Re-examination of the relationship between marine virus and microbial cell abundances

Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10 8 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. Howev...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature microbiology Ročník 1; číslo 3; s. 15024
Hlavní autoři: Wigington, Charles H., Sonderegger, Derek, Brussaard, Corina P. D., Buchan, Alison, Finke, Jan F., Fuhrman, Jed A., Lennon, Jay T., Middelboe, Mathias, Suttle, Curtis A., Stock, Charles, Wilson, William H., Wommack, K. Eric, Wilhelm, Steven W., Weitz, Joshua S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 25.01.2016
Nature Publishing Group
Témata:
ISSN:2058-5276, 2058-5276
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10 8 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,508 microbial cell and virus abundance estimates from 22 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from ‘representative’ abundances require substantial refinement to be extrapolated to regional or global scales. Analysis of microbial cell and virus abundance estimates from 25 distinct marine surveys reveals that virus-to-microbial cell ratio decreases with microbial cell density, questioning the idea that viral abundance is always 10-fold higher.
AbstractList Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 108 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.
Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10 8 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,508 microbial cell and virus abundance estimates from 22 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from ‘representative’ abundances require substantial refinement to be extrapolated to regional or global scales. Analysis of microbial cell and virus abundance estimates from 25 distinct marine surveys reveals that virus-to-microbial cell ratio decreases with microbial cell density, questioning the idea that viral abundance is always 10-fold higher.
Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.
Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.
ArticleNumber 15024
Author Wigington, Charles H.
Brussaard, Corina P. D.
Middelboe, Mathias
Wilson, William H.
Stock, Charles
Sonderegger, Derek
Suttle, Curtis A.
Weitz, Joshua S.
Wilhelm, Steven W.
Fuhrman, Jed A.
Lennon, Jay T.
Finke, Jan F.
Buchan, Alison
Wommack, K. Eric
Author_xml – sequence: 1
  givenname: Charles H.
  surname: Wigington
  fullname: Wigington, Charles H.
  organization: School of Biology, Georgia Institute of Technology
– sequence: 2
  givenname: Derek
  surname: Sonderegger
  fullname: Sonderegger, Derek
  organization: Department of Mathematics and Statistics, Northern Arizona University
– sequence: 3
  givenname: Corina P. D.
  surname: Brussaard
  fullname: Brussaard, Corina P. D.
  organization: Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), 1790 AB Den Burg, Texel, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE, Amsterdam
– sequence: 4
  givenname: Alison
  surname: Buchan
  fullname: Buchan, Alison
  organization: Department of Microbiology, The University of Tennessee
– sequence: 5
  givenname: Jan F.
  surname: Finke
  fullname: Finke, Jan F.
  organization: Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia
– sequence: 6
  givenname: Jed A.
  orcidid: 0000-0002-2361-1985
  surname: Fuhrman
  fullname: Fuhrman, Jed A.
  organization: Department of Biological Sciences, University of Southern California
– sequence: 7
  givenname: Jay T.
  surname: Lennon
  fullname: Lennon, Jay T.
  organization: Department of Biology, Indiana University
– sequence: 8
  givenname: Mathias
  surname: Middelboe
  fullname: Middelboe, Mathias
  organization: Department of Biology, Marine Biological Section, University of Copenhagen, DK-3000, Helsingør
– sequence: 9
  givenname: Curtis A.
  orcidid: 0000-0002-0372-0033
  surname: Suttle
  fullname: Suttle, Curtis A.
  organization: Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Department of Microbiology and Immunology, University of British Columbia, Department of Botany, University of British Columbia, Program in Integrated Microbial Diversity, Canadian Institute for Advanced Research
– sequence: 10
  givenname: Charles
  surname: Stock
  fullname: Stock, Charles
  organization: Geophysical Fluid Dynamics Laboratory
– sequence: 11
  givenname: William H.
  surname: Wilson
  fullname: Wilson, William H.
  organization: Sir Alister Hardy Foundation for Ocean Science, The Laboratory
– sequence: 12
  givenname: K. Eric
  surname: Wommack
  fullname: Wommack, K. Eric
  organization: Plant and Soil Sciences, Delaware Biotechnology Institute, Delaware Technology Park
– sequence: 13
  givenname: Steven W.
  surname: Wilhelm
  fullname: Wilhelm, Steven W.
  email: wilhelm@utk.edu
  organization: Department of Microbiology, The University of Tennessee
– sequence: 14
  givenname: Joshua S.
  orcidid: 0000-0002-3433-8312
  surname: Weitz
  fullname: Weitz, Joshua S.
  email: jsweitz@gatech.edu
  organization: School of Biology, Georgia Institute of Technology, School of Physics, Georgia Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27572161$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMorl9_wIMEvHjpmqRNmh5F_AJBED2HJJ1qpE3XpPXj35t1d1H2sKdM4HmHZ2b20bbvPSB0TMmUklye-87Z0BvXt1NGKJ-yYgvtMcJlxlkptv_VE3QU4xshhAomhBS7aMJKXjIq6B56foQMvnTnvB5c73Hf4OEVcID29x9f3QwbGD4BPO50cB7whwtjxNrXeKmgW2yhbbE2o6-1txAP0U6j2whHy_cAPV1fPV3eZvcPN3eXF_eZLSQfsqbUeSUMg7LSXNQVlE0jkpZJ1jXLiTVU1rm1ORcgAKStDKmAN6YpasFpfoDOFm1noX8fIQ6qc3Guoj30Y1RUUi5kTniZ0NM19K0fg09yijHKOSsYrxJ1sqRG00GtZsGlob_Val8JkAsgDR5jgEZZN_xuagjatYoSNb-O-ruOml9HsSJF2Vp01X1jKF-EYoL9C4Q_7Q2pH0JbqCM
CitedBy_id crossref_primary_10_3390_md18120633
crossref_primary_10_3390_instruments4040032
crossref_primary_10_3390_v10110588
crossref_primary_10_1038_s43705_022_00169_6
crossref_primary_10_1073_pnas_2012443117
crossref_primary_10_3390_d13090426
crossref_primary_10_1016_j_soilbio_2025_109741
crossref_primary_10_3389_fmicb_2022_861793
crossref_primary_10_1093_ismejo_wrae231
crossref_primary_10_3389_fmicb_2020_00381
crossref_primary_10_1016_j_virusres_2021_198321
crossref_primary_10_3390_microorganisms9061269
crossref_primary_10_7554_eLife_31955
crossref_primary_10_1038_s41396_023_01468_z
crossref_primary_10_3390_ijms25168690
crossref_primary_10_1093_femsec_fiz116
crossref_primary_10_3390_w15030556
crossref_primary_10_1038_s41396_020_0604_8
crossref_primary_10_1016_j_mib_2017_05_002
crossref_primary_10_3389_fmicb_2019_01593
crossref_primary_10_3389_fmicb_2022_1032918
crossref_primary_10_1111_1462_2920_16274
crossref_primary_10_1111_1462_2920_16395
crossref_primary_10_1038_ismej_2016_134
crossref_primary_10_1093_ismeco_ycaf150
crossref_primary_10_1038_s43705_023_00297_7
crossref_primary_10_3389_fmicb_2020_01494
crossref_primary_10_1016_j_pocean_2022_102900
crossref_primary_10_1038_nrmicro_2016_177
crossref_primary_10_1111_1462_2920_13890
crossref_primary_10_1007_s10750_023_05146_1
crossref_primary_10_1038_nrmicro_2016_176
crossref_primary_10_1146_annurev_virology_093020_015957
crossref_primary_10_3390_d14040237
crossref_primary_10_1038_s41564_018_0166_y
crossref_primary_10_1186_s40168_024_01876_z
crossref_primary_10_1038_s41522_024_00522_8
crossref_primary_10_3389_fmars_2022_846656
crossref_primary_10_3389_fmicb_2022_1026596
crossref_primary_10_1093_ve_vex011
crossref_primary_10_1016_j_rsma_2019_100589
crossref_primary_10_1038_nmicrobiol_2016_28
crossref_primary_10_1128_mSystems_00353_20
crossref_primary_10_7554_eLife_92345_3
crossref_primary_10_1128_MMBR_00193_20
crossref_primary_10_1111_1758_2229_12700
crossref_primary_10_1007_s00300_020_02700_8
crossref_primary_10_3389_fevo_2022_854228
crossref_primary_10_3389_fmicb_2020_524828
crossref_primary_10_1088_1478_3975_abde8d
crossref_primary_10_3389_fmicb_2017_01199
crossref_primary_10_3390_microorganisms7090333
crossref_primary_10_1016_j_chom_2019_01_017
crossref_primary_10_1016_j_soilbio_2020_107767
crossref_primary_10_1016_j_virusres_2017_11_008
crossref_primary_10_1038_s41564_020_0725_x
crossref_primary_10_7717_peerj_11111
crossref_primary_10_1016_j_jmarsys_2024_103963
crossref_primary_10_1038_s41467_018_07950_z
crossref_primary_10_1186_s40168_017_0272_8
crossref_primary_10_1038_s41467_018_08286_4
crossref_primary_10_1007_s41745_023_00361_0
crossref_primary_10_1146_annurev_virology_100120_011239
crossref_primary_10_1002_ecy_2554
crossref_primary_10_7554_eLife_92345
crossref_primary_10_1128_jb_00428_24
crossref_primary_10_1186_s13059_024_03236_4
crossref_primary_10_5194_essd_13_1251_2021
crossref_primary_10_1111_1462_2920_14566
crossref_primary_10_3390_v9060152
crossref_primary_10_3389_fpubh_2022_858615
crossref_primary_10_3389_fcimb_2020_601573
crossref_primary_10_3389_fmicb_2019_00617
crossref_primary_10_1038_nature23295
crossref_primary_10_1038_s41396_017_0042_4
crossref_primary_10_1111_ele_13722
crossref_primary_10_1128_JB_00687_20
crossref_primary_10_1038_s41467_024_50635_z
crossref_primary_10_1007_s11427_018_9414_7
crossref_primary_10_3389_fmicb_2020_573260
crossref_primary_10_1186_s40168_018_0422_7
crossref_primary_10_3389_fmicb_2022_877702
crossref_primary_10_1128_JB_00052_20
crossref_primary_10_1002_lno_11549
crossref_primary_10_1128_msystems_00568_24
crossref_primary_10_1038_s41579_019_0162_0
crossref_primary_10_1007_s10115_022_01730_4
crossref_primary_10_1038_s41579_019_0311_5
crossref_primary_10_1007_s10661_024_13176_y
crossref_primary_10_3390_microorganisms11041054
crossref_primary_10_1073_pnas_2411074122
crossref_primary_10_3389_fmicb_2022_809989
crossref_primary_10_1080_10643389_2023_2223123
crossref_primary_10_1128_mbio_02409_25
crossref_primary_10_1093_nargab_lqae044
crossref_primary_10_1002_lno_10476
crossref_primary_10_1016_j_coviro_2019_05_013
crossref_primary_10_1038_s41579_022_00755_4
crossref_primary_10_3390_v14071448
crossref_primary_10_1093_ismejo_wraf066
crossref_primary_10_1186_s10152_017_0502_2
crossref_primary_10_1038_s41396_019_0565_y
crossref_primary_10_3390_ijms24043937
crossref_primary_10_1016_j_tim_2020_01_010
crossref_primary_10_3390_microorganisms9061323
crossref_primary_10_1111_1462_2920_15640
crossref_primary_10_3390_w13202934
crossref_primary_10_1016_j_coviro_2019_05_008
crossref_primary_10_3389_fmicb_2019_01801
crossref_primary_10_1038_s41598_020_61691_y
crossref_primary_10_1073_pnas_2010783117
crossref_primary_10_1093_femsec_fix119
crossref_primary_10_1016_j_tim_2021_07_004
crossref_primary_10_1038_s41396_020_00752_6
crossref_primary_10_3389_fmicb_2019_00167
crossref_primary_10_1007_s00248_017_1106_8
crossref_primary_10_3389_fmicb_2022_863686
crossref_primary_10_1038_ismej_2017_16
crossref_primary_10_1016_j_cell_2019_11_018
crossref_primary_10_3390_v10090496
crossref_primary_10_1093_femsec_fiaa187
crossref_primary_10_1111_1462_2920_13391
crossref_primary_10_1093_femsmc_xtae022
crossref_primary_10_1128_aem_01049_25
crossref_primary_10_1002_edn3_353
crossref_primary_10_1007_s10123_025_00677_0
crossref_primary_10_1186_s12859_017_1473_7
crossref_primary_10_3390_v17040513
crossref_primary_10_3389_fmicb_2023_1179414
crossref_primary_10_3390_microorganisms8091429
crossref_primary_10_1038_s41396_019_0580_z
crossref_primary_10_1016_j_pocean_2018_12_017
crossref_primary_10_1016_j_watres_2022_118237
crossref_primary_10_1016_j_scitotenv_2021_147589
crossref_primary_10_1093_ve_veab070
crossref_primary_10_1111_ele_13122
crossref_primary_10_1016_j_microb_2024_100042
crossref_primary_10_1016_j_watbs_2022_100062
crossref_primary_10_1080_1040841X_2025_2493908
crossref_primary_10_1093_nar_gkx1264
crossref_primary_10_1002_lol2_10160
crossref_primary_10_1038_nmicrobiol_2017_64
crossref_primary_10_1038_s41396_023_01431_y
crossref_primary_10_3389_fmicb_2023_1254535
crossref_primary_10_3390_v10090474
crossref_primary_10_7717_peerj_10049
crossref_primary_10_3390_microorganisms10040715
crossref_primary_10_1111_1758_2229_12773
crossref_primary_10_3390_v11111022
crossref_primary_10_1093_femsec_fiw238
crossref_primary_10_7717_peerj_10715
crossref_primary_10_1016_j_soilbio_2024_109401
crossref_primary_10_3390_jmse11030639
crossref_primary_10_1002_mbo3_1031
crossref_primary_10_3389_fmars_2016_00251
crossref_primary_10_1016_j_ecss_2021_107413
crossref_primary_10_1093_femsec_fiaa033
crossref_primary_10_3390_v12080881
crossref_primary_10_3389_fmicb_2020_00338
crossref_primary_10_3390_v9030043
crossref_primary_10_3389_fmicb_2019_00878
crossref_primary_10_1038_s41579_021_00602_y
crossref_primary_10_3389_fmicb_2022_853973
crossref_primary_10_1186_s40793_022_00410_8
crossref_primary_10_1186_s12985_019_1120_1
crossref_primary_10_3389_fmicb_2020_00221
crossref_primary_10_3389_fmicb_2023_1337146
crossref_primary_10_1111_ejss_13531
crossref_primary_10_1038_s41467_024_52996_x
crossref_primary_10_1002_imt2_59
crossref_primary_10_3390_jmse11020364
crossref_primary_10_1038_s41396_019_0397_9
crossref_primary_10_3390_ijms221910436
crossref_primary_10_3389_fmicb_2020_612053
crossref_primary_10_1002_lno_11711
crossref_primary_10_1186_s12859_019_3278_3
crossref_primary_10_3390_microorganisms8071077
crossref_primary_10_15212_ZOONOSES_2024_0041
crossref_primary_10_1016_j_mib_2017_04_010
crossref_primary_10_3389_fmicb_2022_938066
crossref_primary_10_3389_fmicb_2020_01210
crossref_primary_10_1007_s10750_020_04404_w
crossref_primary_10_1007_s10750_016_3084_0
crossref_primary_10_1371_journal_pbio_1002503
crossref_primary_10_1093_ismeco_ycaf136
crossref_primary_10_3390_d14030230
crossref_primary_10_1371_journal_pbio_3001514
crossref_primary_10_1039_D2EW00755J
crossref_primary_10_1186_s40793_024_00637_7
crossref_primary_10_1016_j_aquaculture_2022_738065
crossref_primary_10_1029_2023GB007912
crossref_primary_10_1038_ncomms15955
crossref_primary_10_1093_ismejo_wrad042
crossref_primary_10_1016_j_ecolmodel_2022_110183
crossref_primary_10_3390_v16060937
crossref_primary_10_1016_j_rsma_2024_103796
crossref_primary_10_3389_fmicb_2022_1011342
crossref_primary_10_1016_j_tim_2018_05_015
crossref_primary_10_1128_jvi_00275_23
crossref_primary_10_1371_journal_pone_0298139
crossref_primary_10_1007_s00705_018_3938_z
crossref_primary_10_1111_1758_2229_12504
crossref_primary_10_1111_nph_18042
crossref_primary_10_1093_femsre_fux018
crossref_primary_10_1038_ismej_2017_194
crossref_primary_10_1016_j_apsoil_2021_104138
crossref_primary_10_1007_s00248_017_1038_3
crossref_primary_10_1016_j_watres_2019_01_003
Cites_doi 10.1038/ismej.2011.101
10.3354/ame031001
10.1038/340467a0
10.1002/lno.10113
10.1111/j.1365-2427.2008.01992.x
10.1111/j.1574-6941.2011.01251.x
10.4319/lo.1989.34.8.1545
10.1038/nature08060
10.1038/ismej.2011.214
10.1038/ismej.2008.31
10.1038/nrmicro3289
10.1073/pnas.0504062102
10.1111/j.1574-6976.2010.00258.x
10.1016/j.femsre.2003.08.001
10.3354/meps092099
10.4161/mge.20031
10.1002/1097-0320(20010701)44:3<236::AID-CYTO1116>3.0.CO;2-5
10.1038/nrmicro1750
10.4319/lo.2000.45.6.1320
10.1038/nature04160
10.1126/science.aac6284
10.3354/meps121217
10.1128/AEM.00267-11
10.1128/AEM.68.9.4307-4314.2002
10.1038/nrmicro1163
10.3354/ame01231
10.1371/journal.pbio.0040193
10.3354/ame013019
10.1029/2005GB002490
10.1038/nature12388
10.1038/nature07268
10.3354/ame01639
10.1038/nrmicro3404
10.1128/MMBR.64.1.69-114.2000
10.1038/ismej.2014.220
10.3354/meps089103
10.1073/pnas.0602399103
10.1007/978-3-642-79923-5_14
10.4319/lo.2013.58.2.0465
10.1016/j.tim.2012.11.003
10.1038/ismej.2015.125
10.3410/B4-17
ContentType Journal Article
Copyright Macmillan Publishers Limited 2016
Copyright Nature Publishing Group Mar 2016
Copyright_xml – notice: Macmillan Publishers Limited 2016
– notice: Copyright Nature Publishing Group Mar 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/nmicrobiol.2015.24
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Proquest SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2058-5276
ExternalDocumentID 27572161
10_1038_nmicrobiol_2015_24
Genre Journal Article
GroupedDBID 0R~
53G
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK8
M7P
NNMJJ
O9-
R9-
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
AFFHD
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c485t-f7a396b2e79a56d9e7ff6161b276d230cb18d3cc356e6ee8c9b09e5fbf4d6513
IEDL.DBID M7P
ISICitedReferencesCount 232
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383604600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2058-5276
IngestDate Sun Nov 09 12:25:01 EST 2025
Wed Jul 16 16:30:48 EDT 2025
Thu Apr 03 07:08:45 EDT 2025
Sat Nov 29 02:07:56 EST 2025
Tue Nov 18 20:58:50 EST 2025
Fri Feb 21 02:38:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-f7a396b2e79a56d9e7ff6161b276d230cb18d3cc356e6ee8c9b09e5fbf4d6513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2361-1985
0000-0002-0372-0033
0000-0002-3433-8312
OpenAccessLink https://www.nature.com/articles/nmicrobiol201524.pdf
PMID 27572161
PQID 2215524259
PQPubID 2069616
ParticipantIDs proquest_miscellaneous_1815683057
proquest_journals_2215524259
pubmed_primary_27572161
crossref_citationtrail_10_1038_nmicrobiol_2015_24
crossref_primary_10_1038_nmicrobiol_2015_24
springer_journals_10_1038_nmicrobiol_2015_24
PublicationCentury 2000
PublicationDate 20160125
PublicationDateYYYYMMDD 2016-01-25
PublicationDate_xml – month: 1
  year: 2016
  text: 20160125
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature microbiology
PublicationTitleAbbrev Nat Microbiol
PublicationTitleAlternate Nat Microbiol
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Maranger, Bird (CR12) 1995; 1210
Wommack, Colwell (CR13) 2000; 64
Brussaard (CR3) 2008; 20
Mojica (CR15) 2015; 60
Weitz, Hartman, Levin (CR7) 2005; 102
Giovannoni, Tempterton, Zhao (CR40) 2013; 499
Weitz (CR18) 2013; 21
CR17
Weinbauer (CR14) 2004; 28
Hatton (CR44) 2015; 349
Danovaro (CR34) 2008; 454
Danovaro (CR19) 2011; 35
Brum, Sullivan (CR35) 2015; 130
Payet, Suttle (CR9) 2013; 58
Strzepek, Maldonado, Higgins, Hall, Safi, Wilhelm, Boyd (CR28) 2005; 19
Thingstad (CR1) 2000; 45
Avrani, Schwartz, Lindell (CR8) 2012; 2
Suttle (CR33) 2007; 5
Murray, Jackson (CR10) 1992; 89
Fuhrman (CR22) 2006; 103
Carreira, Larsen, Glud, Brussaard, Middelboe (CR41) 2013; 69
Williamson, Houchin, McDaniel, Paul (CR43) 2002; 68
Bergh, Borhseim, Bratbak, Heldal (CR11) 1989; 340
CR27
Yang, Yokokawa, Motegi, Nagata (CR25) 2013; 710
Wilhelm (CR31) 2003; 310
Thingstad, Lignell (CR39) 1997; 13
Weitz, Wilhelm (CR5) 2012; 4
Jover, Effler, Buchan, Wilhelm, Weitz (CR6) 2014; 12
De Paepe, Taddei (CR38) 2006; 4
Rowe (CR30) 2008; 520
Edwards, Rohwer (CR16) 2005; 3
Wang, Eric Wommack, Chen (CR32) 2011; 770
Suttle, Chan (CR37) 1993; 92
Rohwer, Thurber (CR4) 2009; 459
Morel, Berthon (CR20) 1989; 340
Weitz (CR36) 2015; 90
Parsons, Breitbart, Lomas, Carlson (CR21) 2011; 6
De Corte, Sintes, Yokokawa, Reinthaler, Herndl (CR23) 2012; 60
Suttle (CR2) 2005; 437
Li, Dickie (CR24) 2001; 440
Clasen, Brigden, Payet, Suttle (CR26) 2008; 53
Matteson (CR29) 2012; 79
Bratbak, Heldal, Joint (CR42) 1995
AR Matteson (BFnmicrobiol201524_CR29) 2012; 79
RJ Parsons (BFnmicrobiol201524_CR21) 2011; 6
BFnmicrobiol201524_CR17
WKW Li (BFnmicrobiol201524_CR24) 2001; 440
MG Weinbauer (BFnmicrobiol201524_CR14) 2004; 28
JS Weitz (BFnmicrobiol201524_CR18) 2013; 21
S Giovannoni (BFnmicrobiol201524_CR40) 2013; 499
JM Rowe (BFnmicrobiol201524_CR30) 2008; 520
CA Suttle (BFnmicrobiol201524_CR37) 1993; 92
F Rohwer (BFnmicrobiol201524_CR4) 2009; 459
JA Fuhrman (BFnmicrobiol201524_CR22) 2006; 103
SW Wilhelm (BFnmicrobiol201524_CR31) 2003; 310
JS Weitz (BFnmicrobiol201524_CR7) 2005; 102
LF Jover (BFnmicrobiol201524_CR6) 2014; 12
JL Clasen (BFnmicrobiol201524_CR26) 2008; 53
AG Murray (BFnmicrobiol201524_CR10) 1992; 89
D De Corte (BFnmicrobiol201524_CR23) 2012; 60
IA Hatton (BFnmicrobiol201524_CR44) 2015; 349
CPD Brussaard (BFnmicrobiol201524_CR3) 2008; 20
S Avrani (BFnmicrobiol201524_CR8) 2012; 2
O Bergh (BFnmicrobiol201524_CR11) 1989; 340
R Danovaro (BFnmicrobiol201524_CR34) 2008; 454
R Danovaro (BFnmicrobiol201524_CR19) 2011; 35
R. F. Strzepek (BFnmicrobiol201524_CR28) 2005; 19
K Wang (BFnmicrobiol201524_CR32) 2011; 770
CA Suttle (BFnmicrobiol201524_CR2) 2005; 437
RA Edwards (BFnmicrobiol201524_CR16) 2005; 3
JR Brum (BFnmicrobiol201524_CR35) 2015; 130
CA Suttle (BFnmicrobiol201524_CR33) 2007; 5
M De Paepe (BFnmicrobiol201524_CR38) 2006; 4
BFnmicrobiol201524_CR27
JP Payet (BFnmicrobiol201524_CR9) 2013; 58
G Bratbak (BFnmicrobiol201524_CR42) 1995
KE Wommack (BFnmicrobiol201524_CR13) 2000; 64
TF Thingstad (BFnmicrobiol201524_CR1) 2000; 45
C Carreira (BFnmicrobiol201524_CR41) 2013; 69
SJ Williamson (BFnmicrobiol201524_CR43) 2002; 68
Y Yang (BFnmicrobiol201524_CR25) 2013; 710
JS Weitz (BFnmicrobiol201524_CR36) 2015; 90
TF Thingstad (BFnmicrobiol201524_CR39) 1997; 13
JS Weitz (BFnmicrobiol201524_CR5) 2012; 4
R Maranger (BFnmicrobiol201524_CR12) 1995; 1210
KDA Mojica (BFnmicrobiol201524_CR15) 2015; 60
A Morel (BFnmicrobiol201524_CR20) 1989; 340
28974689 - Nat Microbiol. 2017 Nov;2(11):1571
References_xml – volume: 6
  start-page: 273
  year: 2011
  end-page: 284
  ident: CR21
  article-title: Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.101
– volume: 310
  start-page: 1
  year: 2003
  end-page: 8
  ident: CR31
  article-title: UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame031001
– volume: 340
  start-page: 467
  year: 1989
  end-page: 468
  ident: CR11
  article-title: High abundance of viruses found in aquatic environments
  publication-title: Nature
  doi: 10.1038/340467a0
– volume: 60
  start-page: 1498
  year: 2015
  end-page: 1521
  ident: CR15
  article-title: Phytoplankton community structure in relation to vertical stratification along a north–south gradient in the Northeast Atlantic Ocean
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10113
– volume: 53
  start-page: 1090
  year: 2008
  end-page: 1100
  ident: CR26
  article-title: Evidence that viral abundance across oceans and lakes is driven by different biological factors
  publication-title: Freshwater Biol.
  doi: 10.1111/j.1365-2427.2008.01992.x
– volume: 79
  start-page: 709
  year: 2012
  end-page: 719
  ident: CR29
  article-title: Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near New Zealand
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01251.x
– volume: 340
  start-page: 1545
  year: 1989
  end-page: 1562
  ident: CR20
  article-title: Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1989.34.8.1545
– volume: 459
  start-page: 207
  year: 2009
  end-page: 212
  ident: CR4
  article-title: Viruses manipulate the marine environment
  publication-title: Nature
  doi: 10.1038/nature08060
– volume: 60
  start-page: 1566
  year: 2012
  end-page: 1577
  ident: CR23
  article-title: Links between viruses and prokaryotes throughout the water column along a north Atlantic latitudinal transect
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.214
– volume: 20
  start-page: 575
  year: 2008
  end-page: 578
  ident: CR3
  article-title: Global-scale processes with a nanoscale drive: the role of marine viruses
  publication-title: ISME J.
  doi: 10.1038/ismej.2008.31
– volume: 12
  start-page: 519
  year: 2014
  end-page: 528
  ident: CR6
  article-title: The elemental composition of virus particles: implications for marine biogeochemical cycles
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro3289
– volume: 102
  start-page: 9535
  year: 2005
  end-page: 9540
  ident: CR7
  article-title: Coevolutionary arms races between bacteria and bacteriophage
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0504062102
– volume: 35
  start-page: 993
  year: 2011
  end-page: 1034
  ident: CR19
  article-title: Marine viruses and global climate change
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2010.00258.x
– volume: 28
  start-page: 127
  year: 2004
  end-page: 181
  ident: CR14
  article-title: Ecology of prokaryotic viruses
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2003.08.001
– ident: CR27
– volume: 92
  start-page: 99
  year: 1993
  end-page: 109
  ident: CR37
  article-title: Marine cyanophages infecting oceanic and coastal strains of : abundance, morphology, cross-infectivity and growth characteristics
  publication-title: Marine Ecol. Progr. Ser.
  doi: 10.3354/meps092099
– volume: 2
  start-page: 88
  year: 2012
  end-page: 95
  ident: CR8
  article-title: Virus-host swinging party in the oceans: incorporating biological complexity into paradigms of antagonistic coexistence
  publication-title: Mobile Genet. Elements
  doi: 10.4161/mge.20031
– volume: 440
  start-page: 236
  year: 2001
  end-page: 246
  ident: CR24
  article-title: Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry
  publication-title: Cytometry
  doi: 10.1002/1097-0320(20010701)44:3<236::AID-CYTO1116>3.0.CO;2-5
– volume: 5
  start-page: 801
  year: 2007
  end-page: 812
  ident: CR33
  article-title: Marine viruses—major players in the global ecosystem
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro1750
– volume: 45
  start-page: 1320
  year: 2000
  end-page: 1328
  ident: CR1
  article-title: Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2000.45.6.1320
– volume: 437
  start-page: 356
  year: 2005
  end-page: 361
  ident: CR2
  article-title: Viruses in the sea
  publication-title: Nature
  doi: 10.1038/nature04160
– volume: 349
  start-page: aac6284
  year: 2015
  ident: CR44
  article-title: The predator–prey power law: biomass scaling across terrestrial and aquatic biomes
  publication-title: Science
  doi: 10.1126/science.aac6284
– volume: 1210
  start-page: 217
  year: 1995
  end-page: 226
  ident: CR12
  article-title: Viral abundance in aquatic systems—a comparison between marine and fresh-waters
  publication-title: Marine Ecol. Progr. Ser.
  doi: 10.3354/meps121217
– volume: 770
  start-page: 7459
  year: 2011
  end-page: 7468
  ident: CR32
  article-title: Abundance and distribution of spp. and cyanophages in the Chesapeake Bay
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00267-11
– volume: 68
  start-page: 4307
  year: 2002
  end-page: 4314
  ident: CR43
  article-title: Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.9.4307-4314.2002
– volume: 3
  start-page: 504
  year: 2005
  end-page: 510
  ident: CR16
  article-title: Viral metagenomics
  publication-title: Nature Rev. Microbiol
  doi: 10.1038/nrmicro1163
– volume: 520
  start-page: 233
  year: 2008
  end-page: 244
  ident: CR30
  article-title: Constraints on viral production in the Sargasso Sea and North Atlantic
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame01231
– volume: 4
  start-page: e193
  year: 2006
  ident: CR38
  article-title: Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040193
– volume: 13
  start-page: 19
  year: 1997
  end-page: 27
  ident: CR39
  article-title: Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame013019
– ident: CR17
– volume: 19
  start-page: n/a-n/a
  issue: 4
  year: 2005
  ident: CR28
  article-title: Spinning the “Ferrous Wheel”: The importance of the microbial community in an iron budget during the FeCycle experiment
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2005GB002490
– volume: 499
  start-page: E4
  year: 2013
  end-page: E5
  ident: CR40
  publication-title: Nature
  doi: 10.1038/nature12388
– volume: 454
  start-page: 1084
  year: 2008
  end-page: 1U27
  ident: CR34
  article-title: Major viral impact on the functioning of benthic deep-sea ecosystems
  publication-title: Nature
  doi: 10.1038/nature07268
– volume: 69
  start-page: 183
  year: 2013
  end-page: 192
  ident: CR41
  article-title: Heterogeneous distribution of prokaryotes and viruses at the microscale in a tidal sediment
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame01639
– volume: 130
  start-page: 147
  year: 2015
  end-page: 159
  ident: CR35
  article-title: Rising to the challenge: accelerated pace of discovery transforms marine virology
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro3404
– volume: 64
  start-page: 69
  year: 2000
  end-page: 114
  ident: CR13
  article-title: Virioplankton: viruses in aquatic ecosystems
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.64.1.69-114.2000
– volume: 90
  start-page: 1352
  year: 2015
  end-page: 1364
  ident: CR36
  article-title: A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.220
– volume: 89
  start-page: 103
  year: 1992
  end-page: 116
  ident: CR10
  article-title: Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles
  publication-title: Marine Ecol. Progr. Ser.
  doi: 10.3354/meps089103
– volume: 103
  start-page: 13104
  year: 2006
  end-page: 13109
  ident: CR22
  article-title: Annually reoccurring bacterial communities are predictable from ocean conditions
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0602399103
– start-page: 249
  year: 1995
  end-page: 264
  ident: CR42
  publication-title: Molecular Ecology of Aquatic Microbes
  doi: 10.1007/978-3-642-79923-5_14
– volume: 4
  start-page: 17
  year: 2012
  ident: CR5
  article-title: Ocean viruses and their effects on microbial communities and biogeochemical cycles
  publication-title: F1000 Biol. Reports
– volume: 58
  start-page: 465
  year: 2013
  end-page: 474
  ident: CR9
  article-title: To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2013.58.2.0465
– volume: 21
  start-page: 82
  year: 2013
  end-page: 91
  ident: CR18
  article-title: Phage–bacteria infection networks
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.11.003
– volume: 710
  start-page: 193
  year: 2013
  end-page: 202
  ident: CR25
  article-title: Large-scale distribution of viruses in deep waters of the pacific and southern oceans
  publication-title: Aquatic Microbial Ecol.
– volume: 68
  start-page: 4307
  year: 2002
  ident: BFnmicrobiol201524_CR43
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.9.4307-4314.2002
– volume: 12
  start-page: 519
  year: 2014
  ident: BFnmicrobiol201524_CR6
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro3289
– volume: 5
  start-page: 801
  year: 2007
  ident: BFnmicrobiol201524_CR33
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro1750
– volume: 90
  start-page: 1352
  year: 2015
  ident: BFnmicrobiol201524_CR36
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.220
– volume: 92
  start-page: 99
  year: 1993
  ident: BFnmicrobiol201524_CR37
  publication-title: Marine Ecol. Progr. Ser.
  doi: 10.3354/meps092099
– volume: 53
  start-page: 1090
  year: 2008
  ident: BFnmicrobiol201524_CR26
  publication-title: Freshwater Biol.
  doi: 10.1111/j.1365-2427.2008.01992.x
– volume: 64
  start-page: 69
  year: 2000
  ident: BFnmicrobiol201524_CR13
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.64.1.69-114.2000
– volume: 103
  start-page: 13104
  year: 2006
  ident: BFnmicrobiol201524_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0602399103
– volume: 79
  start-page: 709
  year: 2012
  ident: BFnmicrobiol201524_CR29
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01251.x
– volume: 437
  start-page: 356
  year: 2005
  ident: BFnmicrobiol201524_CR2
  publication-title: Nature
  doi: 10.1038/nature04160
– volume: 102
  start-page: 9535
  year: 2005
  ident: BFnmicrobiol201524_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0504062102
– volume: 60
  start-page: 1498
  year: 2015
  ident: BFnmicrobiol201524_CR15
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10113
– volume: 6
  start-page: 273
  year: 2011
  ident: BFnmicrobiol201524_CR21
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.101
– ident: BFnmicrobiol201524_CR27
– volume: 454
  start-page: 1084
  year: 2008
  ident: BFnmicrobiol201524_CR34
  publication-title: Nature
  doi: 10.1038/nature07268
– volume: 60
  start-page: 1566
  year: 2012
  ident: BFnmicrobiol201524_CR23
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.214
– volume: 69
  start-page: 183
  year: 2013
  ident: BFnmicrobiol201524_CR41
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame01639
– ident: BFnmicrobiol201524_CR17
  doi: 10.1038/ismej.2015.125
– volume: 21
  start-page: 82
  year: 2013
  ident: BFnmicrobiol201524_CR18
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.11.003
– volume: 58
  start-page: 465
  year: 2013
  ident: BFnmicrobiol201524_CR9
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2013.58.2.0465
– volume: 499
  start-page: E4
  year: 2013
  ident: BFnmicrobiol201524_CR40
  publication-title: Nature
  doi: 10.1038/nature12388
– volume: 770
  start-page: 7459
  year: 2011
  ident: BFnmicrobiol201524_CR32
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00267-11
– volume: 45
  start-page: 1320
  year: 2000
  ident: BFnmicrobiol201524_CR1
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2000.45.6.1320
– volume: 2
  start-page: 88
  year: 2012
  ident: BFnmicrobiol201524_CR8
  publication-title: Mobile Genet. Elements
  doi: 10.4161/mge.20031
– volume: 89
  start-page: 103
  year: 1992
  ident: BFnmicrobiol201524_CR10
  publication-title: Marine Ecol. Progr. Ser.
  doi: 10.3354/meps089103
– volume: 340
  start-page: 467
  year: 1989
  ident: BFnmicrobiol201524_CR11
  publication-title: Nature
  doi: 10.1038/340467a0
– volume: 520
  start-page: 233
  year: 2008
  ident: BFnmicrobiol201524_CR30
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame01231
– start-page: 249
  volume-title: Molecular Ecology of Aquatic Microbes
  year: 1995
  ident: BFnmicrobiol201524_CR42
  doi: 10.1007/978-3-642-79923-5_14
– volume: 440
  start-page: 236
  year: 2001
  ident: BFnmicrobiol201524_CR24
  publication-title: Cytometry
  doi: 10.1002/1097-0320(20010701)44:3<236::AID-CYTO1116>3.0.CO;2-5
– volume: 349
  start-page: aac6284
  year: 2015
  ident: BFnmicrobiol201524_CR44
  publication-title: Science
  doi: 10.1126/science.aac6284
– volume: 1210
  start-page: 217
  year: 1995
  ident: BFnmicrobiol201524_CR12
  publication-title: Marine Ecol. Progr. Ser.
  doi: 10.3354/meps121217
– volume: 340
  start-page: 1545
  year: 1989
  ident: BFnmicrobiol201524_CR20
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1989.34.8.1545
– volume: 4
  start-page: 17
  year: 2012
  ident: BFnmicrobiol201524_CR5
  publication-title: F1000 Biol. Reports
  doi: 10.3410/B4-17
– volume: 35
  start-page: 993
  year: 2011
  ident: BFnmicrobiol201524_CR19
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2010.00258.x
– volume: 4
  start-page: e193
  year: 2006
  ident: BFnmicrobiol201524_CR38
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040193
– volume: 710
  start-page: 193
  year: 2013
  ident: BFnmicrobiol201524_CR25
  publication-title: Aquatic Microbial Ecol.
– volume: 13
  start-page: 19
  year: 1997
  ident: BFnmicrobiol201524_CR39
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame013019
– volume: 20
  start-page: 575
  year: 2008
  ident: BFnmicrobiol201524_CR3
  publication-title: ISME J.
  doi: 10.1038/ismej.2008.31
– volume: 28
  start-page: 127
  year: 2004
  ident: BFnmicrobiol201524_CR14
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2003.08.001
– volume: 3
  start-page: 504
  year: 2005
  ident: BFnmicrobiol201524_CR16
  publication-title: Nature Rev. Microbiol
  doi: 10.1038/nrmicro1163
– volume: 130
  start-page: 147
  year: 2015
  ident: BFnmicrobiol201524_CR35
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro3404
– volume: 459
  start-page: 207
  year: 2009
  ident: BFnmicrobiol201524_CR4
  publication-title: Nature
  doi: 10.1038/nature08060
– volume: 310
  start-page: 1
  year: 2003
  ident: BFnmicrobiol201524_CR31
  publication-title: Aquatic Microbial Ecol.
  doi: 10.3354/ame031001
– volume: 19
  start-page: n/a-n/a
  issue: 4
  year: 2005
  ident: BFnmicrobiol201524_CR28
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2005GB002490
– reference: 28974689 - Nat Microbiol. 2017 Nov;2(11):1571
SSID ssj0001626686
Score 2.4557226
Snippet Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15024
SubjectTerms 631/114/2397
631/326/1321
631/326/171
631/326/171/1878
Aquatic Organisms - growth & development
Cell density
Infectious Diseases
Life Sciences
Medical Microbiology
Microbiology
Oceans
Oceans and Seas
Parasitology
Population Density
Scaling
Seawater - microbiology
Seawater - virology
Spatio-Temporal Analysis
Virology
Viruses
Viruses - growth & development
Title Re-examination of the relationship between marine virus and microbial cell abundances
URI https://link.springer.com/article/10.1038/nmicrobiol.2015.24
https://www.ncbi.nlm.nih.gov/pubmed/27572161
https://www.proquest.com/docview/2215524259
https://www.proquest.com/docview/1815683057
Volume 1
WOSCitedRecordID wos000383604600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2058-5276
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0001626686
  issn: 2058-5276
  databaseCode: M7P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2058-5276
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0001626686
  issn: 2058-5276
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuyBx4f0ILJWRuIHZxo5fJwRoVxxQVa0WqbfIr4hKbFqadgX_Hk_qtEIr9sI5ju14xp7JzOdvAN4g_0lQ3NFk_SpaOSMo0m7R6LRzVVPFceh5Zr-qyUTPZmaaA25dhlUOZ2J_UIeFxxj5CWNIFpY0zHxY_qRYNQqzq7mExgEcIUsC76F7032MJXnrUst8V2bM9Ul7Oc_8RojqEu9Z9bc9uuZkXkuQ9nbn7P7_zvgB3MseJ_m4VZGHcCu2j-DOtgbl78fw7TzS-MsiIgZlRBYNST4hWQ0gue_zJclgLnJp8a4guZqvNh2xbSD5O1P3mAAg1uG9EgRmP4GLs9OLz19orrVAfaXFmjbKciMdi8pYIYOJqmlk8gYdUzKk3xTvSh2491zIKGPU3rixiaJBnJ8UJX8Kh-2ijc-B2ORQmuTXKR9UFcZeJ3PYBKYbJHbnwRZQDgte-8xDjuUwftR9Ppzrei-kGoVUs6qAt7t3llsWjhtbHw8CqfOO7Oq9NAp4vXuc9hKuj23jYtPVJVLn6HQCqgKebeW_G44pgTxHZQHvBoXYd_7vuby4eS4v4W5q2Md0mDiGw_VqE1_BbX-1nnerERyomR7B0afTyfR81Ov2H5cGA5c
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3oVAASPBCUw3TvzIASEEVK26rCq0SL1ZfkWsRLPLZrfQH8V_xJPHrlBFbz1wTuw4nvHMZ8_4G4AXyH_iZWZp9H45zW3BKdJu0WCVtXmZh4FveGaHcjRSx8fF0Qb87u_CYFplbxMbQ-2nDs_IdxlDsrCoYcW72Q-KVaMwutqX0GjV4jCc_Yxbtvrtwcco35eM7X0af9inXVUB6nLFF7SUJiuEZUEWhgtfBFmWIuIey6TwEZA7myqfOZdxEUQIyhV2UAReYkab4GkWu70CVyOKYKrJFDxaH-nEzYFQoruaM8jUbnUy6eiUMImMv2H53-7vHKY9F49t3Nzerf9sgm7DzQ5Pk_ftArgDG6G6C9fbCptn9-Drl0DDL4P5PqiBZFqSiHjJvE8B_DaZkS5VjZwYvAlJTifzZU1M5Uk3rbF7DG8QY_HWDKad34fxZfzSNmxW0yo8BGIiXC4iapXOy9wPnIrOvvRMlUhbn3mTQNrLV7uOZR2LfXzXTbQ_U3qtExp1QrM8gVerNrOWY-TCt3d6-evO3tR6LfwEnq8eR0uB82OqMF3WOkViIBXtu0zgQatuq88xyZHFKU3gda9_687_PZZHF4_lGWztjz8P9fBgdPgYbsRGzekV4zuwuZgvwxO45k4Xk3r-tFlIBPQl6-UfLlZekw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Re-examination+of+the+relationship+between+marine+virus+and+microbial+cell+abundances&rft.jtitle=Nature+microbiology&rft.au=Wigington%2C+Charles+H&rft.au=Sonderegger%2C+Derek&rft.au=Brussaard%2C+Corina+P+D&rft.au=Buchan%2C+Alison&rft.date=2016-01-25&rft.eissn=2058-5276&rft.volume=1&rft.spage=15024&rft_id=info:doi/10.1038%2Fnmicrobiol.2015.24&rft_id=info%3Apmid%2F27572161&rft.externalDocID=27572161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon