A graph‐theory algorithm for rapid protein side‐chain prediction

Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Protein science Ročník 12; číslo 9; s. 2001 - 2014
Hlavní autoři: Canutescu, Adrian A., Shelenkov, Andrew A., Dunbrack, Roland L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol Cold Spring Harbor Laboratory Press 01.09.2003
Témata:
ISSN:0961-8368, 1469-896X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side‐chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34,342 side chains in <7 min of computer time. The total χ1 and χ1 + 2 dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone‐dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.
AbstractList Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.
Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side‐chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34,342 side chains in <7 min of computer time. The total χ 1 and χ 1 + 2 dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone‐dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.
Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.
Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34,342 side chains in <7 min of computer time. The total χ1 and χ1 + 2 dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.
Author Dunbrack, Roland L.
Canutescu, Adrian A.
Shelenkov, Andrew A.
AuthorAffiliation Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
AuthorAffiliation_xml – name: Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
Author_xml – sequence: 1
  givenname: Adrian A.
  surname: Canutescu
  fullname: Canutescu, Adrian A.
– sequence: 2
  givenname: Andrew A.
  surname: Shelenkov
  fullname: Shelenkov, Andrew A.
– sequence: 3
  givenname: Roland L.
  surname: Dunbrack
  fullname: Dunbrack, Roland L.
  email: RL_Dunbrack@fccc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12930999$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKw0AUhgdRtK2u3EtWbqR1bk0yG0HqFQoVUXA3TCYnzUiaiTOp0p2P4DP6JE6pd9DV4fB_5z-3LlqvbQ0I7RI8IITgw8YPMCNDPsRsDXUIj0U_FfHdOupgEZN-yuJ0C3W9v8cYc0LZJtoiVDAshOigk-No6lRTvj6_tCVYt4hUNbXOtOUsKqyLgmbyqHG2BVNH3uQQSF2qkDQOcqNbY-tttFGoysPOe-yh27PTm9FFfzw5vxwdj_uap2GSnIIgSiieMZFrAcA4TVlCs1QJzlWig1pkOI8zVgDFQMMuRBdUhQ0YwZz10NHKt5lnM8g11K1TlWycmSm3kFYZ-VOpTSmn9lFSRpkQSTDYfzdw9mEOvpUz4zVUlarBzr1M2DBhyZAGcO97p88WH4cLwMEK0M5676D4QrBcvkU2Xn68JdDkF61Nq5anC2Oa6o8auqp5MhUs_rOXV9cTQinGhL0BOBShng
CitedBy_id crossref_primary_10_1007_s00894_010_0672_1
crossref_primary_10_1074_jbc_M406193200
crossref_primary_10_1186_1471_2105_6_255
crossref_primary_10_1371_journal_pcbi_0030058
crossref_primary_10_3390_md17030180
crossref_primary_10_1016_j_bpj_2011_02_032
crossref_primary_10_1186_1471_2105_12_S14_S10
crossref_primary_10_1110_ps_072855507
crossref_primary_10_1073_pnas_1112398108
crossref_primary_10_1371_journal_pcbi_1000181
crossref_primary_10_1111_j_1742_4658_2007_06068_x
crossref_primary_10_1002_cbic_201100051
crossref_primary_10_1016_j_bbapap_2010_11_004
crossref_primary_10_1039_C5CP04348D
crossref_primary_10_1016_j_gene_2009_05_017
crossref_primary_10_1016_j_bpj_2011_09_019
crossref_primary_10_1128_MCB_00256_13
crossref_primary_10_1038_s41467_023_38168_3
crossref_primary_10_1007_s10822_010_9364_2
crossref_primary_10_1529_biophysj_107_117648
crossref_primary_10_1371_journal_pone_0134506
crossref_primary_10_1074_jbc_M505168200
crossref_primary_10_1109_ACCESS_2023_3305962
crossref_primary_10_1016_j_compbiolchem_2007_03_010
crossref_primary_10_1073_pnas_1002614107
crossref_primary_10_1107_S1399004714025784
crossref_primary_10_1016_j_bbamem_2011_01_004
crossref_primary_10_1016_j_compbiolchem_2014_10_001
crossref_primary_10_1186_1471_2229_10_157
crossref_primary_10_1073_pnas_0402254101
crossref_primary_10_1016_j_virol_2008_08_029
crossref_primary_10_1016_j_jmb_2006_06_041
crossref_primary_10_1371_journal_pcbi_1003797
crossref_primary_10_1088_1742_6596_1706_1_012039
crossref_primary_10_1186_1471_2105_11_306
crossref_primary_10_1124_mol_111_072504
crossref_primary_10_1021_ja070865d
crossref_primary_10_1074_jbc_M611071200
crossref_primary_10_1111_febs_17210
crossref_primary_10_1371_journal_pone_0004476
crossref_primary_10_1021_jm8014553
crossref_primary_10_1158_1078_0432_CCR_04_2515
crossref_primary_10_1073_pnas_0812299106
crossref_primary_10_1107_S0907444913018453
crossref_primary_10_7124_bc_000695
crossref_primary_10_1016_j_jmb_2007_01_038
crossref_primary_10_1038_srep32153
crossref_primary_10_1371_journal_pone_0064464
crossref_primary_10_1016_j_bpj_2010_08_041
crossref_primary_10_1042_BJ20150830
crossref_primary_10_1007_s10822_008_9249_9
crossref_primary_10_1016_j_bpj_2008_09_030
crossref_primary_10_1002_prot_25396
crossref_primary_10_1111_j_1365_2958_2009_06991_x
crossref_primary_10_1002_prot_25030
crossref_primary_10_1016_j_ymeth_2010_04_014
crossref_primary_10_1093_nar_gkn008
crossref_primary_10_1128_JVI_01491_09
crossref_primary_10_1371_journal_pone_0096263
crossref_primary_10_1109_TCBB_2006_22
crossref_primary_10_1002_prot_20946
crossref_primary_10_1002_prot_20942
crossref_primary_10_1007_s00239_013_9606_8
crossref_primary_10_1016_j_bpj_2010_08_053
crossref_primary_10_1093_nar_gkx146
crossref_primary_10_1093_bioinformatics_btl325
crossref_primary_10_1186_1471_2105_7_382
crossref_primary_10_1074_jbc_M109_027326
crossref_primary_10_1111_mmi_13267
crossref_primary_10_1002_prot_25289
crossref_primary_10_1093_hmg_ddq414
crossref_primary_10_1093_molbev_msr035
crossref_primary_10_1002_prot_24195
crossref_primary_10_1146_annurev_anchem_062011_143024
crossref_primary_10_1126_science_1229934
crossref_primary_10_1371_journal_pcbi_1004619
crossref_primary_10_1016_j_enzmictec_2009_05_010
crossref_primary_10_1016_j_sbi_2006_03_003
crossref_primary_10_1016_j_sbi_2012_01_010
crossref_primary_10_1016_j_meegid_2009_10_003
crossref_primary_10_1371_journal_pcbi_1000135
crossref_primary_10_1371_journal_pone_0019828
crossref_primary_10_1007_s00894_008_0381_1
crossref_primary_10_1016_j_biochi_2008_10_008
crossref_primary_10_1039_c2pp25320h
crossref_primary_10_1074_jbc_C600286200
crossref_primary_10_1080_19420862_2016_1259047
crossref_primary_10_1002_prot_25453
crossref_primary_10_1002_prot_21096
crossref_primary_10_1002_prot_22184
crossref_primary_10_1093_pcp_pcab044
crossref_primary_10_1093_nar_gkp368
crossref_primary_10_1002_jcc_20736
crossref_primary_10_1002_prot_21099
crossref_primary_10_1002_prot_22189
crossref_primary_10_1002_prot_26789
crossref_primary_10_1016_j_bcp_2006_05_008
crossref_primary_10_1002_prot_23159
crossref_primary_10_1002_bit_25483
crossref_primary_10_1371_journal_pcbi_1000487
crossref_primary_10_1016_j_febslet_2015_09_008
crossref_primary_10_1038_nsmb_1492
crossref_primary_10_1093_nar_gkt960
crossref_primary_10_1093_bioinformatics_btl468
crossref_primary_10_1371_journal_pcbi_1000490
crossref_primary_10_3390_ph4091196
crossref_primary_10_1128_JB_187_13_4637_4645_2005
crossref_primary_10_1074_jbc_M111_250308
crossref_primary_10_4049_jimmunol_174_1_328
crossref_primary_10_3390_ijms232012456
crossref_primary_10_1093_protein_gzq028
crossref_primary_10_1039_c0cc02768e
crossref_primary_10_1080_07391102_2007_10507176
crossref_primary_10_1002_jcc_22948
crossref_primary_10_1371_journal_pntd_0004120
crossref_primary_10_1016_j_bpc_2006_06_008
crossref_primary_10_1016_j_molcatb_2016_11_007
crossref_primary_10_1093_bioinformatics_btn314
crossref_primary_10_1111_j_1742_4658_2009_07387_x
crossref_primary_10_1186_1758_2946_1_13
crossref_primary_10_1210_jc_2016_2124
crossref_primary_10_1002_mrc_1832
crossref_primary_10_1002_cbic_200700188
crossref_primary_10_1002_prot_23170
crossref_primary_10_1186_1741_7007_5_17
crossref_primary_10_1016_j_coviro_2015_03_013
crossref_primary_10_1371_journal_pone_0074053
crossref_primary_10_1002_pro_2241
crossref_primary_10_1007_s10822_007_9127_x
crossref_primary_10_1074_jbc_M702037200
crossref_primary_10_1091_mbc_e07_09_0953
crossref_primary_10_1016_j_febslet_2008_08_022
crossref_primary_10_1074_jbc_M504165200
crossref_primary_10_1126_science_1234012
crossref_primary_10_1007_s10719_008_9223_8
crossref_primary_10_1529_biophysj_106_084020
crossref_primary_10_1074_jbc_M414028200
crossref_primary_10_3390_cells9061548
crossref_primary_10_1016_j_pep_2008_01_001
crossref_primary_10_1016_j_ygeno_2006_02_008
crossref_primary_10_1002_prot_24397
crossref_primary_10_3390_ph16081170
crossref_primary_10_1016_j_jtbi_2006_02_005
crossref_primary_10_1016_j_bpj_2008_10_041
crossref_primary_10_1016_j_str_2011_03_019
crossref_primary_10_1038_s41598_017_16780_w
crossref_primary_10_1007_s00239_011_9454_3
crossref_primary_10_1002_prot_25767
crossref_primary_10_1002_prot_24555
crossref_primary_10_1016_j_jconrel_2012_08_021
crossref_primary_10_4161_19420862_2014_985933
crossref_primary_10_1016_j_molcatb_2013_01_021
crossref_primary_10_1371_journal_pcbi_1000694
crossref_primary_10_1016_j_bbapap_2009_05_005
crossref_primary_10_1016_j_febslet_2009_06_046
crossref_primary_10_1110_ps_072939707
crossref_primary_10_1016_j_jmb_2021_166899
crossref_primary_10_1371_journal_pcbi_0010047
crossref_primary_10_1371_journal_pcbi_1009037
crossref_primary_10_1002_prot_22262
crossref_primary_10_1016_j_bbrc_2017_09_145
crossref_primary_10_1016_j_jmb_2007_07_080
crossref_primary_10_1088_1478_3975_12_4_046002
crossref_primary_10_1016_j_str_2018_01_017
crossref_primary_10_1074_jbc_M502352200
crossref_primary_10_1002_prot_22380
crossref_primary_10_1016_j_sbi_2009_02_010
crossref_primary_10_3390_en16010158
crossref_primary_10_1002_prot_24685
crossref_primary_10_1016_j_str_2006_11_011
crossref_primary_10_1126_science_1112160
crossref_primary_10_1093_bioinformatics_btl381
crossref_primary_10_1016_j_ejmech_2012_10_022
crossref_primary_10_1016_j_neuron_2006_03_002
crossref_primary_10_1128_JB_00251_07
crossref_primary_10_1074_jbc_M111_229179
crossref_primary_10_1007_s10822_017_0047_0
crossref_primary_10_1515_HMBCI_2010_012
crossref_primary_10_1039_c004880a
crossref_primary_10_1007_s10858_010_9432_x
crossref_primary_10_1002_prot_21060
crossref_primary_10_1016_j_jmb_2007_06_057
crossref_primary_10_1155_2014_653487
crossref_primary_10_1110_ps_041253405
crossref_primary_10_1093_nar_gkq340
crossref_primary_10_1529_biophysj_108_135285
crossref_primary_10_1007_s11590_011_0308_0
crossref_primary_10_1016_j_jmb_2008_12_043
crossref_primary_10_1016_j_jmb_2012_05_025
crossref_primary_10_1073_pnas_0506078102
crossref_primary_10_1074_jbc_M110_107243
crossref_primary_10_1529_biophysj_108_142984
crossref_primary_10_1093_bioinformatics_btm148
crossref_primary_10_1110_ps_062658307
crossref_primary_10_1007_s11262_006_0058_8
crossref_primary_10_1016_j_bbagen_2005_05_016
crossref_primary_10_1128_JVI_00528_18
crossref_primary_10_1186_1471_2105_11_256
crossref_primary_10_1002_prot_21191
crossref_primary_10_1080_1062936X_2016_1179672
crossref_primary_10_1371_journal_pone_0006701
crossref_primary_10_1002_prot_22288
crossref_primary_10_1002_prot_23134
crossref_primary_10_1002_prot_25315
crossref_primary_10_1016_j_bbamem_2015_03_013
crossref_primary_10_1529_biophysj_106_090183
crossref_primary_10_1107_S1744309112044168
crossref_primary_10_1093_nar_gkq475
crossref_primary_10_1101_gad_288340_116
crossref_primary_10_1080_10629360701844126
crossref_primary_10_1002_prot_24111
crossref_primary_10_1002_prot_21085
crossref_primary_10_1186_1472_6807_8_2
crossref_primary_10_1002_prot_22054
crossref_primary_10_1002_prot_22170
crossref_primary_10_1063_5_0140453
crossref_primary_10_1002_prot_22051
crossref_primary_10_1128_MCB_01876_08
crossref_primary_10_1002_prot_21125
crossref_primary_10_1016_j_febslet_2011_01_046
crossref_primary_10_1002_jcc_20906
crossref_primary_10_1016_j_sbi_2004_03_002
crossref_primary_10_1002_prot_24997
crossref_primary_10_1074_jbc_M110_215657
crossref_primary_10_1186_s12881_016_0298_y
crossref_primary_10_1002_prot_21366
crossref_primary_10_1093_bioinformatics_btl192
crossref_primary_10_1186_1471_2148_11_361
crossref_primary_10_1111_febs_14950
crossref_primary_10_1186_s12864_017_3947_4
crossref_primary_10_1186_1471_2105_11_236
crossref_primary_10_1110_ps_073402508
crossref_primary_10_1002_prot_21371
crossref_primary_10_1093_bib_bbw079
crossref_primary_10_1002_prot_21493
crossref_primary_10_1002_prot_21379
crossref_primary_10_1002_prot_25858
crossref_primary_10_3390_ijms11103623
crossref_primary_10_1002_prot_21495
crossref_primary_10_1186_1471_2202_11_133
crossref_primary_10_1016_j_biochi_2009_04_008
crossref_primary_10_1080_15548627_2022_2151294
crossref_primary_10_1371_journal_pone_0010049
crossref_primary_10_1016_j_jmb_2010_01_041
crossref_primary_10_1371_journal_pcbi_1000401
crossref_primary_10_1093_nar_gkac1119
crossref_primary_10_1016_j_csbj_2019_12_007
crossref_primary_10_1016_j_febslet_2012_02_012
crossref_primary_10_1074_jbc_M803239200
crossref_primary_10_1110_ps_062447107
crossref_primary_10_1534_genetics_105_052266
crossref_primary_10_1111_febs_12524
crossref_primary_10_1016_j_molcel_2005_12_005
crossref_primary_10_1194_jlr_M600232_JLR200
crossref_primary_10_1016_j_ajhg_2009_03_018
crossref_primary_10_1016_j_bpj_2011_07_052
crossref_primary_10_1016_j_cyto_2007_07_193
crossref_primary_10_1074_jbc_M709819200
crossref_primary_10_1016_j_jmb_2011_02_017
crossref_primary_10_1186_s12859_014_0363_5
crossref_primary_10_3389_fendo_2018_00142
crossref_primary_10_1016_j_jmgm_2003_12_010
crossref_primary_10_1371_journal_pone_0059627
crossref_primary_10_1002_prot_21025
crossref_primary_10_1038_emboj_2013_157
crossref_primary_10_1111_j_1469_8137_2008_02653_x
crossref_primary_10_1021_ja106263y
crossref_primary_10_1016_j_bbagen_2016_06_013
crossref_primary_10_1371_journal_pone_0009280
crossref_primary_10_1016_j_bpj_2012_08_043
crossref_primary_10_1186_s12859_015_0672_3
crossref_primary_10_1002_prot_21150
crossref_primary_10_1016_j_jmb_2006_04_057
crossref_primary_10_1002_prot_21271
crossref_primary_10_1002_prot_21390
crossref_primary_10_1007_s10462_022_10350_x
crossref_primary_10_1016_j_jmb_2006_03_030
crossref_primary_10_1371_journal_pcbi_1003935
crossref_primary_10_3390_math9020168
crossref_primary_10_1002_prot_21154
crossref_primary_10_1002_prot_22488
crossref_primary_10_1007_s10822_009_9299_7
crossref_primary_10_3390_ijms20030606
crossref_primary_10_1039_D0SC02646H
crossref_primary_10_1080_07391102_2013_765808
crossref_primary_10_3390_biomedicines10010102
crossref_primary_10_1038_nature09992
crossref_primary_10_1002_prot_24552
crossref_primary_10_1093_bib_bbaf297
crossref_primary_10_1016_j_bbrc_2014_05_130
crossref_primary_10_1134_S0006350906070074
crossref_primary_10_1038_nsmb1228
crossref_primary_10_1002_prot_21685
crossref_primary_10_1002_prot_22894
crossref_primary_10_1093_nar_gkaf415
crossref_primary_10_1088_1742_6596_1740_1_012013
crossref_primary_10_1371_journal_pcbi_1000854
crossref_primary_10_15252_embj_2020104523
crossref_primary_10_1111_j_1742_4658_2009_07073_x
crossref_primary_10_1016_j_jmgm_2009_04_004
crossref_primary_10_1128_JB_00122_08
crossref_primary_10_1042_BCJ20180861
crossref_primary_10_1159_000529306
crossref_primary_10_1073_pnas_1005681107
crossref_primary_10_1371_journal_pone_0093553
crossref_primary_10_1007_s00249_016_1193_3
crossref_primary_10_1371_journal_pntd_0009585
crossref_primary_10_1093_glycob_cww050
crossref_primary_10_1371_journal_pone_0116414
crossref_primary_10_1074_jbc_M110_172098
crossref_primary_10_1002_prot_21453
crossref_primary_10_1093_bioinformatics_btm073
crossref_primary_10_1124_mol_107_043661
crossref_primary_10_1002_ajmg_a_31937
crossref_primary_10_1109_TCBB_2011_74
crossref_primary_10_26508_lsa_201800272
crossref_primary_10_1016_j_ijbiomac_2012_05_014
crossref_primary_10_1016_j_neucom_2015_09_023
crossref_primary_10_1016_j_compchemeng_2009_06_006
crossref_primary_10_1016_j_ijpara_2012_03_012
crossref_primary_10_1002_prot_21103
crossref_primary_10_1016_j_matdes_2021_110343
crossref_primary_10_1002_prot_22558
crossref_primary_10_1186_1756_0500_5_256
crossref_primary_10_1007_s00044_011_9736_8
crossref_primary_10_1016_j_gene_2008_06_004
crossref_primary_10_1016_j_jmb_2005_08_066
crossref_primary_10_1002_prot_22551
crossref_primary_10_1002_prot_22312
crossref_primary_10_1038_nchembio714
crossref_primary_10_1074_jbc_M111_243865
crossref_primary_10_1210_en_2017_00082
crossref_primary_10_1007_s00424_013_1424_8
crossref_primary_10_1093_nar_gkt458
crossref_primary_10_1002_prot_21229
crossref_primary_10_1007_s11033_013_2814_x
crossref_primary_10_1016_j_tim_2005_02_003
crossref_primary_10_1016_j_jmb_2006_10_033
crossref_primary_10_1093_nar_gks481
crossref_primary_10_1016_j_compbiolchem_2016_02_012
crossref_primary_10_1007_s00894_008_0267_2
crossref_primary_10_1016_j_molonc_2014_04_002
crossref_primary_10_1073_pnas_0511130103
crossref_primary_10_1002_aic_16354
crossref_primary_10_1016_j_bpj_2011_05_030
crossref_primary_10_1093_protein_gzi052
crossref_primary_10_1073_pnas_0602815103
crossref_primary_10_1074_jbc_M312458200
crossref_primary_10_1091_mbc_e09_09_0831
crossref_primary_10_1371_journal_pcbi_1002924
crossref_primary_10_1002_prot_21598
crossref_primary_10_1186_1471_2105_15_S12_S5
crossref_primary_10_1016_j_artmed_2006_04_004
crossref_primary_10_3390_molecules25173861
crossref_primary_10_1016_j_jmb_2018_03_018
crossref_primary_10_1002_prot_22564
crossref_primary_10_1016_j_jmb_2024_168704
crossref_primary_10_1016_j_bbagen_2018_06_001
crossref_primary_10_1016_j_str_2007_07_015
crossref_primary_10_1002_prot_21119
crossref_primary_10_1016_j_amc_2007_05_002
crossref_primary_10_1016_j_bpj_2010_04_075
crossref_primary_10_1016_j_jmb_2006_01_005
crossref_primary_10_1016_j_biochi_2010_12_015
crossref_primary_10_1124_jpet_105_099887
crossref_primary_10_3390_ijms22094512
crossref_primary_10_1016_j_ymeth_2006_07_026
crossref_primary_10_1002_prot_22570
crossref_primary_10_1110_ps_051985106
crossref_primary_10_1002_jmr_1132
crossref_primary_10_1074_jbc_M110_208496
crossref_primary_10_1111_ahg_12082
crossref_primary_10_1007_s00453_007_9070_1
crossref_primary_10_1016_j_jmb_2006_11_056
crossref_primary_10_1007_s10878_007_9092_2
crossref_primary_10_1007_s10898_012_9886_3
crossref_primary_10_1002_cmdc_200700201
crossref_primary_10_1002_prot_20551
crossref_primary_10_1002_prot_21883
crossref_primary_10_1016_j_ajhg_2009_11_003
crossref_primary_10_1074_jbc_M609264200
crossref_primary_10_1080_07391102_2009_10507260
crossref_primary_10_1093_nar_gkq1250
crossref_primary_10_1002_humu_20604
crossref_primary_10_1371_journal_pcbi_1008667
crossref_primary_10_1002_pro_730
crossref_primary_10_1016_j_future_2021_04_011
crossref_primary_10_1287_ijoc_2023_0094
crossref_primary_10_1016_j_ibmb_2007_03_005
crossref_primary_10_1186_1472_6807_9_12
crossref_primary_10_1093_bioinformatics_bti523
crossref_primary_10_1016_j_bbrc_2005_11_012
crossref_primary_10_1002_prot_22502
crossref_primary_10_1016_j_jinorgbio_2007_10_032
crossref_primary_10_1038_srep31418
crossref_primary_10_3389_fcell_2024_1210944
crossref_primary_10_1002_prot_21531
crossref_primary_10_1002_prot_21419
crossref_primary_10_1002_prot_22508
crossref_primary_10_1128_AEM_03215_12
crossref_primary_10_1016_j_jmb_2008_06_084
crossref_primary_10_1016_j_jmb_2008_06_082
crossref_primary_10_1107_S2052252516008113
crossref_primary_10_13005_bpj_1540
crossref_primary_10_1186_1758_2946_6_12
crossref_primary_10_1016_j_febslet_2006_11_054
crossref_primary_10_1016_j_pbiomolbio_2019_09_004
crossref_primary_10_1016_j_jmb_2005_08_020
crossref_primary_10_1186_1471_2105_9_448
crossref_primary_10_1186_1471_2105_9_441
crossref_primary_10_1074_jbc_M109_013706
crossref_primary_10_1074_jbc_RA120_013501
crossref_primary_10_1002_cctc_201100487
crossref_primary_10_1002_prot_22515
crossref_primary_10_1007_s00894_005_0004_z
crossref_primary_10_1529_biophysj_107_116095
crossref_primary_10_1073_pnas_1912132117
crossref_primary_10_1016_j_bbapap_2009_04_013
crossref_primary_10_1021_ja900616b
crossref_primary_10_1186_1471_2105_9_40
crossref_primary_10_1371_journal_pone_0011653
crossref_primary_10_1016_j_bioorg_2023_106819
crossref_primary_10_1107_S0907444912039194
crossref_primary_10_1007_s10858_006_9000_6
crossref_primary_10_3390_ijms14059893
crossref_primary_10_1155_2012_580965
crossref_primary_10_1002_prot_22525
crossref_primary_10_1002_prot_21672
crossref_primary_10_1007_s00894_006_0164_5
crossref_primary_10_1016_j_jmb_2008_05_067
crossref_primary_10_1186_1475_2859_10_S1_S16
crossref_primary_10_1002_pro_718
crossref_primary_10_1110_ps_03601504
crossref_primary_10_1002_prot_20229
crossref_primary_10_1073_pnas_0502378102
crossref_primary_10_1158_1541_7786_MCR_10_0233
crossref_primary_10_1016_j_theochem_2006_08_046
crossref_primary_10_1186_1471_2105_8_304
crossref_primary_10_1016_j_jmb_2009_06_032
crossref_primary_10_1074_jbc_M111_229039
crossref_primary_10_1016_j_jmb_2007_04_086
crossref_primary_10_1155_2012_674832
crossref_primary_10_1073_pnas_0909950107
crossref_primary_10_1016_j_jmb_2006_09_002
crossref_primary_10_1515_hsz_2015_0273
crossref_primary_10_1007_s00894_009_0533_y
crossref_primary_10_1186_1472_6807_8_34
crossref_primary_10_1016_j_imbio_2010_10_011
crossref_primary_10_1016_j_str_2009_05_013
crossref_primary_10_1007_s00439_005_1339_3
crossref_primary_10_1089_cmb_2009_0152
crossref_primary_10_1371_journal_pone_0007485
crossref_primary_10_1002_pmic_200600187
crossref_primary_10_1371_journal_pcbi_1005346
crossref_primary_10_1038_nprot_2008_197
crossref_primary_10_1074_jbc_M709587200
crossref_primary_10_1016_j_str_2008_11_005
crossref_primary_10_1016_j_molimm_2005_10_010
crossref_primary_10_1016_j_bbapap_2011_11_005
crossref_primary_10_1186_1475_2859_4_20
crossref_primary_10_1155_2013_541359
crossref_primary_10_1371_journal_pone_0018142
crossref_primary_10_1186_1753_6561_8_S2_S2
crossref_primary_10_1002_humu_21179
crossref_primary_10_1016_j_biochi_2007_11_007
crossref_primary_10_1016_j_phytochem_2019_112221
crossref_primary_10_1016_j_jmb_2006_08_035
crossref_primary_10_1074_jbc_M109_074807
crossref_primary_10_1089_ars_2008_2057
crossref_primary_10_1016_j_devcel_2013_06_022
crossref_primary_10_1016_j_febslet_2009_10_047
crossref_primary_10_1089_cmb_2007_0158
crossref_primary_10_1002_pro_2222
crossref_primary_10_1002_prot_22826
crossref_primary_10_1089_ars_2008_2055
crossref_primary_10_1110_ps_062165906
crossref_primary_10_1371_journal_pone_0036382
crossref_primary_10_1186_1471_2105_11_90
crossref_primary_10_1371_journal_pone_0011740
crossref_primary_10_1016_j_jmb_2011_07_031
crossref_primary_10_1016_j_jmb_2009_02_031
crossref_primary_10_1093_bioinformatics_bti438
crossref_primary_10_1002_jcc_22968
crossref_primary_10_1109_TCBB_2013_130
crossref_primary_10_1038_s41586_022_04530_6
crossref_primary_10_1110_ps_073178108
crossref_primary_10_1016_j_mencom_2009_09_001
crossref_primary_10_1111_j_1600_0854_2008_00761_x
crossref_primary_10_1007_s00792_012_0490_8
crossref_primary_10_1016_j_cplett_2011_01_017
crossref_primary_10_1002_prot_20892
crossref_primary_10_1093_protein_gzr032
crossref_primary_10_1371_journal_pone_0051307
crossref_primary_10_1002_prot_21628
crossref_primary_10_1074_jbc_M113_536110
crossref_primary_10_1186_1471_2105_15_S15_S6
crossref_primary_10_1002_prot_21505
crossref_primary_10_1002_psc_2824
crossref_primary_10_1016_j_jmb_2009_10_004
crossref_primary_10_1371_journal_ppat_1001210
crossref_primary_10_1016_j_jmb_2007_02_041
crossref_primary_10_1016_j_bpc_2010_09_003
crossref_primary_10_1007_s00424_012_1184_x
crossref_primary_10_1007_s10822_019_00237_5
crossref_primary_10_1007_s12551_016_0247_1
crossref_primary_10_1007_s11103_006_0037_4
crossref_primary_10_1002_prot_22722
crossref_primary_10_1073_pnas_0911839107
crossref_primary_10_1186_1745_6150_7_14
crossref_primary_10_1002_prot_22849
crossref_primary_10_1016_j_bbapap_2017_11_006
crossref_primary_10_1038_nprot_2008_184
crossref_primary_10_1002_prot_20667
crossref_primary_10_1007_s10822_009_9259_2
crossref_primary_10_1186_1471_2105_7_S5_S17
crossref_primary_10_1002_bit_24930
crossref_primary_10_1016_j_jmb_2009_06_070
crossref_primary_10_1089_cmb_2007_0131
crossref_primary_10_1093_nar_gkv368
crossref_primary_10_1016_j_bbapap_2017_07_005
crossref_primary_10_1002_pro_124
crossref_primary_10_1110_ps_072988407
crossref_primary_10_1002_cctc_201000107
crossref_primary_10_1074_jbc_M111_327700
crossref_primary_10_1007_s00249_009_0531_0
crossref_primary_10_1016_j_molimm_2009_01_009
crossref_primary_10_1111_j_1742_4658_2010_07832_x
crossref_primary_10_1007_s41061_022_00374_w
crossref_primary_10_1080_07391102_2012_687526
crossref_primary_10_1007_s11274_012_1120_4
crossref_primary_10_1002_prot_25049
crossref_primary_10_1093_mutage_get039
crossref_primary_10_3390_ph11020037
crossref_primary_10_1086_500306
crossref_primary_10_1089_cmb_2005_12_777
crossref_primary_10_1111_j_1398_9995_2010_02350_x
crossref_primary_10_3390_molecules23010111
crossref_primary_10_1093_nar_gkt1299
crossref_primary_10_1002_jcc_20118
crossref_primary_10_1110_ps_073081708
crossref_primary_10_1002_prot_24085
crossref_primary_10_1093_protein_gzj001
crossref_primary_10_3390_ijms21114132
crossref_primary_10_1002_prot_24086
crossref_primary_10_1016_j_jmb_2006_07_040
crossref_primary_10_1074_jbc_M109_004614
crossref_primary_10_1155_2012_173521
crossref_primary_10_1002_prot_20720
crossref_primary_10_1002_prot_20721
crossref_primary_10_1002_prot_21930
crossref_primary_10_1002_prot_20726
crossref_primary_10_1371_journal_pone_0026071
crossref_primary_10_1002_prot_20601
crossref_primary_10_1002_prot_20725
crossref_primary_10_1016_j_str_2007_04_012
crossref_primary_10_3390_molecules23102459
crossref_primary_10_1002_jcc_20582
crossref_primary_10_1016_j_jinorgbio_2013_12_006
crossref_primary_10_1002_jcc_20463
crossref_primary_10_1016_j_jmgm_2007_07_003
crossref_primary_10_1186_1471_2105_7_364
crossref_primary_10_1007_s12013_017_0810_9
crossref_primary_10_1002_prot_20730
crossref_primary_10_1007_s00251_010_0428_1
crossref_primary_10_1002_prot_20973
crossref_primary_10_1016_j_csbj_2021_10_005
crossref_primary_10_1007_s10822_020_00345_7
crossref_primary_10_1124_mol_104_008847
crossref_primary_10_1016_j_amc_2007_09_033
crossref_primary_10_1016_j_bcp_2012_04_012
crossref_primary_10_1110_ps_041004105
crossref_primary_10_1007_s10969_016_9204_2
crossref_primary_10_1109_TCBB_2008_96
crossref_primary_10_1002_prot_21702
crossref_primary_10_1016_j_amc_2007_09_038
crossref_primary_10_1016_j_jmb_2005_12_044
crossref_primary_10_1590_S0100_879X2006005000075
crossref_primary_10_1093_bioinformatics_bti144
crossref_primary_10_1186_1471_2172_13_43
crossref_primary_10_1016_j_jmgm_2017_06_013
crossref_primary_10_1002_cbic_202000247
crossref_primary_10_1007_s10863_006_9048_8
crossref_primary_10_1155_2016_3240674
crossref_primary_10_3390_biom10091314
crossref_primary_10_1002_jcc_21109
crossref_primary_10_1016_j_imu_2023_101164
crossref_primary_10_1093_molbev_mss157
crossref_primary_10_1002_prot_20621
crossref_primary_10_1109_TCBB_2009_59
crossref_primary_10_1073_pnas_0610365104
crossref_primary_10_1016_j_jmgm_2006_12_003
crossref_primary_10_1016_j_str_2005_09_019
crossref_primary_10_1110_ps_062293906
crossref_primary_10_1074_jbc_M500577200
crossref_primary_10_1110_ps_035022_108
crossref_primary_10_1186_1748_7188_8_5
crossref_primary_10_1089_cmb_2012_0251
crossref_primary_10_4049_jimmunol_0901672
crossref_primary_10_1093_nar_gks1266
crossref_primary_10_1529_biophysj_106_102137
crossref_primary_10_1002_prot_21714
crossref_primary_10_1093_nar_gkx344
crossref_primary_10_1145_1162349_1162350
crossref_primary_10_1016_j_bpj_2008_12_3934
crossref_primary_10_1093_bioinformatics_bti498
crossref_primary_10_1016_j_jsb_2009_05_001
crossref_primary_10_1186_s12859_020_03563_w
crossref_primary_10_1016_j_jmgm_2009_02_004
crossref_primary_10_1016_j_tracli_2010_05_003
Cites_doi 10.1038/356539a0
10.1002/prot.340190308
10.1002/pro.5560041006
10.1006/jmbi.1993.1100
10.1145/309739.309744
10.1006/jmbi.2000.4424
10.1002/prot.10131
10.1093/protein/11.11.991
10.1002/(SICI)1097-0134(1999)37:3 <81::AID-PROT12>3.0.CO;2-R
10.1006/jmbi.1998.2401
10.1006/jmbi.1997.0926
10.1093/protein/8.4.363
10.1080/07391102.1991.10507882
10.1006/jmbi.1998.2400
10.1002/(SICI)1097-0134(19991201)37:4<530::AID-PROT4>3.0.CO;2-H
10.1016/S0969-2126(99)80176-2
10.1002/(SICI)1097-0282(199908)50:2<111::AID-BIP1>3.0.CO;2-N
10.1006/jmbi.2000.3758
10.1002/pro.5560060807
10.1137/0201010
10.1016/S0959-440X(02)00344-5
10.1016/0022-2836(91)90883-8
10.1016/0022-2836(91)90550-P
10.1002/1096-987X(200008)21:11<999::AID-JCC9>3.0.CO;2-A
10.1016/0022-2836(87)90314-7
10.1023/A:1012279810260
10.1016/0022-2836(87)90358-5
10.1016/S0006-3495(94)80923-3
10.1038/nsb0295-163
10.1093/nar/28.1.235
10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
10.1110/ps.24902
10.1006/jmbi.1993.1170
10.1038/nsb0594-334
10.1093/protein/6.7.717
10.1093/protein/8.8.815
10.1002/1097-0282(200108)59:2<72::AID-BIP1007>3.0.CO;2-S
10.1006/jmbi.2000.3741
10.1006/jmbi.1994.1059
10.1006/jmbi.2001.4865
10.1016/S1359-0278(97)00006-0
10.1093/protein/8.9.893
10.1002/pro.5560050511
10.1093/bioinformatics/btg224
10.1016/0022-2836(89)90109-5
ContentType Journal Article
Copyright Copyright © 2003 The Protein Society
Copyright © Copyright 2003 The Protein Society
Copyright_xml – notice: Copyright © 2003 The Protein Society
– notice: Copyright © Copyright 2003 The Protein Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1110/ps.03154503
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 2014
ExternalDocumentID PMC2323997
12930999
10_1110_ps_03154503
PRO122001
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG002302
– fundername: NHGRI NIH HHS
  grantid: R01 HG02302
– fundername: NCI NIH HHS
  grantid: CA06972
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A8Z
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
PQQKQ
QRW
RCA
ROL
RPM
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
AAYXX
CITATION
LH4
24P
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
P4E
RIG
RWI
VXZ
WYJ
7X8
5PM
ID FETCH-LOGICAL-c4861-d2e91a9a4b39dc9ee3428372b8a944a7c91afb0d6b3fe20e21461cf2a36831043
IEDL.DBID WIN
ISICitedReferencesCount 827
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184976100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0961-8368
IngestDate Tue Sep 30 17:00:27 EDT 2025
Fri Sep 05 10:27:49 EDT 2025
Wed Feb 19 01:29:14 EST 2025
Sat Nov 29 02:25:08 EST 2025
Tue Nov 18 22:18:56 EST 2025
Wed Aug 20 07:26:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4861-d2e91a9a4b39dc9ee3428372b8a944a7c91afb0d6b3fe20e21461cf2a36831043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reprint requests to: Roland L. Dunbrack Jr., Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA; e-mail: RL_Dunbrack@fccc.edu; fax: (215) 728-2412.
Article and publication are at http://www.proteinscience.org/cgi/doi/10.1110/ps.03154503.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1110/ps.03154503
PMID 12930999
PQID 73573752
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2323997
proquest_miscellaneous_73573752
pubmed_primary_12930999
crossref_primary_10_1110_ps_03154503
crossref_citationtrail_10_1110_ps_03154503
wiley_primary_10_1110_ps_03154503_PRO122001
PublicationCentury 2000
PublicationDate September 2003
2003-09-00
2003-Sep
20030901
PublicationDateYYYYMMDD 2003-09-01
PublicationDate_xml – month: 09
  year: 2003
  text: September 2003
PublicationDecade 2000
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2003
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 1994; 235
2000; 28
1993; 229
1999b; 285
2002; 12
2002; 11
1989; 210
1994; 66
1999; 21
1997; 2
1999; 3
2003
2000; 299
1999a; 285
1995; 2
1991; 217
1997; 6
1999; 7
1995; 4
2001; 307
1991; 8
1987; 193
1972; 1
1995; 8
1991; 218
1999
1993; 6
1997; 267
2001; 311
2002; 48
1987; 198
1994; 19
1992; 356
2000; 40
2001b; 59
2000; 143
1999a; 37
1994; 1
1996; 5
1999b; 50
2001a; 15
1997; 1997
1993; 230
1998; 11
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
De Maeyer M. (e_1_2_7_6_1) 2000; 143
e_1_2_7_28_1
e_1_2_7_29_1
Desmet J. (e_1_2_7_9_1) 1997; 1997
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
11718477 - J Comput Aided Mol Des. 2001 Aug;15(8):721-40
10860755 - J Mol Biol. 2000 Jun 2;299(2):499-520
10651269 - Proteins. 1999 Dec 1;37(4):530-43
12012335 - Proteins. 2002 Jul 1;48(1):31-43
12163064 - Curr Opin Struct Biol. 2002 Aug;12(4):431-40
9150411 - J Mol Biol. 1997 Apr 18;267(5):1268-82
2441069 - J Mol Biol. 1987 Feb 20;193(4):775-91
2002501 - J Mol Biol. 1991 Mar 5;218(1):183-94
11243829 - J Mol Biol. 2001 Mar 16;307(1):429-45
9876919 - Protein Eng. 1998 Nov;11(11):991-7
9917408 - J Mol Biol. 1999 Jan 29;285(4):1735-47
11084910 - Methods Mol Biol. 2000;143:265-304
7664040 - Nat Struct Biol. 1994 May;1(5):334-40
9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33
8248095 - Protein Eng. 1993 Sep;6(7):717-22
8061189 - Biophys J. 1994 May;66(5):1335-40
7507173 - J Mol Biol. 1994 Jan 21;235(3):1088-97
10835284 - J Mol Biol. 2000 Jun 9;299(3):789-803
21488406 - Nature. 1992 Apr 9;356(6369):539-42
10508778 - Structure. 1999 Sep 15;7(9):1089-98
2693742 - J Mol Biol. 1989 Dec 20;210(4):785-811
1992168 - J Mol Biol. 1991 Jan 20;217(2):373-88
7937737 - Proteins. 1994 Jul;19(3):244-55
8445659 - J Mol Biol. 1993 Feb 20;229(4):996-1006
12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91
8637851 - Protein Eng. 1995 Aug;8(8):815-22
10861930 - Proteins. 2000 Aug 15;40(3):389-408
7538429 - Nat Struct Biol. 1995 Feb;2(2):163-70
8535237 - Protein Sci. 1995 Oct;4(10):2006-18
8464064 - J Mol Biol. 1993 Mar 20;230(2):543-74
7567921 - Protein Eng. 1995 Apr;8(4):363-70
10380336 - Biopolymers. 1999 Aug;50(2):111-31
11790842 - Protein Sci. 2002 Feb;11(2):322-31
11373721 - Biopolymers. 2001 Aug;59(2):72-86
8732761 - Protein Sci. 1996 May;5(5):895-903
11478870 - J Mol Biol. 2001 Aug 10;311(2):421-30
3430610 - J Mol Biol. 1987 Nov 20;198(2):295-310
8746727 - Protein Eng. 1995 Sep;8(9):893-904
9390285 - Pac Symp Biocomput. 1997;:122-33
10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
9260279 - Protein Sci. 1997 Aug;6(8):1661-81
10526356 - Proteins. 1999;Suppl 3:81-7
9080199 - Fold Des. 1997;2(1):53-66
1892586 - J Biomol Struct Dyn. 1991 Jun;8(6):1267-89
References_xml – volume: 2
  start-page: 53
  year: 1997
  end-page: 66
  article-title: All in one: A highly detailed rotamer library improves both accuracy and speed in the modelling of side‐chains by dead‐end elimination
  publication-title: Fold Des.
– volume: 356
  start-page: 539
  year: 1992
  end-page: 542
  article-title: The dead‐end elimination theorem and its use in protein side‐chain positioning
  publication-title: Nature
– volume: 11
  start-page: 322
  year: 2002
  end-page: 331
  article-title: Side‐chain modeling with an optimized scoring function
  publication-title: Protein Sci.
– volume: 48
  start-page: 31
  year: 2002
  end-page: 43
  article-title: Fast and accurate side‐chain topology and energy refinement (FASTER) as a new method for protein structure optimization
  publication-title: Proteins
– volume: 8
  start-page: 363
  year: 1995
  end-page: 370
  article-title: Side‐chain prediction by neural networks and simulated annealing optimization
  publication-title: Protein Eng.
– volume: 229
  start-page: 996
  year: 1993
  end-page: 1006
  article-title: Modeling side‐chain conformation for homologous proteins using an energy‐based rotamer search
  publication-title: J. Mol. Biol.
– volume: 8
  start-page: 815
  year: 1995
  end-page: 822
  article-title: Enhanced dead‐end elimination in the search for the global minimum energy conformation of a collection of protein side‐chains
  publication-title: Protein Eng.
– volume: 21
  start-page: 999
  year: 1999
  end-page: 1009
  article-title: Conformational splitting: A more powerful criterion for dead‐end elimination
  publication-title: J. Comp. Chem.
– volume: 1997
  start-page: 122
  year: 1997
  end-page: 133
  article-title: Theoretical and algorithmical optimization of the dead‐end elimination theorem
  publication-title: Pac. Symp. Biocomput.
– volume: 235
  start-page: 1088
  year: 1994
  end-page: 1097
  article-title: Prediction of protein side‐chain conformations from local three‐dimensional homology relationships
  publication-title: J. Mol. Biol.
– volume: 218
  start-page: 183
  year: 1991
  end-page: 194
  article-title: Database algorithm for generating protein backbone and sidechain coordinates from a Ca trace: Application to model building and detection of coordinate errors
  publication-title: J. Mol. Biol.
– volume: 2
  start-page: 163
  year: 1995
  end-page: 170
  article-title: A self consistent mean field approach to simultaneous gap closure and side‐chain positioning in homology modeling
  publication-title: Nat. Struct. Biol.
– volume: 11
  start-page: 991
  year: 1998
  end-page: 997
  article-title: Determinants of side chain conformational preferences in protein structures
  publication-title: Protein Eng.
– volume: 5
  start-page: 895
  year: 1996
  end-page: 903
  article-title: Protein design automation
  publication-title: Protein Sci.
– volume: 198
  start-page: 295
  year: 1987
  end-page: 310
  article-title: Analysis of the relationship between side‐chain conformation and secondary structure in globular proteins
  publication-title: J. Mol. Biol.
– volume: 15
  start-page: 721
  year: 2001a
  end-page: 740
  article-title: Implicit solvation in the self‐consistent mean field theory method: Side‐chain modeling and prediction of folding free energies of protein mutants
  publication-title: J. Comp. Aided. Mol. Design
– volume: 267
  start-page: 1268
  year: 1997
  end-page: 1282
  article-title: Prediction of protein side‐chain rotamers from a backbone‐dependent rotamer library: A new homology modeling tool
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: 717
  year: 1993
  end-page: 722
  article-title: The fuzzy‐end elimination theorem: Correctly implementing the side‐chain placement algorithm based on the dead‐end elimination theorem
  publication-title: Protein Eng.
– volume: 1
  start-page: 334
  year: 1994
  end-page: 340
  article-title: Conformational analysis of the backbone‐dependent rotamer preferences of protein sidechains
  publication-title: Nature Struct. Biol.
– volume: 19
  start-page: 244
  year: 1994
  end-page: 255
  article-title: Energy minimization method using automata network for sequence and side‐chain conformation prediction from given backbone geometry
  publication-title: Proteins
– volume: 210
  start-page: 785
  year: 1989
  end-page: 811
  article-title: Construction of side‐chains in homology modelling: Application to the C‐terminal lobe of rhizopuspepsin
  publication-title: J. Mol. Biol.
– year: 2003
  article-title: PISCES: A protein sequence culling server
  publication-title: Bioinformatics
– volume: 6
  start-page: 1661
  year: 1997
  end-page: 1681
  article-title: Bayesian statistical analysis of protein side‐chain rotamer preferences
  publication-title: Protein Sci.
– volume: 37
  start-page: 530
  year: 1999a
  end-page: 543
  article-title: Improved modeling of side‐chains in proteins with rotamer‐based methods: A flexible rotamer model
  publication-title: Proteins
– volume: 217
  start-page: 373
  year: 1991
  end-page: 388
  article-title: Prediction of protein side‐chain conformation by packing optimization
  publication-title: J. Mol. Biol.
– volume: 285
  start-page: 1735
  year: 1999b
  end-page: 1747
  article-title: Asparagine and glutamine: Using hydrogen atom contacts in the choice of side‐chain amide orientation
  publication-title: J. Mol. Biol.
– volume: 40
  start-page: 389
  year: 2000
  end-page: 408
  article-title: The penultimate rotamer library
  publication-title: Proteins
– volume: 12
  start-page: 431
  year: 2002
  end-page: 440
  article-title: Rotamer libraries in the 21st century
  publication-title: Curr. Opin. Struct. Biol.
– volume: 50
  start-page: 111
  year: 1999b
  end-page: 131
  article-title: Improvement of side‐chain modeling in proteins with the self‐consistent mean field theory method based on an analysis of the factors influencing prediction
  publication-title: Biopolymers
– volume: 143
  start-page: 265
  year: 2000
  end-page: 304
  article-title: The dead‐end elimination theorem: Mathematical aspects, implementation, optimizations, evaluation, and performance
  publication-title: Methods Mol. Biol.
– volume: 59
  start-page: 72
  year: 2001b
  end-page: 86
  article-title: Incorporating knowledge‐based biases into an energy‐based side‐chain modeling method: Application to comparative modeling of protein structure
  publication-title: Biopolymers
– volume: 8
  start-page: 1267
  year: 1991
  end-page: 1289
  article-title: A new approach to the rapid determination of protein side chain conformations
  publication-title: J. Biomol. Struct. Dyn.
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res.
– volume: 311
  start-page: 421
  year: 2001
  end-page: 430
  article-title: Extending the accuracy limits of prediction for side‐chain conformations
  publication-title: J. Mol. Biol.
– volume: 299
  start-page: 499
  year: 2000
  end-page: 520
  article-title: Enhanced genome annotation using structural profiles in the program 3D‐PSSM
  publication-title: J. Mol. Biol.
– volume: 285
  start-page: 1711
  year: 1999a
  end-page: 1733
  article-title: Visualizing and quantifying molecular goodness‐of‐fit: Small‐probe contact dots with explicit hydrogen atoms
  publication-title: J. Mol. Biol.
– volume: 230
  start-page: 543
  year: 1993
  end-page: 574
  article-title: Backbone‐dependent rotamer library for proteins: Application to side‐chain prediction
  publication-title: J. Mol. Biol.
– volume: 66
  start-page: 1335
  year: 1994
  end-page: 1340
  article-title: Efficient rotamer elimination applied to protein side‐chains and related spin glasses
  publication-title: Biophys. J.
– volume: 193
  start-page: 775
  year: 1987
  end-page: 792
  article-title: Tertiary templates for proteins: Use of packing criteria in the enumeration of allowed sequences for different structural classes
  publication-title: J. Mol. Biol.
– volume: 4
  start-page: 2006
  year: 1995
  end-page: 2018
  article-title: De novo design of the hydrophobic cores of proteins
  publication-title: Protein Sci.
– volume: 3
  start-page: 81
  year: 1999
  end-page: 87
  article-title: Comparative modeling of CASP3 targets using PSI‐BLAST and SCWRL
  publication-title: Proteins
– volume: 1
  start-page: 146
  year: 1972
  end-page: 160
  article-title: Depth first search and linear graph algorithms
  publication-title: SIAM J. Comput.
– volume: 299
  start-page: 789
  year: 2000
  end-page: 803
  article-title: Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design
  publication-title: J. Mol. Biol.
– volume: 307
  start-page: 429
  year: 2001
  end-page: 445
  article-title: Generalized dead‐end elimination algorithms make large‐scale protein side‐chain structure prediction tractable: Implications for protein design and structural genomics
  publication-title: J. Mol. Biol.
– volume: 7
  start-page: 1089
  year: 1999
  end-page: 1098
  article-title: Branch‐and‐terminate: A combinatorial optimization algorithm for protein design
  publication-title: Structure Fold Des.
– volume: 8
  start-page: 893
  year: 1995
  end-page: 904
  article-title: Finding the global minimum: A fuzzy end elimination implementation
  publication-title: Protein Eng.
– year: 1999
– ident: e_1_2_7_8_1
  doi: 10.1038/356539a0
– ident: e_1_2_7_23_1
  doi: 10.1002/prot.340190308
– ident: e_1_2_7_7_1
  doi: 10.1002/pro.5560041006
– ident: e_1_2_7_45_1
  doi: 10.1006/jmbi.1993.1100
– ident: e_1_2_7_24_1
  doi: 10.1145/309739.309744
– ident: e_1_2_7_30_1
  doi: 10.1006/jmbi.2000.4424
– ident: e_1_2_7_10_1
  doi: 10.1002/prot.10131
– ident: e_1_2_7_39_1
  doi: 10.1093/protein/11.11.991
– ident: e_1_2_7_11_1
  doi: 10.1002/(SICI)1097-0134(1999)37:3 <81::AID-PROT12>3.0.CO;2-R
– ident: e_1_2_7_47_1
  doi: 10.1006/jmbi.1998.2401
– ident: e_1_2_7_3_1
  doi: 10.1006/jmbi.1997.0926
– ident: e_1_2_7_19_1
  doi: 10.1093/protein/8.4.363
– ident: e_1_2_7_42_1
  doi: 10.1080/07391102.1991.10507882
– ident: e_1_2_7_46_1
  doi: 10.1006/jmbi.1998.2400
– ident: e_1_2_7_33_1
  doi: 10.1002/(SICI)1097-0134(19991201)37:4<530::AID-PROT4>3.0.CO;2-H
– ident: e_1_2_7_17_1
  doi: 10.1016/S0969-2126(99)80176-2
– ident: e_1_2_7_34_1
  doi: 10.1002/(SICI)1097-0282(199908)50:2<111::AID-BIP1>3.0.CO;2-N
– ident: e_1_2_7_43_1
  doi: 10.1006/jmbi.2000.3758
– ident: e_1_2_7_13_1
  doi: 10.1002/pro.5560060807
– ident: e_1_2_7_41_1
  doi: 10.1137/0201010
– ident: e_1_2_7_12_1
  doi: 10.1016/S0959-440X(02)00344-5
– ident: e_1_2_7_18_1
  doi: 10.1016/0022-2836(91)90883-8
– ident: e_1_2_7_28_1
  doi: 10.1016/0022-2836(91)90550-P
– ident: e_1_2_7_37_1
  doi: 10.1002/1096-987X(200008)21:11<999::AID-JCC9>3.0.CO;2-A
– ident: e_1_2_7_32_1
  doi: 10.1016/0022-2836(87)90314-7
– volume: 143
  start-page: 265
  year: 2000
  ident: e_1_2_7_6_1
  article-title: The dead‐end elimination theorem: Mathematical aspects, implementation, optimizations, evaluation, and performance
  publication-title: Methods Mol. Biol.
– ident: e_1_2_7_35_1
  doi: 10.1023/A:1012279810260
– ident: e_1_2_7_38_1
  doi: 10.1016/0022-2836(87)90358-5
– ident: e_1_2_7_16_1
  doi: 10.1016/S0006-3495(94)80923-3
– ident: e_1_2_7_22_1
  doi: 10.1038/nsb0295-163
– ident: e_1_2_7_2_1
  doi: 10.1093/nar/28.1.235
– ident: e_1_2_7_31_1
  doi: 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
– ident: e_1_2_7_29_1
  doi: 10.1110/ps.24902
– ident: e_1_2_7_14_1
  doi: 10.1006/jmbi.1993.1170
– ident: e_1_2_7_15_1
  doi: 10.1038/nsb0594-334
– ident: e_1_2_7_25_1
  doi: 10.1093/protein/6.7.717
– ident: e_1_2_7_26_1
  doi: 10.1093/protein/8.8.815
– ident: e_1_2_7_36_1
  doi: 10.1002/1097-0282(200108)59:2<72::AID-BIP1007>3.0.CO;2-S
– ident: e_1_2_7_21_1
  doi: 10.1006/jmbi.2000.3741
– volume: 1997
  start-page: 122
  year: 1997
  ident: e_1_2_7_9_1
  article-title: Theoretical and algorithmical optimization of the dead‐end elimination theorem
  publication-title: Pac. Symp. Biocomput.
– ident: e_1_2_7_27_1
  doi: 10.1006/jmbi.1994.1059
– ident: e_1_2_7_48_1
  doi: 10.1006/jmbi.2001.4865
– ident: e_1_2_7_5_1
  doi: 10.1016/S1359-0278(97)00006-0
– ident: e_1_2_7_20_1
  doi: 10.1093/protein/8.9.893
– ident: e_1_2_7_4_1
  doi: 10.1002/pro.5560050511
– ident: e_1_2_7_44_1
  doi: 10.1093/bioinformatics/btg224
– ident: e_1_2_7_40_1
  doi: 10.1016/0022-2836(89)90109-5
– reference: 7937737 - Proteins. 1994 Jul;19(3):244-55
– reference: 3430610 - J Mol Biol. 1987 Nov 20;198(2):295-310
– reference: 1892586 - J Biomol Struct Dyn. 1991 Jun;8(6):1267-89
– reference: 21488406 - Nature. 1992 Apr 9;356(6369):539-42
– reference: 10651269 - Proteins. 1999 Dec 1;37(4):530-43
– reference: 2693742 - J Mol Biol. 1989 Dec 20;210(4):785-811
– reference: 8732761 - Protein Sci. 1996 May;5(5):895-903
– reference: 10835284 - J Mol Biol. 2000 Jun 9;299(3):789-803
– reference: 11373721 - Biopolymers. 2001 Aug;59(2):72-86
– reference: 11084910 - Methods Mol Biol. 2000;143:265-304
– reference: 12012335 - Proteins. 2002 Jul 1;48(1):31-43
– reference: 8445659 - J Mol Biol. 1993 Feb 20;229(4):996-1006
– reference: 7567921 - Protein Eng. 1995 Apr;8(4):363-70
– reference: 8535237 - Protein Sci. 1995 Oct;4(10):2006-18
– reference: 9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33
– reference: 2441069 - J Mol Biol. 1987 Feb 20;193(4):775-91
– reference: 8464064 - J Mol Biol. 1993 Mar 20;230(2):543-74
– reference: 10861930 - Proteins. 2000 Aug 15;40(3):389-408
– reference: 10380336 - Biopolymers. 1999 Aug;50(2):111-31
– reference: 1992168 - J Mol Biol. 1991 Jan 20;217(2):373-88
– reference: 12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91
– reference: 10526356 - Proteins. 1999;Suppl 3:81-7
– reference: 9150411 - J Mol Biol. 1997 Apr 18;267(5):1268-82
– reference: 8061189 - Biophys J. 1994 May;66(5):1335-40
– reference: 7538429 - Nat Struct Biol. 1995 Feb;2(2):163-70
– reference: 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
– reference: 9876919 - Protein Eng. 1998 Nov;11(11):991-7
– reference: 11243829 - J Mol Biol. 2001 Mar 16;307(1):429-45
– reference: 11478870 - J Mol Biol. 2001 Aug 10;311(2):421-30
– reference: 10860755 - J Mol Biol. 2000 Jun 2;299(2):499-520
– reference: 11718477 - J Comput Aided Mol Des. 2001 Aug;15(8):721-40
– reference: 9917408 - J Mol Biol. 1999 Jan 29;285(4):1735-47
– reference: 8248095 - Protein Eng. 1993 Sep;6(7):717-22
– reference: 7507173 - J Mol Biol. 1994 Jan 21;235(3):1088-97
– reference: 2002501 - J Mol Biol. 1991 Mar 5;218(1):183-94
– reference: 8637851 - Protein Eng. 1995 Aug;8(8):815-22
– reference: 9390285 - Pac Symp Biocomput. 1997;:122-33
– reference: 9080199 - Fold Des. 1997;2(1):53-66
– reference: 11790842 - Protein Sci. 2002 Feb;11(2):322-31
– reference: 9260279 - Protein Sci. 1997 Aug;6(8):1661-81
– reference: 12163064 - Curr Opin Struct Biol. 2002 Aug;12(4):431-40
– reference: 10508778 - Structure. 1999 Sep 15;7(9):1089-98
– reference: 7664040 - Nat Struct Biol. 1994 May;1(5):334-40
– reference: 8746727 - Protein Eng. 1995 Sep;8(9):893-904
SSID ssj0004123
Score 2.3667815
Snippet Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design...
Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2001
SubjectTerms Algorithms
Computational Biology
Computer Simulation
Databases as Topic
Disulfides
homology modeling
Models, Molecular
Models, Statistical
Molecular Conformation
Protein Conformation
Protein Structure, Secondary
Proteins - chemistry
Proteomics - methods
rotamer library
SCWRL
side‐chain prediction
Software
Structure prediction
Title A graph‐theory algorithm for rapid protein side‐chain prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.03154503
https://www.ncbi.nlm.nih.gov/pubmed/12930999
https://www.proquest.com/docview/73573752
https://pubmed.ncbi.nlm.nih.gov/PMC2323997
Volume 12
WOSCitedRecordID wos000184976100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-896X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004123
  issn: 0961-8368
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-896X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004123
  issn: 0961-8368
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL2CbhK8wPgOg-IHtAdQWOKPOHmsgGpIqENoiL5FtuOskSCt2oLUt_2E_UZ-yWwnLVQgJLTHyNeR5ZsbH9v3ngNwiJmWTBLti4Arn0phQkrLyM8xZ5kKJMZCOrEJ3unE3W5yVefm2FqYih9iduBmI8P9r22AC1mrkIQ2K24wOrEKBZQ5rs-QurC8veg8V0WGuBKSj0I_JlFcV-eZ3t9f9J1fj16BzNe5ki8xrFuE2qv_OfwvsFKjT9SqPpc1WNDlOmy0SrPzvp-gb8jlg7qD9nVYOp1qwW3AWQs5ZuunP39d5eMEibvf_WEx7t0jg3qRaSsy5DgfihJZBVBjqXrCPAyG9irIun8Tbtrnv05_-LX-gq9obCYtwzoJRSKoJEmmEq2JZWfjWMYioVRwZVpzGWSRJLnGgXYa4SrHwky2QY2UbEGj7Jd6B1DGaJQxxiUJFc2lThTFAU5UhKnSMVEeHE29kKqanNxqZNyl1SYlSAejdDpfHhzOjAcVJ8fbZgdTd6ZmuuxFiCh1_2GUcsI44Qx7sF059_k1Bv1YzOwBn3P7zMCycc-3lEXPsXIbaGrAHvfg2Ln9vZGlV9c_Q2yz2XY_ZP0Vll0uoUtx24PGePig9-GzehwXo2ETFnk3bsKns-v2zWXTxcI_blYLCg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB6hggQXWGDZDewuPiAOrAKJf-LkWMFWoO0WhEDiFtmOQyOVtGoLEjcegWfkSdZ20kIFQkIcI0-sZMYTfxnPfAOwg5mWTBLti4Arn0phXErLyM8xZ5kKJMZCumYTvNOJr66SszrgZmthKn6IacDNeob7XlsHtwHp2sttWtxgtG9bFFBmyT7nqVlIrAHzR-ety_ZzZWSIq2byUejHJIrrCj0zwcGL22f3pFdA83W-5Esc6zai1spnX-ELLNcQFDWrNbMKc7pcg_VmaX6_b-7RLnJJoS7avgaLh5OGcOtw1ESO3vrp4dGVP94j0bvuD4tx9wYZ6IvMWJEhR_xQlMi2ATWSqivMxWBoz4PsGvgKl60_F4fHft2EwVc0NlrLsE5CkQgqSZKpRGtiKdo4lrFIKBVcmdFcBlkkSa5xoF2jcJVjYbRtoCMlG9Ao-6X-DihjNMoY45KEiuZSJ4riACcqwlTpmCgP9iZmSFXNUG4bZfTS6k8lSAejdKIvD3amwoOKmONtse2JPVOjLnsaIkrdvx2lnDBOOMMefKus-zyNgUAWOHvAZ-w-FbCU3LMjZdF11NwGnxrExz347ez-3pOlZ-enIbYpbZsfkt6GxeOLf-20fdL5uwVLLrnQ5bz9gMZ4eKt_woK6Gxej4a_aGf4DpJkNzg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hQG0vLV9tQ0vxAXFoFUj8EcfHFcuqVdGyQkXiFtmOw0aCbLS7VOLWn9DfyC-p7WQXViAk1GPkiZV4PPGLPfMewB5mRjFFTCgjrkOqpA0po5KwwJzlOlIYS-XFJni_n15ciEG74eZqYRp-iPmGm4sM_712AW7qvGij3KXF1ZMDJ1FAmSP7XKFMJDYwV7pnvfOT-8rIGDdi8kkcpiRJ2wo928Hhg9sX16RHQPNxvuRDHOsXot67_32FNXjbQlDUaebMOiyZagM2O5X9_b6-RfvIJ4X63fYNeH00E4TbhG4HeXrruz9_ffnjLZJXl6NxOR1eIwt9kW0rc-SJH8oKORlQa6mH0l7UY3ce5ObAFpz3jn8dfQ9bEYZQ09SOWo6NiKWQVBGRa2EMcRRtHKtUCkol17a1UFGeKFIYHBkvFK4LLO1oW-hIyXtYrkaV-QgoZzTJGeOKxJoWyghNcYSFTjDVJiU6gK8zN2S6ZSh3QhlXWfOnEmX1JJuNVwB7c-O6IeZ42mx35s_MDpc7DZGVGd1MMk4YJ5zhAD403r3vxkIgB5wD4At-nxs4Su7Flqocempui08t4uMBfPN-f-7JssHZaYxdStv2i6x34dWg28tOfvR_foI3PrfQp7x9huXp-MbswKr-PS0n4y9tLPwDHYUNSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph%E2%80%90theory+algorithm+for+rapid+protein+side%E2%80%90chain+prediction&rft.jtitle=Protein+science&rft.au=Canutescu%2C+Adrian+A.&rft.au=Shelenkov%2C+Andrew+A.&rft.au=Dunbrack%2C+Roland+L.&rft.date=2003-09-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=12&rft.issue=9&rft.spage=2001&rft.epage=2014&rft_id=info:doi/10.1110%2Fps.03154503&rft.externalDBID=10.1110%252Fps.03154503&rft.externalDocID=PRO122001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon