-E0a6lcuPhl7h2IFMG4T1sXl5P2ov0TwuUG5umCGRCfi3n31g_XKN1akTejcqxvp5nrS2q06w63_be99dC_mm_gwOMgDdMs1D9Gd1XPk1v9HGfTvy0foYhCA63hW40ufhM6xBV7dKImFmwAZbzEc3mIbtOzx0adDvAhSC0sMMPpvGOqYxXSJa6d9yE0dDohtP5tMcYdzv8IRGPbL2z9GJ8M3x4N3aRRmSA0TBUltyZyk0jjGuS4K51iuBRWZtdpkzLqyorXUdZ7VfjNIqONVJYzwW0kuiQYKvidoo5k1bhth5ouIZrI2GWX-UzFNKa91wfOCmtIl6NVqcJSJrOUgnjFVgW85V-v9mqAXvfVZYOv4g93Lbpx7Iz3_CQi3kqvJ6K2i5MvxV0GH6kOC9laOoGJwt4qABgAIm2YJetYX-7CEuxbduNk52IBWBPO9lKDXnVv8tUFqMh6MgUyf7Pyb-S66CwUBYLOHNhbzc_cU3TYXix_tfB9tHo2HJx_3u7i4Bh1ECvw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2CFmm88D0R2MBIwAtES2I7H49TtzK0roKqUydeLMd2ANGlU9uN9d_jG7uhewAJ8RJF8nUU2ffa1_bxOQCveV4WKVdFWEQ5swsUzUIZUxWWUaY1M3ZNkjixiWw4zM_Oik9e5xTvwjh-iHbDDSOjGa8xwHFDeu83a6iduvhkZD2Kpelt6DLrSbwD3YNR_3TQHiTY_CBbHzJjsuOx7_YLe5v1b8xKXWzg6xsp52bi2sw8_fv__c8P4J5POsm-85KHcMvUj2BrfSd5Yd-9Fvq31WO46jn0OplV5KfNROdEI7mu18UitcONLwju4BLtBO3Jwck-WTq9hRVBLP1XgnXUcroilZE27qaGONi2HVKmpAG7XxOPDju39k_gtH847h2FXp0hVCxP41BnzBS0UIZxLtPUGJbInOaR1lJFTJuspFUhqySq7IowpoaXZa5yu57kRSyRh28bOvWsNk-BMFsUS1ZUKqLMPkomKeWVTHmSUpWZAN6te0coT12OChpT4UiXE7HZrgG8aa0vHGXHH-zeNh3dGsn5D4S5ZVxMhh8EjT-Pv-S0L44D2Fl7gvARvhAxCgGgumkUwKu22MYmHrjI2swu0QYFI5htpQDeN37x1x8Sk1FvhIz68bN_M38JW0fjk4EYfBweP4e7aOQQNzvQWc4vzS7cUVfL74v5Cx8evwCxmw6o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CFQEXfiMCA4wEXCBaEttJfJxaAmijGtWmTrtYju0AoqRT2431v8evdkN3AAlxiSL5OYrs9-xn-_P3AbzkZS1yrkUskpK5BYphsUqpjuukMIZZtybJvNhEMRyWx8fiIOic4l0Yzw_RbbhhZKzGawxwe2qand-soW7q4uOR8yiW51ehx7jIXWT2BqPqaL87SHD5QbE-ZMZkJ2Df3Rd2NutfmpV62MAXl1LOzcR1NfNUt__7n-_ArZB0kl3vJXfhim3vwY31neS5ew9a6F-X9-G879HrZNqQny4TnRGD5LpBF4u0Hjc-J7iDS4wXtCeDT7tk4fUWlgSx9F8I1tGLyZI0Vrm4m1jiYdtuSJmQFdj9ggR02A9n_wCOqneH_Q9xUGeINSvzNDYFs4IKbRnnKs-tZZkqaZkYo3TCjC1q2gjVZEnjVoQptbyuS1269SQXqUIevoew1U5b-wgIc0WpYqLRCWXuUTNFKW9UzrOc6sJG8GbdO1IH6nJU0JhIT7qcyc12jeBVZ33qKTv-YPd61dGdkZp9R5hbweV4-F7S9PPhSUkruRfB9toTZIjwuUxRCADVTZMIXnTFLjbxwEW1dnqGNigYwVwrRfB25Rd__SE5HvVHyKifPv438-dw_WBQyf2Pw70ncBNtPOBmG7YWszP7FK7p88W3-exZiI5fJXQOIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+water+distribution+networks+with+dynamic+DMA+topology+using+strictly+feasible+sequential+convex+programming&rft.jtitle=Water+resources+research&rft.au=Wright%2C+Robert&rft.au=Abraham%2C+Edo&rft.au=Parpas%2C+Panos&rft.au=Stoianov%2C+Ivan&rft.date=2015-12-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=51&rft.issue=12&rft.spage=9925&rft.epage=9941&rft_id=info:doi/10.1002%2F2015WR017466&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon