Control of water distribution networks with dynamic DMA topology using strictly feasible sequential convex programming
The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage mana...
Saved in:
| Published in: | Water resources research Vol. 51; no. 12; pp. 9925 - 9941 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
Blackwell Publishing Ltd
01.12.2015
John Wiley & Sons, Inc |
| Subjects: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs.
Key Points:
A novel approach for the operation of water distribution networks
A novel optimization method with reliable convergence for valve control
Hydraulic data demonstrating the optimization method and operations approach |
|---|---|
| AbstractList | The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs.
A novel approach for the operation of water distribution networks A novel optimization method with reliable convergence for valve control Hydraulic data demonstrating the optimization method and operations approach The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. Key Points: A novel approach for the operation of water distribution networks A novel optimization method with reliable convergence for valve control Hydraulic data demonstrating the optimization method and operations approach The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. Key Points: * A novel approach for the operation of water distribution networks * A novel optimization method with reliable convergence for valve control * Hydraulic data demonstrating the optimization method and operations approach |
| Author | Abraham, Edo Parpas, Panos Stoianov, Ivan Wright, Robert |
| Author_xml | – sequence: 1 givenname: Robert surname: Wright fullname: Wright, Robert email: robert.wright07@imperial.ac.uk organization: InfraSense Labs, Department of Civil and Environmental Engineering, Imperial College London, London, UK – sequence: 2 givenname: Edo surname: Abraham fullname: Abraham, Edo organization: InfraSense Labs, Department of Civil and Environmental Engineering, Imperial College London, London, UK – sequence: 3 givenname: Panos surname: Parpas fullname: Parpas, Panos organization: Department of Computing, Imperial College London, London, UK – sequence: 4 givenname: Ivan surname: Stoianov fullname: Stoianov, Ivan organization: InfraSense Labs, Department of Civil and Environmental Engineering, Imperial College London, London, UK |
| BookMark | eNp9kUFvFCEYhompidvqzR9A4sWDozDAAMdmtdW0atzUbOKFMAyz0jKwBabb-feddY0xTfT0XZ7n-9587zE4CjFYAF5i9BYjVL-rEWbrFcKcNs0TsMCS0opLTo7AAiFKKkwkfwaOc75GCFPW8AW4W8ZQUvQw9nCni02wc7kk147FxQCDLbuYbjLcufITdlPQgzPw_edTWOI2-riZ4Jhd2MC9Y4qfYG91dq23MNvb0YbitIcmhjt7D7cpbpIehpl_Dp722mf74vc8Ad_PPlwtP1aXX88_LU8vK0NFg6uOUyuJNJYyppvGWlprQQTqOm0Q7SxvSS91X6NeYo6JZW0rjBAUMYk1J5KcgNeHvfPtOU4uanDZWO91sHHMCnOBWE3lL_TVI_Q6jinM6WaKccE4k2im6gNlUsw52V4ZV_T-VyVp5xVGal-F-ruKWXrzSNomN-g0_QsnB3znvJ3-y6r1armqsajxbFUHa-7P3v-xdLpRDSecqfWXc0Xwt6sfgpypC_IA6YereA |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2025_e42306 crossref_primary_10_1007_s11269_024_03985_8 crossref_primary_10_1029_2020WR028285 crossref_primary_10_1016_j_ifacol_2017_08_1069 crossref_primary_10_1029_2021WR031919 crossref_primary_10_1061__ASCE_WR_1943_5452_0001500 crossref_primary_10_1016_j_ress_2018_04_003 crossref_primary_10_3390_w8050179 crossref_primary_10_2166_hydro_2017_080 crossref_primary_10_1007_s41109_018_0079_y crossref_primary_10_1109_JSYST_2019_2961104 crossref_primary_10_1061__ASCE_WR_1943_5452_0001139 crossref_primary_10_1109_TCST_2022_3201334 crossref_primary_10_1061_JWRMD5_WRENG_6515 crossref_primary_10_2166_hydro_2019_099 crossref_primary_10_2166_hydro_2017_157 crossref_primary_10_3390_w10040368 crossref_primary_10_1007_s11081_021_09598_z crossref_primary_10_1016_j_ejor_2019_07_060 crossref_primary_10_1061__ASCE_WR_1943_5452_0001055 crossref_primary_10_1109_TCNS_2016_2548418 crossref_primary_10_1109_JSYST_2022_3159764 crossref_primary_10_1061__ASCE_WR_1943_5452_0000878 crossref_primary_10_1061__ASCE_WR_1943_5452_0000835 crossref_primary_10_1007_s00158_024_03776_0 crossref_primary_10_1016_j_proeng_2016_11_097 crossref_primary_10_1016_j_renene_2019_04_067 crossref_primary_10_1016_j_watres_2022_118914 crossref_primary_10_1109_TCNS_2023_3259103 crossref_primary_10_1029_2024WR038237 crossref_primary_10_1007_s11081_018_9412_7 crossref_primary_10_1016_j_scs_2023_104391 crossref_primary_10_3390_su14127282 crossref_primary_10_1007_s00158_016_1537_8 crossref_primary_10_2166_hydro_2024_108 crossref_primary_10_1007_s11269_016_1245_6 crossref_primary_10_1061__ASCE_WR_1943_5452_0001237 crossref_primary_10_1061_JWRMD5_WRENG_5924 crossref_primary_10_1016_j_ejor_2019_12_011 crossref_primary_10_1007_s11269_023_03592_z crossref_primary_10_1016_j_enconman_2019_02_051 crossref_primary_10_3390_su14063692 crossref_primary_10_1007_s10669_021_09807_1 crossref_primary_10_1016_j_proeng_2017_03_272 crossref_primary_10_1108_BEPAM_05_2020_0097 crossref_primary_10_1007_s11269_021_03056_2 crossref_primary_10_1016_j_aei_2018_02_004 crossref_primary_10_1007_s11269_023_03576_z crossref_primary_10_1016_j_watres_2023_119602 crossref_primary_10_1016_j_physa_2023_129303 crossref_primary_10_1061__ASCE_WR_1943_5452_0001233 crossref_primary_10_1287_opre_2021_2180 crossref_primary_10_3390_w12051323 crossref_primary_10_1061__ASCE_WR_1943_5452_0001273 crossref_primary_10_1007_s10589_016_9888_z crossref_primary_10_1061__ASCE_WR_1943_5452_0000934 crossref_primary_10_1016_j_arcontrol_2023_03_014 crossref_primary_10_1016_j_ejor_2021_03_004 crossref_primary_10_1016_j_cor_2023_106181 crossref_primary_10_1061__ASCE_WR_1943_5452_0001509 |
| Cites_doi | 10.1007/978-3-642-25707-0_8 10.1017/CBO9780511804441 10.2166/hydro.2014.086 10.1061/40685(2003)113 10.1016/j.envsoft.2011.07.016 10.1016/j.proeng.2015.08.902 10.1061/(ASCE)WR.1943-5452.0000431 10.1007/0-387-24255-4_14 10.1109/CDC.2011.6160919 10.1061/(ASCE)0733-9429(1998)124:11(1146) 10.1049/ic.2010.0416 10.1007/978-0-387-74503-9 10.1016/j.proeng.2014.02.090 10.1061/(ASCE)0733-9496(1990)116:4(455) 10.1061/(ASCE)0733-9496(2009)135:3(178) 10.1061/9780784412947.067 10.1016/S1462-0758(00)00048-0 |
| ContentType | Journal Article |
| Copyright | 2015. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2015. American Geophysical Union. All Rights Reserved. |
| DBID | BSCLL AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 |
| DOI | 10.1002/2015WR017466 |
| DatabaseName | Istex CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 9941 |
| ExternalDocumentID | 3924769131 10_1002_2015WR017466 WRCR21821 ark_67375_WNG_31QTZ83F_K |
| Genre | article |
| GrantInformation_xml | – fundername: Bristol Water plc – fundername: Cla‐Val Ltd – fundername: Evidence‐based Healthcare Collaborating Agency)?>NEC‐Imperial – fundername: Engineering and Physical Sciences Research Council |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFFHD AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIQQE AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WIN WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A 3V. A00 AAHHS AAYOK ABTAH ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE GROUPED_ABI_INFORM_COMPLETE WYJ AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 |
| ID | FETCH-LOGICAL-c4861-d74e939ce455a66ee42a8380ddac04de7b3f9af20f91713e5bb8c8840591a7393 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368421500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Tue Oct 07 09:50:48 EDT 2025 Wed Aug 13 11:16:27 EDT 2025 Sat Nov 29 07:51:50 EST 2025 Tue Nov 18 22:34:28 EST 2025 Wed Jan 22 16:31:34 EST 2025 Tue Nov 11 03:32:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4861-d74e939ce455a66ee42a8380ddac04de7b3f9af20f91713e5bb8c8840591a7393 |
| Notes | Cla-Val Ltd Bristol Water plc ArticleID:WRCR21821 Supporting Information S1Data Set S1Data Set S2 Evidence-based Healthcare Collaborating Agency)?>NEC-Imperial ark:/67375/WNG-31QTZ83F-K istex:50743AA09608109590B908D23314E269A3112B21 This article was corrected on 12 JAN 2016. See the end of the full text for details. Engineering and Physical Sciences Research Council ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015WR017466 |
| PQID | 1757857590 |
| PQPubID | 105507 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1780524939 proquest_journals_1757857590 crossref_citationtrail_10_1002_2015WR017466 crossref_primary_10_1002_2015WR017466 wiley_primary_10_1002_2015WR017466_WRCR21821 istex_primary_ark_67375_WNG_31QTZ83F_K |
| PublicationCentury | 2000 |
| PublicationDate | December 2015 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationTitleAlternate | Water Resour. Res |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
| References | Boyd, S., and L. Vandenberghe (2004), Convex Optimization, Cambridge Univ. Press, Cambridge, U. K. Luenberger, D. G., and Y. Ye (2008), Linear and Nonlinear Programming, vol. 116, Springer, USA. Jowitt, P. W., and C. Xu (1990), Optimal valve control in water-distribution networks, J. Water Resour. Plann. Manage., 116(4), 455-472. Ulanicki, B., P. Bounds, J. Rance, and L. Reynolds (2000), Open and closed loop pressure control for leakage reduction, Urban Water, 2(2), 105-114. Wright, R., I. Stoianov, P. Parpas, K. Henderson, and J. King (2014), Adaptive water distribution networks with dynamically reconfigurable topology, J. Hydroinf., 16(6), 1280-1301. Nicolini, M., and L. Zovatto (2009), Optimal location and control of pressure reducing valves in water networks, J. Water Resour. Plann. Manage., 135(3), 178-187. Ni, Q., C. Zillober, and K. Schittkowski (2005), Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results, J. Comput. Math., 23(5), 491. Armand, H., I. Stoianov, and N. Graham (2015), Investigating the impact of sectorized networks on discoloration, Procedia Eng., 119, 407-415. Bertsekas, D. (1999), Nonlinear Programming, 2nd ed., Athena Sci., Belmont, Mass. Abraham, E., and I. Stoianov (2015), Sparse null space algorithms for hydraulica analysis of large scale water supply networks, J. Hydraul. Eng., 11(1), 1111. Hoskins, A., and I. Stoianov (2014), Infrasense: A distributed system for the continuous analysis of hydraulic transients, Procedia Eng., 70, 823-832. Vairavamoorthy, K., and J. Lumbers (1998), Leakage reduction in water distribution systems: Optimal valve control, J. Hydraul. Eng., 124(11), 1146-1154. Elhay, S., A. R. Simpson, J. Deuerlein, B. Alexander, and W. H. Schilders (2014), Reformulated co-tree flows method competitive with the global gradient algorithm for solving water distribution system equations, J. Water Resour. Plann. Manage., 140(12), 04014040-1-04014040-10. Yazdani, A., R. A. Otoo, and P. Jeffrey (2011), Resilience enhancing expansion strategies for water distribution systems: A network theory approach, Environ. Modell. Software, 26(12), 1574-1582. Nocedal, J., and S. J. Wright (2006), Numerical Optimization, Springer, Springer-Verlag, N. Y. 2014; 70 2012 2011 2010 2015; 11 2009 2008 2007 1996 2009; 135 2006 2005 2000; 2 2004 2015c 2003 2015b 2005; 23 1999 1990; 116 2015a 2014; 16 2015; 119 2008; 116 2014; 140 2015 2014 2011; 26 2013 1998; 124 1988 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 Ni Q. (e_1_2_7_21_1) 2005; 23 Abraham E. (e_1_2_7_2_1) 2015; 11 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Bertsekas D. (e_1_2_7_5_1) 1999 Todini E. (e_1_2_7_34_1) 1988 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Nocedal J. (e_1_2_7_23_1) 2006 |
| References_xml | – reference: Ni, Q., C. Zillober, and K. Schittkowski (2005), Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results, J. Comput. Math., 23(5), 491. – reference: Nocedal, J., and S. J. Wright (2006), Numerical Optimization, Springer, Springer-Verlag, N. Y. – reference: Ulanicki, B., P. Bounds, J. Rance, and L. Reynolds (2000), Open and closed loop pressure control for leakage reduction, Urban Water, 2(2), 105-114. – reference: Luenberger, D. G., and Y. Ye (2008), Linear and Nonlinear Programming, vol. 116, Springer, USA. – reference: Abraham, E., and I. Stoianov (2015), Sparse null space algorithms for hydraulica analysis of large scale water supply networks, J. Hydraul. Eng., 11(1), 1111. – reference: Bertsekas, D. (1999), Nonlinear Programming, 2nd ed., Athena Sci., Belmont, Mass. – reference: Vairavamoorthy, K., and J. Lumbers (1998), Leakage reduction in water distribution systems: Optimal valve control, J. Hydraul. Eng., 124(11), 1146-1154. – reference: Elhay, S., A. R. Simpson, J. Deuerlein, B. Alexander, and W. H. Schilders (2014), Reformulated co-tree flows method competitive with the global gradient algorithm for solving water distribution system equations, J. Water Resour. Plann. Manage., 140(12), 04014040-1-04014040-10. – reference: Jowitt, P. W., and C. Xu (1990), Optimal valve control in water-distribution networks, J. Water Resour. Plann. Manage., 116(4), 455-472. – reference: Hoskins, A., and I. Stoianov (2014), Infrasense: A distributed system for the continuous analysis of hydraulic transients, Procedia Eng., 70, 823-832. – reference: Armand, H., I. Stoianov, and N. Graham (2015), Investigating the impact of sectorized networks on discoloration, Procedia Eng., 119, 407-415. – reference: Wright, R., I. Stoianov, P. Parpas, K. Henderson, and J. King (2014), Adaptive water distribution networks with dynamically reconfigurable topology, J. Hydroinf., 16(6), 1280-1301. – reference: Boyd, S., and L. Vandenberghe (2004), Convex Optimization, Cambridge Univ. Press, Cambridge, U. K. – reference: Nicolini, M., and L. Zovatto (2009), Optimal location and control of pressure reducing valves in water networks, J. Water Resour. Plann. Manage., 135(3), 178-187. – reference: Yazdani, A., R. A. Otoo, and P. Jeffrey (2011), Resilience enhancing expansion strategies for water distribution systems: A network theory approach, Environ. Modell. Software, 26(12), 1574-1582. – year: 2009 – start-page: 305 year: 2005 end-page: 330 – year: 2007 – volume: 23 start-page: 491 issue: 5 year: 2005 article-title: Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results publication-title: J. Comput. Math. – year: 2015c – start-page: 493 year: 1996 end-page: 500 – year: 2014 – year: 2015a – volume: 26 start-page: 1574 issue: 12 year: 2011 end-page: 1582 article-title: Resilience enhancing expansion strategies for water distribution systems: A network theory approach publication-title: Environ. Modell. Software – volume: 124 start-page: 1146 issue: 11 year: 1998 end-page: 1154 article-title: Leakage reduction in water distribution systems: Optimal valve control publication-title: J. Hydraul. Eng. – volume: 16 start-page: 1280 issue: 6 year: 2014 end-page: 1301 article-title: Adaptive water distribution networks with dynamically reconfigurable topology publication-title: J. Hydroinf. – year: 2012 – volume: 116 start-page: 455 issue: 4 year: 1990 end-page: 472 article-title: Optimal valve control in water‐distribution networks publication-title: J. Water Resour. Plann. Manage. – volume: 2 start-page: 105 issue: 2 year: 2000 end-page: 114 article-title: Open and closed loop pressure control for leakage reduction publication-title: Urban Water – volume: 135 start-page: 178 issue: 3 year: 2009 end-page: 187 article-title: Optimal location and control of pressure reducing valves in water networks publication-title: J. Water Resour. Plann. Manage. – volume: 116 year: 2008 – start-page: 1 year: 2010 end-page: 6 – year: 2008 – year: 2006 – start-page: 19 year: 2003 end-page: 30 – volume: 11 start-page: 1111 issue: 1 year: 2015 article-title: Sparse null space algorithms for hydraulica analysis of large scale water supply networks publication-title: J. Hydraul. Eng. – year: 2004 – start-page: 5905 year: 2011 end-page: 5910 – volume: 70 start-page: 823 year: 2014 end-page: 832 article-title: Infrasense: A distributed system for the continuous analysis of hydraulic transients publication-title: Procedia Eng. – start-page: 1 year: 1988 end-page: 20 – start-page: 91 year: 2012 end-page: 102, – year: 2015b – volume: 140 start-page: 04014040-1 issue: 12 year: 2014 end-page: 04014040-10 article-title: Reformulated co‐tree flows method competitive with the global gradient algorithm for solving water distribution system equations publication-title: J. Water Resour. Plann. Manage. – year: 2015 – volume: 119 start-page: 407 year: 2015 end-page: 415 article-title: Investigating the impact of sectorized networks on discoloration publication-title: Procedia Eng. – year: 1999 – year: 2013 – volume: 23 start-page: 491 issue: 5 year: 2005 ident: e_1_2_7_21_1 article-title: Sequential convex programming methods for solving large topology optimization problems: Implementation and computational results publication-title: J. Comput. Math. – volume: 11 start-page: 1111 issue: 1 year: 2015 ident: e_1_2_7_2_1 article-title: Sparse null space algorithms for hydraulica analysis of large scale water supply networks publication-title: J. Hydraul. Eng. – start-page: 1 volume-title: Computer Applications in Water Supply, vol. 1, Systems Analysis and Simulation year: 1988 ident: e_1_2_7_34_1 – ident: e_1_2_7_30_1 doi: 10.1007/978-3-642-25707-0_8 – ident: e_1_2_7_6_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_7_11_1 – ident: e_1_2_7_25_1 – ident: e_1_2_7_39_1 doi: 10.2166/hydro.2014.086 – ident: e_1_2_7_28_1 – volume-title: Numerical Optimization year: 2006 ident: e_1_2_7_23_1 – ident: e_1_2_7_29_1 doi: 10.1061/40685(2003)113 – ident: e_1_2_7_33_1 – ident: e_1_2_7_40_1 doi: 10.1016/j.envsoft.2011.07.016 – ident: e_1_2_7_4_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.proeng.2015.08.902 – ident: e_1_2_7_7_1 – ident: e_1_2_7_8_1 – volume-title: Nonlinear Programming year: 1999 ident: e_1_2_7_5_1 – ident: e_1_2_7_14_1 doi: 10.1061/(ASCE)WR.1943-5452.0000431 – ident: e_1_2_7_31_1 doi: 10.1007/0-387-24255-4_14 – ident: e_1_2_7_10_1 doi: 10.1109/CDC.2011.6160919 – ident: e_1_2_7_16_1 – ident: e_1_2_7_37_1 doi: 10.1061/(ASCE)0733-9429(1998)124:11(1146) – ident: e_1_2_7_32_1 doi: 10.1049/ic.2010.0416 – ident: e_1_2_7_38_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_27_1 – ident: e_1_2_7_35_1 – ident: e_1_2_7_20_1 doi: 10.1007/978-0-387-74503-9 – ident: e_1_2_7_18_1 – ident: e_1_2_7_9_1 – ident: e_1_2_7_17_1 doi: 10.1016/j.proeng.2014.02.090 – ident: e_1_2_7_26_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_19_1 doi: 10.1061/(ASCE)0733-9496(1990)116:4(455) – ident: e_1_2_7_22_1 doi: 10.1061/(ASCE)0733-9496(2009)135:3(178) – ident: e_1_2_7_13_1 doi: 10.1061/9780784412947.067 – ident: e_1_2_7_15_1 – ident: e_1_2_7_36_1 doi: 10.1016/S1462-0758(00)00048-0 |
| SSID | ssj0014567 |
| Score | 2.4521253 |
| Snippet | The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9925 |
| SubjectTerms | dynamic topology flow modulation Hydraulics Optimization pressure management Topology Valves Water distribution water distribution networks |
| Title | Control of water distribution networks with dynamic DMA topology using strictly feasible sequential convex programming |
| URI | https://api.istex.fr/ark:/67375/WNG-31QTZ83F-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015WR017466 https://www.proquest.com/docview/1757857590 https://www.proquest.com/docview/1780524939 |
| Volume | 51 |
| WOSCitedRecordID | wos000368421500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231213 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1daxQxFA3SCvpi_aTT1hJBfdGhk0kykzyWrauiLrq0bPElZJKMiuts2dl-7L9v7iQ7bh8UxJdhIDcQknuTm-TkHISec1HJghuZykwwv0GxLNWEmrTKSmuZ83uSPIhNlKOROD2Vn-OBG7yFCfwQ_YEbREY3X0OA66o9-E0a6lcuPhl7h2IFMG4T1sXl5P2ov0TwuUG5umCGRCfi3n31g_XKN1akTejcqxvp5nrS2q06w63_be99dC_mm_gwOMgDdMs1D9Gd1XPk1v9HGfTvy0foYhCA63hW40ufhM6xBV7dKImFmwAZbzEc3mIbtOzx0adDvAhSC0sMMPpvGOqYxXSJa6d9yE0dDohtP5tMcYdzv8IRGPbL2z9GJ8M3x4N3aRRmSA0TBUltyZyk0jjGuS4K51iuBRWZtdpkzLqyorXUdZ7VfjNIqONVJYzwW0kuiQYKvidoo5k1bhth5ouIZrI2GWX-UzFNKa91wfOCmtIl6NVqcJSJrOUgnjFVgW85V-v9mqAXvfVZYOv4g93Lbpx7Iz3_CQi3kqvJ6K2i5MvxV0GH6kOC9laOoGJwt4qABgAIm2YJetYX-7CEuxbduNk52IBWBPO9lKDXnVv8tUFqMh6MgUyf7Pyb-S66CwUBYLOHNhbzc_cU3TYXix_tfB9tHo2HJx_3u7i4Bh1ECvw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2CFmm88D0R2MBIwAtES2I7H49TtzK0roKqUydeLMd2ANGlU9uN9d_jG7uhewAJ8RJF8nUU2ffa1_bxOQCveV4WKVdFWEQ5swsUzUIZUxWWUaY1M3ZNkjixiWw4zM_Oik9e5xTvwjh-iHbDDSOjGa8xwHFDeu83a6iduvhkZD2Kpelt6DLrSbwD3YNR_3TQHiTY_CBbHzJjsuOx7_YLe5v1b8xKXWzg6xsp52bi2sw8_fv__c8P4J5POsm-85KHcMvUj2BrfSd5Yd-9Fvq31WO46jn0OplV5KfNROdEI7mu18UitcONLwju4BLtBO3Jwck-WTq9hRVBLP1XgnXUcroilZE27qaGONi2HVKmpAG7XxOPDju39k_gtH847h2FXp0hVCxP41BnzBS0UIZxLtPUGJbInOaR1lJFTJuspFUhqySq7IowpoaXZa5yu57kRSyRh28bOvWsNk-BMFsUS1ZUKqLMPkomKeWVTHmSUpWZAN6te0coT12OChpT4UiXE7HZrgG8aa0vHGXHH-zeNh3dGsn5D4S5ZVxMhh8EjT-Pv-S0L44D2Fl7gvARvhAxCgGgumkUwKu22MYmHrjI2swu0QYFI5htpQDeN37x1x8Sk1FvhIz68bN_M38JW0fjk4EYfBweP4e7aOQQNzvQWc4vzS7cUVfL74v5Cx8evwCxmw6o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CFQEXfiMCA4wEXCBaEttJfJxaAmijGtWmTrtYju0AoqRT2431v8evdkN3AAlxiSL5OYrs9-xn-_P3AbzkZS1yrkUskpK5BYphsUqpjuukMIZZtybJvNhEMRyWx8fiIOic4l0Yzw_RbbhhZKzGawxwe2qand-soW7q4uOR8yiW51ehx7jIXWT2BqPqaL87SHD5QbE-ZMZkJ2Df3Rd2NutfmpV62MAXl1LOzcR1NfNUt__7n-_ArZB0kl3vJXfhim3vwY31neS5ew9a6F-X9-G879HrZNqQny4TnRGD5LpBF4u0Hjc-J7iDS4wXtCeDT7tk4fUWlgSx9F8I1tGLyZI0Vrm4m1jiYdtuSJmQFdj9ggR02A9n_wCOqneH_Q9xUGeINSvzNDYFs4IKbRnnKs-tZZkqaZkYo3TCjC1q2gjVZEnjVoQptbyuS1269SQXqUIevoew1U5b-wgIc0WpYqLRCWXuUTNFKW9UzrOc6sJG8GbdO1IH6nJU0JhIT7qcyc12jeBVZ33qKTv-YPd61dGdkZp9R5hbweV4-F7S9PPhSUkruRfB9toTZIjwuUxRCADVTZMIXnTFLjbxwEW1dnqGNigYwVwrRfB25Rd__SE5HvVHyKifPv438-dw_WBQyf2Pw70ncBNtPOBmG7YWszP7FK7p88W3-exZiI5fJXQOIw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+water+distribution+networks+with+dynamic+DMA+topology+using+strictly+feasible+sequential+convex+programming&rft.jtitle=Water+resources+research&rft.au=Wright%2C+Robert&rft.au=Abraham%2C+Edo&rft.au=Parpas%2C+Panos&rft.au=Stoianov%2C+Ivan&rft.date=2015-12-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=51&rft.issue=12&rft.spage=9925&rft.epage=9941&rft_id=info:doi/10.1002%2F2015WR017466&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |