A graph‐theory algorithm for rapid protein side‐chain prediction
Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and i...
Uloženo v:
| Vydáno v: | Protein science Ročník 12; číslo 9; s. 2001 - 2014 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
Cold Spring Harbor Laboratory Press
01.09.2003
|
| Témata: | |
| ISSN: | 0961-8368, 1469-896X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side‐chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34,342 side chains in <7 min of computer time. The total χ1 and χ1 + 2 dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone‐dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy. |
|---|---|
| AbstractList | Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy. Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy. Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34,342 side chains in <7 min of computer time. The total χ1 and χ1 + 2 dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy. Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side‐chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34,342 side chains in <7 min of computer time. The total χ 1 and χ 1 + 2 dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone‐dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy. |
| Author | Dunbrack, Roland L. Canutescu, Adrian A. Shelenkov, Andrew A. |
| AuthorAffiliation | Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA |
| AuthorAffiliation_xml | – name: Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA |
| Author_xml | – sequence: 1 givenname: Adrian A. surname: Canutescu fullname: Canutescu, Adrian A. – sequence: 2 givenname: Andrew A. surname: Shelenkov fullname: Shelenkov, Andrew A. – sequence: 3 givenname: Roland L. surname: Dunbrack fullname: Dunbrack, Roland L. email: RL_Dunbrack@fccc.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12930999$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctKw0AUhgdRtK2u3EtWbqR1bk0yG0HqFQoVUXA3TCYnzUiaiTOp0p2P4DP6JE6pd9DV4fB_5z-3LlqvbQ0I7RI8IITgw8YPMCNDPsRsDXUIj0U_FfHdOupgEZN-yuJ0C3W9v8cYc0LZJtoiVDAshOigk-No6lRTvj6_tCVYt4hUNbXOtOUsKqyLgmbyqHG2BVNH3uQQSF2qkDQOcqNbY-tttFGoysPOe-yh27PTm9FFfzw5vxwdj_uap2GSnIIgSiieMZFrAcA4TVlCs1QJzlWig1pkOI8zVgDFQMMuRBdUhQ0YwZz10NHKt5lnM8g11K1TlWycmSm3kFYZ-VOpTSmn9lFSRpkQSTDYfzdw9mEOvpUz4zVUlarBzr1M2DBhyZAGcO97p88WH4cLwMEK0M5676D4QrBcvkU2Xn68JdDkF61Nq5anC2Oa6o8auqp5MhUs_rOXV9cTQinGhL0BOBShng |
| CitedBy_id | crossref_primary_10_1007_s00894_010_0672_1 crossref_primary_10_1074_jbc_M406193200 crossref_primary_10_1186_1471_2105_6_255 crossref_primary_10_1371_journal_pcbi_0030058 crossref_primary_10_3390_md17030180 crossref_primary_10_1016_j_bpj_2011_02_032 crossref_primary_10_1186_1471_2105_12_S14_S10 crossref_primary_10_1110_ps_072855507 crossref_primary_10_1073_pnas_1112398108 crossref_primary_10_1371_journal_pcbi_1000181 crossref_primary_10_1111_j_1742_4658_2007_06068_x crossref_primary_10_1002_cbic_201100051 crossref_primary_10_1016_j_bbapap_2010_11_004 crossref_primary_10_1039_C5CP04348D crossref_primary_10_1016_j_gene_2009_05_017 crossref_primary_10_1016_j_bpj_2011_09_019 crossref_primary_10_1128_MCB_00256_13 crossref_primary_10_1038_s41467_023_38168_3 crossref_primary_10_1007_s10822_010_9364_2 crossref_primary_10_1529_biophysj_107_117648 crossref_primary_10_1371_journal_pone_0134506 crossref_primary_10_1074_jbc_M505168200 crossref_primary_10_1109_ACCESS_2023_3305962 crossref_primary_10_1016_j_compbiolchem_2007_03_010 crossref_primary_10_1073_pnas_1002614107 crossref_primary_10_1107_S1399004714025784 crossref_primary_10_1016_j_bbamem_2011_01_004 crossref_primary_10_1016_j_compbiolchem_2014_10_001 crossref_primary_10_1186_1471_2229_10_157 crossref_primary_10_1073_pnas_0402254101 crossref_primary_10_1016_j_virol_2008_08_029 crossref_primary_10_1016_j_jmb_2006_06_041 crossref_primary_10_1371_journal_pcbi_1003797 crossref_primary_10_1088_1742_6596_1706_1_012039 crossref_primary_10_1186_1471_2105_11_306 crossref_primary_10_1124_mol_111_072504 crossref_primary_10_1021_ja070865d crossref_primary_10_1074_jbc_M611071200 crossref_primary_10_1111_febs_17210 crossref_primary_10_1371_journal_pone_0004476 crossref_primary_10_1021_jm8014553 crossref_primary_10_1158_1078_0432_CCR_04_2515 crossref_primary_10_1073_pnas_0812299106 crossref_primary_10_1107_S0907444913018453 crossref_primary_10_7124_bc_000695 crossref_primary_10_1016_j_jmb_2007_01_038 crossref_primary_10_1038_srep32153 crossref_primary_10_1371_journal_pone_0064464 crossref_primary_10_1016_j_bpj_2010_08_041 crossref_primary_10_1042_BJ20150830 crossref_primary_10_1007_s10822_008_9249_9 crossref_primary_10_1016_j_bpj_2008_09_030 crossref_primary_10_1002_prot_25396 crossref_primary_10_1111_j_1365_2958_2009_06991_x crossref_primary_10_1002_prot_25030 crossref_primary_10_1016_j_ymeth_2010_04_014 crossref_primary_10_1093_nar_gkn008 crossref_primary_10_1128_JVI_01491_09 crossref_primary_10_1371_journal_pone_0096263 crossref_primary_10_1109_TCBB_2006_22 crossref_primary_10_1002_prot_20946 crossref_primary_10_1002_prot_20942 crossref_primary_10_1007_s00239_013_9606_8 crossref_primary_10_1016_j_bpj_2010_08_053 crossref_primary_10_1093_nar_gkx146 crossref_primary_10_1093_bioinformatics_btl325 crossref_primary_10_1186_1471_2105_7_382 crossref_primary_10_1074_jbc_M109_027326 crossref_primary_10_1111_mmi_13267 crossref_primary_10_1002_prot_25289 crossref_primary_10_1093_hmg_ddq414 crossref_primary_10_1093_molbev_msr035 crossref_primary_10_1002_prot_24195 crossref_primary_10_1146_annurev_anchem_062011_143024 crossref_primary_10_1126_science_1229934 crossref_primary_10_1371_journal_pcbi_1004619 crossref_primary_10_1016_j_enzmictec_2009_05_010 crossref_primary_10_1016_j_sbi_2006_03_003 crossref_primary_10_1016_j_sbi_2012_01_010 crossref_primary_10_1016_j_meegid_2009_10_003 crossref_primary_10_1371_journal_pcbi_1000135 crossref_primary_10_1371_journal_pone_0019828 crossref_primary_10_1007_s00894_008_0381_1 crossref_primary_10_1016_j_biochi_2008_10_008 crossref_primary_10_1039_c2pp25320h crossref_primary_10_1074_jbc_C600286200 crossref_primary_10_1080_19420862_2016_1259047 crossref_primary_10_1002_prot_25453 crossref_primary_10_1002_prot_21096 crossref_primary_10_1002_prot_22184 crossref_primary_10_1093_pcp_pcab044 crossref_primary_10_1093_nar_gkp368 crossref_primary_10_1002_jcc_20736 crossref_primary_10_1002_prot_21099 crossref_primary_10_1002_prot_22189 crossref_primary_10_1002_prot_26789 crossref_primary_10_1016_j_bcp_2006_05_008 crossref_primary_10_1002_prot_23159 crossref_primary_10_1002_bit_25483 crossref_primary_10_1371_journal_pcbi_1000487 crossref_primary_10_1016_j_febslet_2015_09_008 crossref_primary_10_1038_nsmb_1492 crossref_primary_10_1093_nar_gkt960 crossref_primary_10_1093_bioinformatics_btl468 crossref_primary_10_1371_journal_pcbi_1000490 crossref_primary_10_3390_ph4091196 crossref_primary_10_1128_JB_187_13_4637_4645_2005 crossref_primary_10_1074_jbc_M111_250308 crossref_primary_10_4049_jimmunol_174_1_328 crossref_primary_10_3390_ijms232012456 crossref_primary_10_1093_protein_gzq028 crossref_primary_10_1039_c0cc02768e crossref_primary_10_1080_07391102_2007_10507176 crossref_primary_10_1002_jcc_22948 crossref_primary_10_1371_journal_pntd_0004120 crossref_primary_10_1016_j_bpc_2006_06_008 crossref_primary_10_1016_j_molcatb_2016_11_007 crossref_primary_10_1093_bioinformatics_btn314 crossref_primary_10_1111_j_1742_4658_2009_07387_x crossref_primary_10_1186_1758_2946_1_13 crossref_primary_10_1210_jc_2016_2124 crossref_primary_10_1002_mrc_1832 crossref_primary_10_1002_cbic_200700188 crossref_primary_10_1002_prot_23170 crossref_primary_10_1186_1741_7007_5_17 crossref_primary_10_1016_j_coviro_2015_03_013 crossref_primary_10_1371_journal_pone_0074053 crossref_primary_10_1002_pro_2241 crossref_primary_10_1007_s10822_007_9127_x crossref_primary_10_1074_jbc_M702037200 crossref_primary_10_1091_mbc_e07_09_0953 crossref_primary_10_1016_j_febslet_2008_08_022 crossref_primary_10_1074_jbc_M504165200 crossref_primary_10_1126_science_1234012 crossref_primary_10_1007_s10719_008_9223_8 crossref_primary_10_1529_biophysj_106_084020 crossref_primary_10_1074_jbc_M414028200 crossref_primary_10_3390_cells9061548 crossref_primary_10_1016_j_pep_2008_01_001 crossref_primary_10_1016_j_ygeno_2006_02_008 crossref_primary_10_1002_prot_24397 crossref_primary_10_3390_ph16081170 crossref_primary_10_1016_j_jtbi_2006_02_005 crossref_primary_10_1016_j_bpj_2008_10_041 crossref_primary_10_1016_j_str_2011_03_019 crossref_primary_10_1038_s41598_017_16780_w crossref_primary_10_1007_s00239_011_9454_3 crossref_primary_10_1002_prot_25767 crossref_primary_10_1002_prot_24555 crossref_primary_10_1016_j_jconrel_2012_08_021 crossref_primary_10_4161_19420862_2014_985933 crossref_primary_10_1016_j_molcatb_2013_01_021 crossref_primary_10_1371_journal_pcbi_1000694 crossref_primary_10_1016_j_bbapap_2009_05_005 crossref_primary_10_1016_j_febslet_2009_06_046 crossref_primary_10_1110_ps_072939707 crossref_primary_10_1016_j_jmb_2021_166899 crossref_primary_10_1371_journal_pcbi_0010047 crossref_primary_10_1371_journal_pcbi_1009037 crossref_primary_10_1002_prot_22262 crossref_primary_10_1016_j_bbrc_2017_09_145 crossref_primary_10_1016_j_jmb_2007_07_080 crossref_primary_10_1088_1478_3975_12_4_046002 crossref_primary_10_1016_j_str_2018_01_017 crossref_primary_10_1074_jbc_M502352200 crossref_primary_10_1002_prot_22380 crossref_primary_10_1016_j_sbi_2009_02_010 crossref_primary_10_3390_en16010158 crossref_primary_10_1002_prot_24685 crossref_primary_10_1016_j_str_2006_11_011 crossref_primary_10_1126_science_1112160 crossref_primary_10_1093_bioinformatics_btl381 crossref_primary_10_1016_j_ejmech_2012_10_022 crossref_primary_10_1016_j_neuron_2006_03_002 crossref_primary_10_1128_JB_00251_07 crossref_primary_10_1074_jbc_M111_229179 crossref_primary_10_1007_s10822_017_0047_0 crossref_primary_10_1515_HMBCI_2010_012 crossref_primary_10_1039_c004880a crossref_primary_10_1007_s10858_010_9432_x crossref_primary_10_1002_prot_21060 crossref_primary_10_1016_j_jmb_2007_06_057 crossref_primary_10_1155_2014_653487 crossref_primary_10_1110_ps_041253405 crossref_primary_10_1093_nar_gkq340 crossref_primary_10_1529_biophysj_108_135285 crossref_primary_10_1007_s11590_011_0308_0 crossref_primary_10_1016_j_jmb_2008_12_043 crossref_primary_10_1016_j_jmb_2012_05_025 crossref_primary_10_1073_pnas_0506078102 crossref_primary_10_1074_jbc_M110_107243 crossref_primary_10_1529_biophysj_108_142984 crossref_primary_10_1093_bioinformatics_btm148 crossref_primary_10_1110_ps_062658307 crossref_primary_10_1007_s11262_006_0058_8 crossref_primary_10_1016_j_bbagen_2005_05_016 crossref_primary_10_1128_JVI_00528_18 crossref_primary_10_1186_1471_2105_11_256 crossref_primary_10_1002_prot_21191 crossref_primary_10_1080_1062936X_2016_1179672 crossref_primary_10_1371_journal_pone_0006701 crossref_primary_10_1002_prot_22288 crossref_primary_10_1002_prot_23134 crossref_primary_10_1002_prot_25315 crossref_primary_10_1016_j_bbamem_2015_03_013 crossref_primary_10_1529_biophysj_106_090183 crossref_primary_10_1107_S1744309112044168 crossref_primary_10_1093_nar_gkq475 crossref_primary_10_1101_gad_288340_116 crossref_primary_10_1080_10629360701844126 crossref_primary_10_1002_prot_24111 crossref_primary_10_1002_prot_21085 crossref_primary_10_1186_1472_6807_8_2 crossref_primary_10_1002_prot_22054 crossref_primary_10_1002_prot_22170 crossref_primary_10_1063_5_0140453 crossref_primary_10_1002_prot_22051 crossref_primary_10_1128_MCB_01876_08 crossref_primary_10_1002_prot_21125 crossref_primary_10_1016_j_febslet_2011_01_046 crossref_primary_10_1002_jcc_20906 crossref_primary_10_1016_j_sbi_2004_03_002 crossref_primary_10_1002_prot_24997 crossref_primary_10_1074_jbc_M110_215657 crossref_primary_10_1186_s12881_016_0298_y crossref_primary_10_1002_prot_21366 crossref_primary_10_1093_bioinformatics_btl192 crossref_primary_10_1186_1471_2148_11_361 crossref_primary_10_1111_febs_14950 crossref_primary_10_1186_s12864_017_3947_4 crossref_primary_10_1186_1471_2105_11_236 crossref_primary_10_1110_ps_073402508 crossref_primary_10_1002_prot_21371 crossref_primary_10_1093_bib_bbw079 crossref_primary_10_1002_prot_21493 crossref_primary_10_1002_prot_21379 crossref_primary_10_1002_prot_25858 crossref_primary_10_3390_ijms11103623 crossref_primary_10_1002_prot_21495 crossref_primary_10_1186_1471_2202_11_133 crossref_primary_10_1016_j_biochi_2009_04_008 crossref_primary_10_1080_15548627_2022_2151294 crossref_primary_10_1371_journal_pone_0010049 crossref_primary_10_1016_j_jmb_2010_01_041 crossref_primary_10_1371_journal_pcbi_1000401 crossref_primary_10_1093_nar_gkac1119 crossref_primary_10_1016_j_csbj_2019_12_007 crossref_primary_10_1016_j_febslet_2012_02_012 crossref_primary_10_1074_jbc_M803239200 crossref_primary_10_1110_ps_062447107 crossref_primary_10_1534_genetics_105_052266 crossref_primary_10_1111_febs_12524 crossref_primary_10_1016_j_molcel_2005_12_005 crossref_primary_10_1194_jlr_M600232_JLR200 crossref_primary_10_1016_j_ajhg_2009_03_018 crossref_primary_10_1016_j_bpj_2011_07_052 crossref_primary_10_1016_j_cyto_2007_07_193 crossref_primary_10_1074_jbc_M709819200 crossref_primary_10_1016_j_jmb_2011_02_017 crossref_primary_10_1186_s12859_014_0363_5 crossref_primary_10_3389_fendo_2018_00142 crossref_primary_10_1016_j_jmgm_2003_12_010 crossref_primary_10_1371_journal_pone_0059627 crossref_primary_10_1002_prot_21025 crossref_primary_10_1038_emboj_2013_157 crossref_primary_10_1111_j_1469_8137_2008_02653_x crossref_primary_10_1021_ja106263y crossref_primary_10_1016_j_bbagen_2016_06_013 crossref_primary_10_1371_journal_pone_0009280 crossref_primary_10_1016_j_bpj_2012_08_043 crossref_primary_10_1186_s12859_015_0672_3 crossref_primary_10_1002_prot_21150 crossref_primary_10_1016_j_jmb_2006_04_057 crossref_primary_10_1002_prot_21271 crossref_primary_10_1002_prot_21390 crossref_primary_10_1007_s10462_022_10350_x crossref_primary_10_1016_j_jmb_2006_03_030 crossref_primary_10_1371_journal_pcbi_1003935 crossref_primary_10_3390_math9020168 crossref_primary_10_1002_prot_21154 crossref_primary_10_1002_prot_22488 crossref_primary_10_1007_s10822_009_9299_7 crossref_primary_10_3390_ijms20030606 crossref_primary_10_1039_D0SC02646H crossref_primary_10_1080_07391102_2013_765808 crossref_primary_10_3390_biomedicines10010102 crossref_primary_10_1038_nature09992 crossref_primary_10_1002_prot_24552 crossref_primary_10_1093_bib_bbaf297 crossref_primary_10_1016_j_bbrc_2014_05_130 crossref_primary_10_1134_S0006350906070074 crossref_primary_10_1038_nsmb1228 crossref_primary_10_1002_prot_21685 crossref_primary_10_1002_prot_22894 crossref_primary_10_1093_nar_gkaf415 crossref_primary_10_1088_1742_6596_1740_1_012013 crossref_primary_10_1371_journal_pcbi_1000854 crossref_primary_10_15252_embj_2020104523 crossref_primary_10_1111_j_1742_4658_2009_07073_x crossref_primary_10_1016_j_jmgm_2009_04_004 crossref_primary_10_1128_JB_00122_08 crossref_primary_10_1042_BCJ20180861 crossref_primary_10_1159_000529306 crossref_primary_10_1073_pnas_1005681107 crossref_primary_10_1371_journal_pone_0093553 crossref_primary_10_1007_s00249_016_1193_3 crossref_primary_10_1371_journal_pntd_0009585 crossref_primary_10_1093_glycob_cww050 crossref_primary_10_1371_journal_pone_0116414 crossref_primary_10_1074_jbc_M110_172098 crossref_primary_10_1002_prot_21453 crossref_primary_10_1093_bioinformatics_btm073 crossref_primary_10_1124_mol_107_043661 crossref_primary_10_1002_ajmg_a_31937 crossref_primary_10_1109_TCBB_2011_74 crossref_primary_10_26508_lsa_201800272 crossref_primary_10_1016_j_ijbiomac_2012_05_014 crossref_primary_10_1016_j_neucom_2015_09_023 crossref_primary_10_1016_j_compchemeng_2009_06_006 crossref_primary_10_1016_j_ijpara_2012_03_012 crossref_primary_10_1002_prot_21103 crossref_primary_10_1016_j_matdes_2021_110343 crossref_primary_10_1002_prot_22558 crossref_primary_10_1186_1756_0500_5_256 crossref_primary_10_1007_s00044_011_9736_8 crossref_primary_10_1016_j_gene_2008_06_004 crossref_primary_10_1016_j_jmb_2005_08_066 crossref_primary_10_1002_prot_22551 crossref_primary_10_1002_prot_22312 crossref_primary_10_1038_nchembio714 crossref_primary_10_1074_jbc_M111_243865 crossref_primary_10_1210_en_2017_00082 crossref_primary_10_1007_s00424_013_1424_8 crossref_primary_10_1093_nar_gkt458 crossref_primary_10_1002_prot_21229 crossref_primary_10_1007_s11033_013_2814_x crossref_primary_10_1016_j_tim_2005_02_003 crossref_primary_10_1016_j_jmb_2006_10_033 crossref_primary_10_1093_nar_gks481 crossref_primary_10_1016_j_compbiolchem_2016_02_012 crossref_primary_10_1007_s00894_008_0267_2 crossref_primary_10_1016_j_molonc_2014_04_002 crossref_primary_10_1073_pnas_0511130103 crossref_primary_10_1002_aic_16354 crossref_primary_10_1016_j_bpj_2011_05_030 crossref_primary_10_1093_protein_gzi052 crossref_primary_10_1073_pnas_0602815103 crossref_primary_10_1074_jbc_M312458200 crossref_primary_10_1091_mbc_e09_09_0831 crossref_primary_10_1371_journal_pcbi_1002924 crossref_primary_10_1002_prot_21598 crossref_primary_10_1186_1471_2105_15_S12_S5 crossref_primary_10_1016_j_artmed_2006_04_004 crossref_primary_10_3390_molecules25173861 crossref_primary_10_1016_j_jmb_2018_03_018 crossref_primary_10_1002_prot_22564 crossref_primary_10_1016_j_jmb_2024_168704 crossref_primary_10_1016_j_bbagen_2018_06_001 crossref_primary_10_1016_j_str_2007_07_015 crossref_primary_10_1002_prot_21119 crossref_primary_10_1016_j_amc_2007_05_002 crossref_primary_10_1016_j_bpj_2010_04_075 crossref_primary_10_1016_j_jmb_2006_01_005 crossref_primary_10_1016_j_biochi_2010_12_015 crossref_primary_10_1124_jpet_105_099887 crossref_primary_10_3390_ijms22094512 crossref_primary_10_1016_j_ymeth_2006_07_026 crossref_primary_10_1002_prot_22570 crossref_primary_10_1110_ps_051985106 crossref_primary_10_1002_jmr_1132 crossref_primary_10_1074_jbc_M110_208496 crossref_primary_10_1111_ahg_12082 crossref_primary_10_1007_s00453_007_9070_1 crossref_primary_10_1016_j_jmb_2006_11_056 crossref_primary_10_1007_s10878_007_9092_2 crossref_primary_10_1007_s10898_012_9886_3 crossref_primary_10_1002_cmdc_200700201 crossref_primary_10_1002_prot_20551 crossref_primary_10_1002_prot_21883 crossref_primary_10_1016_j_ajhg_2009_11_003 crossref_primary_10_1074_jbc_M609264200 crossref_primary_10_1080_07391102_2009_10507260 crossref_primary_10_1093_nar_gkq1250 crossref_primary_10_1002_humu_20604 crossref_primary_10_1371_journal_pcbi_1008667 crossref_primary_10_1002_pro_730 crossref_primary_10_1016_j_future_2021_04_011 crossref_primary_10_1287_ijoc_2023_0094 crossref_primary_10_1016_j_ibmb_2007_03_005 crossref_primary_10_1186_1472_6807_9_12 crossref_primary_10_1093_bioinformatics_bti523 crossref_primary_10_1016_j_bbrc_2005_11_012 crossref_primary_10_1002_prot_22502 crossref_primary_10_1016_j_jinorgbio_2007_10_032 crossref_primary_10_1038_srep31418 crossref_primary_10_3389_fcell_2024_1210944 crossref_primary_10_1002_prot_21531 crossref_primary_10_1002_prot_21419 crossref_primary_10_1002_prot_22508 crossref_primary_10_1128_AEM_03215_12 crossref_primary_10_1016_j_jmb_2008_06_084 crossref_primary_10_1016_j_jmb_2008_06_082 crossref_primary_10_1107_S2052252516008113 crossref_primary_10_13005_bpj_1540 crossref_primary_10_1186_1758_2946_6_12 crossref_primary_10_1016_j_febslet_2006_11_054 crossref_primary_10_1016_j_pbiomolbio_2019_09_004 crossref_primary_10_1016_j_jmb_2005_08_020 crossref_primary_10_1186_1471_2105_9_448 crossref_primary_10_1186_1471_2105_9_441 crossref_primary_10_1074_jbc_M109_013706 crossref_primary_10_1074_jbc_RA120_013501 crossref_primary_10_1002_cctc_201100487 crossref_primary_10_1002_prot_22515 crossref_primary_10_1007_s00894_005_0004_z crossref_primary_10_1529_biophysj_107_116095 crossref_primary_10_1073_pnas_1912132117 crossref_primary_10_1016_j_bbapap_2009_04_013 crossref_primary_10_1021_ja900616b crossref_primary_10_1186_1471_2105_9_40 crossref_primary_10_1371_journal_pone_0011653 crossref_primary_10_1016_j_bioorg_2023_106819 crossref_primary_10_1107_S0907444912039194 crossref_primary_10_1007_s10858_006_9000_6 crossref_primary_10_3390_ijms14059893 crossref_primary_10_1155_2012_580965 crossref_primary_10_1002_prot_22525 crossref_primary_10_1002_prot_21672 crossref_primary_10_1007_s00894_006_0164_5 crossref_primary_10_1016_j_jmb_2008_05_067 crossref_primary_10_1186_1475_2859_10_S1_S16 crossref_primary_10_1002_pro_718 crossref_primary_10_1110_ps_03601504 crossref_primary_10_1002_prot_20229 crossref_primary_10_1073_pnas_0502378102 crossref_primary_10_1158_1541_7786_MCR_10_0233 crossref_primary_10_1016_j_theochem_2006_08_046 crossref_primary_10_1186_1471_2105_8_304 crossref_primary_10_1016_j_jmb_2009_06_032 crossref_primary_10_1074_jbc_M111_229039 crossref_primary_10_1016_j_jmb_2007_04_086 crossref_primary_10_1155_2012_674832 crossref_primary_10_1073_pnas_0909950107 crossref_primary_10_1016_j_jmb_2006_09_002 crossref_primary_10_1515_hsz_2015_0273 crossref_primary_10_1007_s00894_009_0533_y crossref_primary_10_1186_1472_6807_8_34 crossref_primary_10_1016_j_imbio_2010_10_011 crossref_primary_10_1016_j_str_2009_05_013 crossref_primary_10_1007_s00439_005_1339_3 crossref_primary_10_1089_cmb_2009_0152 crossref_primary_10_1371_journal_pone_0007485 crossref_primary_10_1002_pmic_200600187 crossref_primary_10_1371_journal_pcbi_1005346 crossref_primary_10_1038_nprot_2008_197 crossref_primary_10_1074_jbc_M709587200 crossref_primary_10_1016_j_str_2008_11_005 crossref_primary_10_1016_j_molimm_2005_10_010 crossref_primary_10_1016_j_bbapap_2011_11_005 crossref_primary_10_1186_1475_2859_4_20 crossref_primary_10_1155_2013_541359 crossref_primary_10_1371_journal_pone_0018142 crossref_primary_10_1186_1753_6561_8_S2_S2 crossref_primary_10_1002_humu_21179 crossref_primary_10_1016_j_biochi_2007_11_007 crossref_primary_10_1016_j_phytochem_2019_112221 crossref_primary_10_1016_j_jmb_2006_08_035 crossref_primary_10_1074_jbc_M109_074807 crossref_primary_10_1089_ars_2008_2057 crossref_primary_10_1016_j_devcel_2013_06_022 crossref_primary_10_1016_j_febslet_2009_10_047 crossref_primary_10_1089_cmb_2007_0158 crossref_primary_10_1002_pro_2222 crossref_primary_10_1002_prot_22826 crossref_primary_10_1089_ars_2008_2055 crossref_primary_10_1110_ps_062165906 crossref_primary_10_1371_journal_pone_0036382 crossref_primary_10_1186_1471_2105_11_90 crossref_primary_10_1371_journal_pone_0011740 crossref_primary_10_1016_j_jmb_2011_07_031 crossref_primary_10_1016_j_jmb_2009_02_031 crossref_primary_10_1093_bioinformatics_bti438 crossref_primary_10_1002_jcc_22968 crossref_primary_10_1109_TCBB_2013_130 crossref_primary_10_1038_s41586_022_04530_6 crossref_primary_10_1110_ps_073178108 crossref_primary_10_1016_j_mencom_2009_09_001 crossref_primary_10_1111_j_1600_0854_2008_00761_x crossref_primary_10_1007_s00792_012_0490_8 crossref_primary_10_1016_j_cplett_2011_01_017 crossref_primary_10_1002_prot_20892 crossref_primary_10_1093_protein_gzr032 crossref_primary_10_1371_journal_pone_0051307 crossref_primary_10_1002_prot_21628 crossref_primary_10_1074_jbc_M113_536110 crossref_primary_10_1186_1471_2105_15_S15_S6 crossref_primary_10_1002_prot_21505 crossref_primary_10_1002_psc_2824 crossref_primary_10_1016_j_jmb_2009_10_004 crossref_primary_10_1371_journal_ppat_1001210 crossref_primary_10_1016_j_jmb_2007_02_041 crossref_primary_10_1016_j_bpc_2010_09_003 crossref_primary_10_1007_s00424_012_1184_x crossref_primary_10_1007_s10822_019_00237_5 crossref_primary_10_1007_s12551_016_0247_1 crossref_primary_10_1007_s11103_006_0037_4 crossref_primary_10_1002_prot_22722 crossref_primary_10_1073_pnas_0911839107 crossref_primary_10_1186_1745_6150_7_14 crossref_primary_10_1002_prot_22849 crossref_primary_10_1016_j_bbapap_2017_11_006 crossref_primary_10_1038_nprot_2008_184 crossref_primary_10_1002_prot_20667 crossref_primary_10_1007_s10822_009_9259_2 crossref_primary_10_1186_1471_2105_7_S5_S17 crossref_primary_10_1002_bit_24930 crossref_primary_10_1016_j_jmb_2009_06_070 crossref_primary_10_1089_cmb_2007_0131 crossref_primary_10_1093_nar_gkv368 crossref_primary_10_1016_j_bbapap_2017_07_005 crossref_primary_10_1002_pro_124 crossref_primary_10_1110_ps_072988407 crossref_primary_10_1002_cctc_201000107 crossref_primary_10_1074_jbc_M111_327700 crossref_primary_10_1007_s00249_009_0531_0 crossref_primary_10_1016_j_molimm_2009_01_009 crossref_primary_10_1111_j_1742_4658_2010_07832_x crossref_primary_10_1007_s41061_022_00374_w crossref_primary_10_1080_07391102_2012_687526 crossref_primary_10_1007_s11274_012_1120_4 crossref_primary_10_1002_prot_25049 crossref_primary_10_1093_mutage_get039 crossref_primary_10_3390_ph11020037 crossref_primary_10_1086_500306 crossref_primary_10_1089_cmb_2005_12_777 crossref_primary_10_1111_j_1398_9995_2010_02350_x crossref_primary_10_3390_molecules23010111 crossref_primary_10_1093_nar_gkt1299 crossref_primary_10_1002_jcc_20118 crossref_primary_10_1110_ps_073081708 crossref_primary_10_1002_prot_24085 crossref_primary_10_1093_protein_gzj001 crossref_primary_10_3390_ijms21114132 crossref_primary_10_1002_prot_24086 crossref_primary_10_1016_j_jmb_2006_07_040 crossref_primary_10_1074_jbc_M109_004614 crossref_primary_10_1155_2012_173521 crossref_primary_10_1002_prot_20720 crossref_primary_10_1002_prot_20721 crossref_primary_10_1002_prot_21930 crossref_primary_10_1002_prot_20726 crossref_primary_10_1371_journal_pone_0026071 crossref_primary_10_1002_prot_20601 crossref_primary_10_1002_prot_20725 crossref_primary_10_1016_j_str_2007_04_012 crossref_primary_10_3390_molecules23102459 crossref_primary_10_1002_jcc_20582 crossref_primary_10_1016_j_jinorgbio_2013_12_006 crossref_primary_10_1002_jcc_20463 crossref_primary_10_1016_j_jmgm_2007_07_003 crossref_primary_10_1186_1471_2105_7_364 crossref_primary_10_1007_s12013_017_0810_9 crossref_primary_10_1002_prot_20730 crossref_primary_10_1007_s00251_010_0428_1 crossref_primary_10_1002_prot_20973 crossref_primary_10_1016_j_csbj_2021_10_005 crossref_primary_10_1007_s10822_020_00345_7 crossref_primary_10_1124_mol_104_008847 crossref_primary_10_1016_j_amc_2007_09_033 crossref_primary_10_1016_j_bcp_2012_04_012 crossref_primary_10_1110_ps_041004105 crossref_primary_10_1007_s10969_016_9204_2 crossref_primary_10_1109_TCBB_2008_96 crossref_primary_10_1002_prot_21702 crossref_primary_10_1016_j_amc_2007_09_038 crossref_primary_10_1016_j_jmb_2005_12_044 crossref_primary_10_1590_S0100_879X2006005000075 crossref_primary_10_1093_bioinformatics_bti144 crossref_primary_10_1186_1471_2172_13_43 crossref_primary_10_1016_j_jmgm_2017_06_013 crossref_primary_10_1002_cbic_202000247 crossref_primary_10_1007_s10863_006_9048_8 crossref_primary_10_1155_2016_3240674 crossref_primary_10_3390_biom10091314 crossref_primary_10_1002_jcc_21109 crossref_primary_10_1016_j_imu_2023_101164 crossref_primary_10_1093_molbev_mss157 crossref_primary_10_1002_prot_20621 crossref_primary_10_1109_TCBB_2009_59 crossref_primary_10_1073_pnas_0610365104 crossref_primary_10_1016_j_jmgm_2006_12_003 crossref_primary_10_1016_j_str_2005_09_019 crossref_primary_10_1110_ps_062293906 crossref_primary_10_1074_jbc_M500577200 crossref_primary_10_1110_ps_035022_108 crossref_primary_10_1186_1748_7188_8_5 crossref_primary_10_1089_cmb_2012_0251 crossref_primary_10_4049_jimmunol_0901672 crossref_primary_10_1093_nar_gks1266 crossref_primary_10_1529_biophysj_106_102137 crossref_primary_10_1002_prot_21714 crossref_primary_10_1093_nar_gkx344 crossref_primary_10_1145_1162349_1162350 crossref_primary_10_1016_j_bpj_2008_12_3934 crossref_primary_10_1093_bioinformatics_bti498 crossref_primary_10_1016_j_jsb_2009_05_001 crossref_primary_10_1186_s12859_020_03563_w crossref_primary_10_1016_j_jmgm_2009_02_004 crossref_primary_10_1016_j_tracli_2010_05_003 |
| Cites_doi | 10.1038/356539a0 10.1002/prot.340190308 10.1002/pro.5560041006 10.1006/jmbi.1993.1100 10.1145/309739.309744 10.1006/jmbi.2000.4424 10.1002/prot.10131 10.1093/protein/11.11.991 10.1002/(SICI)1097-0134(1999)37:3 <81::AID-PROT12>3.0.CO;2-R 10.1006/jmbi.1998.2401 10.1006/jmbi.1997.0926 10.1093/protein/8.4.363 10.1080/07391102.1991.10507882 10.1006/jmbi.1998.2400 10.1002/(SICI)1097-0134(19991201)37:4<530::AID-PROT4>3.0.CO;2-H 10.1016/S0969-2126(99)80176-2 10.1002/(SICI)1097-0282(199908)50:2<111::AID-BIP1>3.0.CO;2-N 10.1006/jmbi.2000.3758 10.1002/pro.5560060807 10.1137/0201010 10.1016/S0959-440X(02)00344-5 10.1016/0022-2836(91)90883-8 10.1016/0022-2836(91)90550-P 10.1002/1096-987X(200008)21:11<999::AID-JCC9>3.0.CO;2-A 10.1016/0022-2836(87)90314-7 10.1023/A:1012279810260 10.1016/0022-2836(87)90358-5 10.1016/S0006-3495(94)80923-3 10.1038/nsb0295-163 10.1093/nar/28.1.235 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 10.1110/ps.24902 10.1006/jmbi.1993.1170 10.1038/nsb0594-334 10.1093/protein/6.7.717 10.1093/protein/8.8.815 10.1002/1097-0282(200108)59:2<72::AID-BIP1007>3.0.CO;2-S 10.1006/jmbi.2000.3741 10.1006/jmbi.1994.1059 10.1006/jmbi.2001.4865 10.1016/S1359-0278(97)00006-0 10.1093/protein/8.9.893 10.1002/pro.5560050511 10.1093/bioinformatics/btg224 10.1016/0022-2836(89)90109-5 |
| ContentType | Journal Article |
| Copyright | Copyright © 2003 The Protein Society Copyright © Copyright 2003 The Protein Society |
| Copyright_xml | – notice: Copyright © 2003 The Protein Society – notice: Copyright © Copyright 2003 The Protein Society |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1110/ps.03154503 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1469-896X |
| EndPage | 2014 |
| ExternalDocumentID | PMC2323997 12930999 10_1110_ps_03154503 PRO122001 |
| Genre | article Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01 HG002302 – fundername: NHGRI NIH HHS grantid: R01 HG02302 – fundername: NCI NIH HHS grantid: CA06972 |
| GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A8Z AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W PQQKQ QRW RCA ROL RPM SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- AAYXX CITATION LH4 24P A00 AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM P4E RIG RWI VXZ WYJ 7X8 5PM |
| ID | FETCH-LOGICAL-c4861-d2e91a9a4b39dc9ee3428372b8a944a7c91afb0d6b3fe20e21461cf2a36831043 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 827 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184976100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0961-8368 |
| IngestDate | Tue Sep 30 17:00:27 EDT 2025 Fri Sep 05 10:27:49 EDT 2025 Wed Feb 19 01:29:14 EST 2025 Sat Nov 29 02:25:08 EST 2025 Tue Nov 18 22:18:56 EST 2025 Wed Aug 20 07:26:09 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4861-d2e91a9a4b39dc9ee3428372b8a944a7c91afb0d6b3fe20e21461cf2a36831043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reprint requests to: Roland L. Dunbrack Jr., Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA; e-mail: RL_Dunbrack@fccc.edu; fax: (215) 728-2412. Article and publication are at http://www.proteinscience.org/cgi/doi/10.1110/ps.03154503. |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1110/ps.03154503 |
| PMID | 12930999 |
| PQID | 73573752 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2323997 proquest_miscellaneous_73573752 pubmed_primary_12930999 crossref_primary_10_1110_ps_03154503 crossref_citationtrail_10_1110_ps_03154503 wiley_primary_10_1110_ps_03154503_PRO122001 |
| PublicationCentury | 2000 |
| PublicationDate | September 2003 2003-09-00 2003-Sep 20030901 |
| PublicationDateYYYYMMDD | 2003-09-01 |
| PublicationDate_xml | – month: 09 year: 2003 text: September 2003 |
| PublicationDecade | 2000 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol – name: United States |
| PublicationTitle | Protein science |
| PublicationTitleAlternate | Protein Sci |
| PublicationYear | 2003 |
| Publisher | Cold Spring Harbor Laboratory Press |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
| References | 1994; 235 2000; 28 1993; 229 1999b; 285 2002; 12 2002; 11 1989; 210 1994; 66 1999; 21 1997; 2 1999; 3 2003 2000; 299 1999a; 285 1995; 2 1991; 217 1997; 6 1999; 7 1995; 4 2001; 307 1991; 8 1987; 193 1972; 1 1995; 8 1991; 218 1999 1993; 6 1997; 267 2001; 311 2002; 48 1987; 198 1994; 19 1992; 356 2000; 40 2001b; 59 2000; 143 1999a; 37 1994; 1 1996; 5 1999b; 50 2001a; 15 1997; 1997 1993; 230 1998; 11 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 De Maeyer M. (e_1_2_7_6_1) 2000; 143 e_1_2_7_28_1 e_1_2_7_29_1 Desmet J. (e_1_2_7_9_1) 1997; 1997 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 11718477 - J Comput Aided Mol Des. 2001 Aug;15(8):721-40 10860755 - J Mol Biol. 2000 Jun 2;299(2):499-520 10651269 - Proteins. 1999 Dec 1;37(4):530-43 12012335 - Proteins. 2002 Jul 1;48(1):31-43 12163064 - Curr Opin Struct Biol. 2002 Aug;12(4):431-40 9150411 - J Mol Biol. 1997 Apr 18;267(5):1268-82 2441069 - J Mol Biol. 1987 Feb 20;193(4):775-91 2002501 - J Mol Biol. 1991 Mar 5;218(1):183-94 11243829 - J Mol Biol. 2001 Mar 16;307(1):429-45 9876919 - Protein Eng. 1998 Nov;11(11):991-7 9917408 - J Mol Biol. 1999 Jan 29;285(4):1735-47 11084910 - Methods Mol Biol. 2000;143:265-304 7664040 - Nat Struct Biol. 1994 May;1(5):334-40 9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33 8248095 - Protein Eng. 1993 Sep;6(7):717-22 8061189 - Biophys J. 1994 May;66(5):1335-40 7507173 - J Mol Biol. 1994 Jan 21;235(3):1088-97 10835284 - J Mol Biol. 2000 Jun 9;299(3):789-803 21488406 - Nature. 1992 Apr 9;356(6369):539-42 10508778 - Structure. 1999 Sep 15;7(9):1089-98 2693742 - J Mol Biol. 1989 Dec 20;210(4):785-811 1992168 - J Mol Biol. 1991 Jan 20;217(2):373-88 7937737 - Proteins. 1994 Jul;19(3):244-55 8445659 - J Mol Biol. 1993 Feb 20;229(4):996-1006 12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91 8637851 - Protein Eng. 1995 Aug;8(8):815-22 10861930 - Proteins. 2000 Aug 15;40(3):389-408 7538429 - Nat Struct Biol. 1995 Feb;2(2):163-70 8535237 - Protein Sci. 1995 Oct;4(10):2006-18 8464064 - J Mol Biol. 1993 Mar 20;230(2):543-74 7567921 - Protein Eng. 1995 Apr;8(4):363-70 10380336 - Biopolymers. 1999 Aug;50(2):111-31 11790842 - Protein Sci. 2002 Feb;11(2):322-31 11373721 - Biopolymers. 2001 Aug;59(2):72-86 8732761 - Protein Sci. 1996 May;5(5):895-903 11478870 - J Mol Biol. 2001 Aug 10;311(2):421-30 3430610 - J Mol Biol. 1987 Nov 20;198(2):295-310 8746727 - Protein Eng. 1995 Sep;8(9):893-904 9390285 - Pac Symp Biocomput. 1997;:122-33 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42 9260279 - Protein Sci. 1997 Aug;6(8):1661-81 10526356 - Proteins. 1999;Suppl 3:81-7 9080199 - Fold Des. 1997;2(1):53-66 1892586 - J Biomol Struct Dyn. 1991 Jun;8(6):1267-89 |
| References_xml | – volume: 2 start-page: 53 year: 1997 end-page: 66 article-title: All in one: A highly detailed rotamer library improves both accuracy and speed in the modelling of side‐chains by dead‐end elimination publication-title: Fold Des. – volume: 356 start-page: 539 year: 1992 end-page: 542 article-title: The dead‐end elimination theorem and its use in protein side‐chain positioning publication-title: Nature – volume: 11 start-page: 322 year: 2002 end-page: 331 article-title: Side‐chain modeling with an optimized scoring function publication-title: Protein Sci. – volume: 48 start-page: 31 year: 2002 end-page: 43 article-title: Fast and accurate side‐chain topology and energy refinement (FASTER) as a new method for protein structure optimization publication-title: Proteins – volume: 8 start-page: 363 year: 1995 end-page: 370 article-title: Side‐chain prediction by neural networks and simulated annealing optimization publication-title: Protein Eng. – volume: 229 start-page: 996 year: 1993 end-page: 1006 article-title: Modeling side‐chain conformation for homologous proteins using an energy‐based rotamer search publication-title: J. Mol. Biol. – volume: 8 start-page: 815 year: 1995 end-page: 822 article-title: Enhanced dead‐end elimination in the search for the global minimum energy conformation of a collection of protein side‐chains publication-title: Protein Eng. – volume: 21 start-page: 999 year: 1999 end-page: 1009 article-title: Conformational splitting: A more powerful criterion for dead‐end elimination publication-title: J. Comp. Chem. – volume: 1997 start-page: 122 year: 1997 end-page: 133 article-title: Theoretical and algorithmical optimization of the dead‐end elimination theorem publication-title: Pac. Symp. Biocomput. – volume: 235 start-page: 1088 year: 1994 end-page: 1097 article-title: Prediction of protein side‐chain conformations from local three‐dimensional homology relationships publication-title: J. Mol. Biol. – volume: 218 start-page: 183 year: 1991 end-page: 194 article-title: Database algorithm for generating protein backbone and sidechain coordinates from a Ca trace: Application to model building and detection of coordinate errors publication-title: J. Mol. Biol. – volume: 2 start-page: 163 year: 1995 end-page: 170 article-title: A self consistent mean field approach to simultaneous gap closure and side‐chain positioning in homology modeling publication-title: Nat. Struct. Biol. – volume: 11 start-page: 991 year: 1998 end-page: 997 article-title: Determinants of side chain conformational preferences in protein structures publication-title: Protein Eng. – volume: 5 start-page: 895 year: 1996 end-page: 903 article-title: Protein design automation publication-title: Protein Sci. – volume: 198 start-page: 295 year: 1987 end-page: 310 article-title: Analysis of the relationship between side‐chain conformation and secondary structure in globular proteins publication-title: J. Mol. Biol. – volume: 15 start-page: 721 year: 2001a end-page: 740 article-title: Implicit solvation in the self‐consistent mean field theory method: Side‐chain modeling and prediction of folding free energies of protein mutants publication-title: J. Comp. Aided. Mol. Design – volume: 267 start-page: 1268 year: 1997 end-page: 1282 article-title: Prediction of protein side‐chain rotamers from a backbone‐dependent rotamer library: A new homology modeling tool publication-title: J. Mol. Biol. – volume: 6 start-page: 717 year: 1993 end-page: 722 article-title: The fuzzy‐end elimination theorem: Correctly implementing the side‐chain placement algorithm based on the dead‐end elimination theorem publication-title: Protein Eng. – volume: 1 start-page: 334 year: 1994 end-page: 340 article-title: Conformational analysis of the backbone‐dependent rotamer preferences of protein sidechains publication-title: Nature Struct. Biol. – volume: 19 start-page: 244 year: 1994 end-page: 255 article-title: Energy minimization method using automata network for sequence and side‐chain conformation prediction from given backbone geometry publication-title: Proteins – volume: 210 start-page: 785 year: 1989 end-page: 811 article-title: Construction of side‐chains in homology modelling: Application to the C‐terminal lobe of rhizopuspepsin publication-title: J. Mol. Biol. – year: 2003 article-title: PISCES: A protein sequence culling server publication-title: Bioinformatics – volume: 6 start-page: 1661 year: 1997 end-page: 1681 article-title: Bayesian statistical analysis of protein side‐chain rotamer preferences publication-title: Protein Sci. – volume: 37 start-page: 530 year: 1999a end-page: 543 article-title: Improved modeling of side‐chains in proteins with rotamer‐based methods: A flexible rotamer model publication-title: Proteins – volume: 217 start-page: 373 year: 1991 end-page: 388 article-title: Prediction of protein side‐chain conformation by packing optimization publication-title: J. Mol. Biol. – volume: 285 start-page: 1735 year: 1999b end-page: 1747 article-title: Asparagine and glutamine: Using hydrogen atom contacts in the choice of side‐chain amide orientation publication-title: J. Mol. Biol. – volume: 40 start-page: 389 year: 2000 end-page: 408 article-title: The penultimate rotamer library publication-title: Proteins – volume: 12 start-page: 431 year: 2002 end-page: 440 article-title: Rotamer libraries in the 21st century publication-title: Curr. Opin. Struct. Biol. – volume: 50 start-page: 111 year: 1999b end-page: 131 article-title: Improvement of side‐chain modeling in proteins with the self‐consistent mean field theory method based on an analysis of the factors influencing prediction publication-title: Biopolymers – volume: 143 start-page: 265 year: 2000 end-page: 304 article-title: The dead‐end elimination theorem: Mathematical aspects, implementation, optimizations, evaluation, and performance publication-title: Methods Mol. Biol. – volume: 59 start-page: 72 year: 2001b end-page: 86 article-title: Incorporating knowledge‐based biases into an energy‐based side‐chain modeling method: Application to comparative modeling of protein structure publication-title: Biopolymers – volume: 8 start-page: 1267 year: 1991 end-page: 1289 article-title: A new approach to the rapid determination of protein side chain conformations publication-title: J. Biomol. Struct. Dyn. – volume: 28 start-page: 235 year: 2000 end-page: 242 article-title: The Protein Data Bank publication-title: Nucleic Acids Res. – volume: 311 start-page: 421 year: 2001 end-page: 430 article-title: Extending the accuracy limits of prediction for side‐chain conformations publication-title: J. Mol. Biol. – volume: 299 start-page: 499 year: 2000 end-page: 520 article-title: Enhanced genome annotation using structural profiles in the program 3D‐PSSM publication-title: J. Mol. Biol. – volume: 285 start-page: 1711 year: 1999a end-page: 1733 article-title: Visualizing and quantifying molecular goodness‐of‐fit: Small‐probe contact dots with explicit hydrogen atoms publication-title: J. Mol. Biol. – volume: 230 start-page: 543 year: 1993 end-page: 574 article-title: Backbone‐dependent rotamer library for proteins: Application to side‐chain prediction publication-title: J. Mol. Biol. – volume: 66 start-page: 1335 year: 1994 end-page: 1340 article-title: Efficient rotamer elimination applied to protein side‐chains and related spin glasses publication-title: Biophys. J. – volume: 193 start-page: 775 year: 1987 end-page: 792 article-title: Tertiary templates for proteins: Use of packing criteria in the enumeration of allowed sequences for different structural classes publication-title: J. Mol. Biol. – volume: 4 start-page: 2006 year: 1995 end-page: 2018 article-title: De novo design of the hydrophobic cores of proteins publication-title: Protein Sci. – volume: 3 start-page: 81 year: 1999 end-page: 87 article-title: Comparative modeling of CASP3 targets using PSI‐BLAST and SCWRL publication-title: Proteins – volume: 1 start-page: 146 year: 1972 end-page: 160 article-title: Depth first search and linear graph algorithms publication-title: SIAM J. Comput. – volume: 299 start-page: 789 year: 2000 end-page: 803 article-title: Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design publication-title: J. Mol. Biol. – volume: 307 start-page: 429 year: 2001 end-page: 445 article-title: Generalized dead‐end elimination algorithms make large‐scale protein side‐chain structure prediction tractable: Implications for protein design and structural genomics publication-title: J. Mol. Biol. – volume: 7 start-page: 1089 year: 1999 end-page: 1098 article-title: Branch‐and‐terminate: A combinatorial optimization algorithm for protein design publication-title: Structure Fold Des. – volume: 8 start-page: 893 year: 1995 end-page: 904 article-title: Finding the global minimum: A fuzzy end elimination implementation publication-title: Protein Eng. – year: 1999 – ident: e_1_2_7_8_1 doi: 10.1038/356539a0 – ident: e_1_2_7_23_1 doi: 10.1002/prot.340190308 – ident: e_1_2_7_7_1 doi: 10.1002/pro.5560041006 – ident: e_1_2_7_45_1 doi: 10.1006/jmbi.1993.1100 – ident: e_1_2_7_24_1 doi: 10.1145/309739.309744 – ident: e_1_2_7_30_1 doi: 10.1006/jmbi.2000.4424 – ident: e_1_2_7_10_1 doi: 10.1002/prot.10131 – ident: e_1_2_7_39_1 doi: 10.1093/protein/11.11.991 – ident: e_1_2_7_11_1 doi: 10.1002/(SICI)1097-0134(1999)37:3 <81::AID-PROT12>3.0.CO;2-R – ident: e_1_2_7_47_1 doi: 10.1006/jmbi.1998.2401 – ident: e_1_2_7_3_1 doi: 10.1006/jmbi.1997.0926 – ident: e_1_2_7_19_1 doi: 10.1093/protein/8.4.363 – ident: e_1_2_7_42_1 doi: 10.1080/07391102.1991.10507882 – ident: e_1_2_7_46_1 doi: 10.1006/jmbi.1998.2400 – ident: e_1_2_7_33_1 doi: 10.1002/(SICI)1097-0134(19991201)37:4<530::AID-PROT4>3.0.CO;2-H – ident: e_1_2_7_17_1 doi: 10.1016/S0969-2126(99)80176-2 – ident: e_1_2_7_34_1 doi: 10.1002/(SICI)1097-0282(199908)50:2<111::AID-BIP1>3.0.CO;2-N – ident: e_1_2_7_43_1 doi: 10.1006/jmbi.2000.3758 – ident: e_1_2_7_13_1 doi: 10.1002/pro.5560060807 – ident: e_1_2_7_41_1 doi: 10.1137/0201010 – ident: e_1_2_7_12_1 doi: 10.1016/S0959-440X(02)00344-5 – ident: e_1_2_7_18_1 doi: 10.1016/0022-2836(91)90883-8 – ident: e_1_2_7_28_1 doi: 10.1016/0022-2836(91)90550-P – ident: e_1_2_7_37_1 doi: 10.1002/1096-987X(200008)21:11<999::AID-JCC9>3.0.CO;2-A – ident: e_1_2_7_32_1 doi: 10.1016/0022-2836(87)90314-7 – volume: 143 start-page: 265 year: 2000 ident: e_1_2_7_6_1 article-title: The dead‐end elimination theorem: Mathematical aspects, implementation, optimizations, evaluation, and performance publication-title: Methods Mol. Biol. – ident: e_1_2_7_35_1 doi: 10.1023/A:1012279810260 – ident: e_1_2_7_38_1 doi: 10.1016/0022-2836(87)90358-5 – ident: e_1_2_7_16_1 doi: 10.1016/S0006-3495(94)80923-3 – ident: e_1_2_7_22_1 doi: 10.1038/nsb0295-163 – ident: e_1_2_7_2_1 doi: 10.1093/nar/28.1.235 – ident: e_1_2_7_31_1 doi: 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 – ident: e_1_2_7_29_1 doi: 10.1110/ps.24902 – ident: e_1_2_7_14_1 doi: 10.1006/jmbi.1993.1170 – ident: e_1_2_7_15_1 doi: 10.1038/nsb0594-334 – ident: e_1_2_7_25_1 doi: 10.1093/protein/6.7.717 – ident: e_1_2_7_26_1 doi: 10.1093/protein/8.8.815 – ident: e_1_2_7_36_1 doi: 10.1002/1097-0282(200108)59:2<72::AID-BIP1007>3.0.CO;2-S – ident: e_1_2_7_21_1 doi: 10.1006/jmbi.2000.3741 – volume: 1997 start-page: 122 year: 1997 ident: e_1_2_7_9_1 article-title: Theoretical and algorithmical optimization of the dead‐end elimination theorem publication-title: Pac. Symp. Biocomput. – ident: e_1_2_7_27_1 doi: 10.1006/jmbi.1994.1059 – ident: e_1_2_7_48_1 doi: 10.1006/jmbi.2001.4865 – ident: e_1_2_7_5_1 doi: 10.1016/S1359-0278(97)00006-0 – ident: e_1_2_7_20_1 doi: 10.1093/protein/8.9.893 – ident: e_1_2_7_4_1 doi: 10.1002/pro.5560050511 – ident: e_1_2_7_44_1 doi: 10.1093/bioinformatics/btg224 – ident: e_1_2_7_40_1 doi: 10.1016/0022-2836(89)90109-5 – reference: 7937737 - Proteins. 1994 Jul;19(3):244-55 – reference: 3430610 - J Mol Biol. 1987 Nov 20;198(2):295-310 – reference: 1892586 - J Biomol Struct Dyn. 1991 Jun;8(6):1267-89 – reference: 21488406 - Nature. 1992 Apr 9;356(6369):539-42 – reference: 10651269 - Proteins. 1999 Dec 1;37(4):530-43 – reference: 2693742 - J Mol Biol. 1989 Dec 20;210(4):785-811 – reference: 8732761 - Protein Sci. 1996 May;5(5):895-903 – reference: 10835284 - J Mol Biol. 2000 Jun 9;299(3):789-803 – reference: 11373721 - Biopolymers. 2001 Aug;59(2):72-86 – reference: 11084910 - Methods Mol Biol. 2000;143:265-304 – reference: 12012335 - Proteins. 2002 Jul 1;48(1):31-43 – reference: 8445659 - J Mol Biol. 1993 Feb 20;229(4):996-1006 – reference: 7567921 - Protein Eng. 1995 Apr;8(4):363-70 – reference: 8535237 - Protein Sci. 1995 Oct;4(10):2006-18 – reference: 9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33 – reference: 2441069 - J Mol Biol. 1987 Feb 20;193(4):775-91 – reference: 8464064 - J Mol Biol. 1993 Mar 20;230(2):543-74 – reference: 10861930 - Proteins. 2000 Aug 15;40(3):389-408 – reference: 10380336 - Biopolymers. 1999 Aug;50(2):111-31 – reference: 1992168 - J Mol Biol. 1991 Jan 20;217(2):373-88 – reference: 12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91 – reference: 10526356 - Proteins. 1999;Suppl 3:81-7 – reference: 9150411 - J Mol Biol. 1997 Apr 18;267(5):1268-82 – reference: 8061189 - Biophys J. 1994 May;66(5):1335-40 – reference: 7538429 - Nat Struct Biol. 1995 Feb;2(2):163-70 – reference: 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42 – reference: 9876919 - Protein Eng. 1998 Nov;11(11):991-7 – reference: 11243829 - J Mol Biol. 2001 Mar 16;307(1):429-45 – reference: 11478870 - J Mol Biol. 2001 Aug 10;311(2):421-30 – reference: 10860755 - J Mol Biol. 2000 Jun 2;299(2):499-520 – reference: 11718477 - J Comput Aided Mol Des. 2001 Aug;15(8):721-40 – reference: 9917408 - J Mol Biol. 1999 Jan 29;285(4):1735-47 – reference: 8248095 - Protein Eng. 1993 Sep;6(7):717-22 – reference: 7507173 - J Mol Biol. 1994 Jan 21;235(3):1088-97 – reference: 2002501 - J Mol Biol. 1991 Mar 5;218(1):183-94 – reference: 8637851 - Protein Eng. 1995 Aug;8(8):815-22 – reference: 9390285 - Pac Symp Biocomput. 1997;:122-33 – reference: 9080199 - Fold Des. 1997;2(1):53-66 – reference: 11790842 - Protein Sci. 2002 Feb;11(2):322-31 – reference: 9260279 - Protein Sci. 1997 Aug;6(8):1661-81 – reference: 12163064 - Curr Opin Struct Biol. 2002 Aug;12(4):431-40 – reference: 10508778 - Structure. 1999 Sep 15;7(9):1089-98 – reference: 7664040 - Nat Struct Biol. 1994 May;1(5):334-40 – reference: 8746727 - Protein Eng. 1995 Sep;8(9):893-904 |
| SSID | ssj0004123 |
| Score | 2.3668666 |
| Snippet | Fast and accurate side‐chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design... Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2001 |
| SubjectTerms | Algorithms Computational Biology Computer Simulation Databases as Topic Disulfides homology modeling Models, Molecular Models, Statistical Molecular Conformation Protein Conformation Protein Structure, Secondary Proteins - chemistry Proteomics - methods rotamer library SCWRL side‐chain prediction Software Structure prediction |
| Title | A graph‐theory algorithm for rapid protein side‐chain prediction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.03154503 https://www.ncbi.nlm.nih.gov/pubmed/12930999 https://www.proquest.com/docview/73573752 https://pubmed.ncbi.nlm.nih.gov/PMC2323997 |
| Volume | 12 |
| WOSCitedRecordID | wos000184976100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-896X dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0004123 issn: 0961-8368 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-896X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004123 issn: 0961-8368 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH4abBK7jA3GyGCdD2gHUCCx3Tg-VkC1SahDaGi9Rbbj0EglrdqCxG0_gd_IL5mfkxYqpknTjpafI8svL_4cv_d9AHvMJnmhWBFGSZGHWNoZasldM1fIF54XuiZxPRO9Xtrvy_MmNwdrYWp-iMUPN4wM_73GAFe6USGJMStuPD1EhQLe9lyfMfdh-fNb77EqMqa1kHwShylL0qY6z40-ejJ2eT96BjKf50o-xbB-E-qu_-f038KbBn2STv26vIMXttqAzU7lTt7Xd-QL8fmg_kf7Bqwdz7XgNuGkQzyz9cOve1_5eEfU8Go0KWeDa-JQL3F9ZU4850NZEVQAdZZmoFxjPMGrIHT_e7jsnv44_ho2-guh4albtJxaGSupuGYyN9JahuxsgupUSc6VMK630FGeaFZYGlmvEW4KqtxiO9TI2RasVqPKbgOh6PhYaaON4UUqlGKca0ENb1slIxnA_twLmWnIyVEjY5jVh5QoG0-z-XoFsLcwHtecHH82-zx3Z-aWCy9CVGVHN9NMsLZgok0D-FA79_ExDv0gZg5ALLl9YYBs3Ms9VTnwrNwOmjqwJwI48G7_28yy84vvMcVsto__ZL0Dr30uoU9x24XV2eTGfoJX5nZWTictWBH9tAUvTy66l2ctHwu_AX88CtY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-hgsRexoD9CWzDD4iHTdkS24njxwpWMa0rCIHEW2Q7zhoJ0qotk3jbR9hn5JPM56SFiglp2qPli5Xc2fHP57vfAewzmxalYmUYpWURYmpnqCV3zUIhX3hR6obEtS8Gg-zyUp62DjfMhWn4IRYON1wZ_n-NCxwd0u0qx7C48fQTlijgCZJ9rnI3kZIOrB6d9S7695mRMW2KyadxmLE0azP03ACfHzy-vCc9ApqP4yUf4li_EfU2_vcTXsDzFoKSbjNnNmHF1luw3a3d8fv6lhwQHxTqve1bsH44Lwi3DUdd4umt73799umPt0Rd_RhNqtnwmjjoS1xfVRBP_FDVBMuAOkkzVK4xnuB9EM6Bl3DR-3J-eBy2RRhCwzOntYJaGSupuGayMNJahhRtgupMSc6VMK631FGRalZaGllfKNyUVDltO-jI2Svo1KPavgFC0fqx0kYbw8tMKMU414IanlglIxnAh7kZctMylGOhjKu8OalE-Xiaz_UVwP5CeNwQc_xdbG9uz9ypC29DVG1HN9NcsEQwkdAAXjfWvR_GQSAEzgGIJbsvBJCSe7mnroaemtvhU4f4RAAfvd2ferP89OwkphjStvNP0nuwfnz-vZ_3vw6-7cIzH1zoY97eQmc2ubHvYM38nFXTyft2MfwBs-ANmg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hDcFeGGzAAhvzw8QDKCOxnTh-rNZVIKpSTUzaW-S_NNKWRm2HtDc-Ap-RT4LtpN2qISTEo-WLldz54p_tu98BHBGTayuIjZPc6tindsaSU9fUwvOFaytbEtchG42Kiws-7g7cfC5Myw-xOnDznhH-197BTaNt5-U-LK6ZH_sSBTTzZJ-bNOO5c8zN_tngfHibGZnitph8nsYFyYsuQ88N8OHO4-tr0j2geT9e8i6ODQvRYPt_P-EpPOkgKOq1c-YZPDD1Duz2arf9vrpBb1EICg2n7Tvw-GRZEG4X-j0U6K1__fgZ0h9vkLj8Np1Vi8kVctAXub5Ko0D8UNXIlwF1kmoiXKOZ-fsgPweew_ng9OvJx7grwhArWjitaWx4KrigknCtuDHEU7QxLAvBKRVMuV4rE51LYg1OTCgUriwWTtsOOlLyAjbqaW32AGFv_VRIJZWitmBCEEolw4pmRvCER_BuaYZSdQzlvlDGZdnuVJKymZdLfUVwtBJuWmKOP4sdLu1ZOnX52xBRm-n1vGQkY4RlOIKXrXVvh3EQyAPnCNia3VcCnpJ7vaeuJoGa2-FTh_hYBO-D3f_2ZuX47EuKfUjbq3-SPoRH4_6gHH4afX4NWyG2MIS87cPGYnZtDuCh-r6o5rM3nS_8Bi0ADRU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph%E2%80%90theory+algorithm+for+rapid+protein+side%E2%80%90chain+prediction&rft.jtitle=Protein+science&rft.au=Canutescu%2C+Adrian+A.&rft.au=Shelenkov%2C+Andrew+A.&rft.au=Dunbrack%2C+Roland+L.&rft.date=2003-09-01&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=12&rft.issue=9&rft.spage=2001&rft.epage=2014&rft_id=info:doi/10.1110%2Fps.03154503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1110_ps_03154503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |