Re-examination of the relationship between marine virus and microbial cell abundances
Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10 8 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. Howev...
Uloženo v:
| Vydáno v: | Nature microbiology Ročník 1; číslo 3; s. 15024 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
25.01.2016
Nature Publishing Group |
| Témata: | |
| ISSN: | 2058-5276, 2058-5276 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10
8
per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,508 microbial cell and virus abundance estimates from 22 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from ‘representative’ abundances require substantial refinement to be extrapolated to regional or global scales.
Analysis of microbial cell and virus abundance estimates from 25 distinct marine surveys reveals that virus-to-microbial cell ratio decreases with microbial cell density, questioning the idea that viral abundance is always 10-fold higher. |
|---|---|
| AbstractList | Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 108 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales. Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10 8 per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,508 microbial cell and virus abundance estimates from 22 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from ‘representative’ abundances require substantial refinement to be extrapolated to regional or global scales. Analysis of microbial cell and virus abundance estimates from 25 distinct marine surveys reveals that virus-to-microbial cell ratio decreases with microbial cell density, questioning the idea that viral abundance is always 10-fold higher. Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales. Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales. |
| ArticleNumber | 15024 |
| Author | Wigington, Charles H. Brussaard, Corina P. D. Middelboe, Mathias Wilson, William H. Stock, Charles Sonderegger, Derek Suttle, Curtis A. Weitz, Joshua S. Wilhelm, Steven W. Fuhrman, Jed A. Lennon, Jay T. Finke, Jan F. Buchan, Alison Wommack, K. Eric |
| Author_xml | – sequence: 1 givenname: Charles H. surname: Wigington fullname: Wigington, Charles H. organization: School of Biology, Georgia Institute of Technology – sequence: 2 givenname: Derek surname: Sonderegger fullname: Sonderegger, Derek organization: Department of Mathematics and Statistics, Northern Arizona University – sequence: 3 givenname: Corina P. D. surname: Brussaard fullname: Brussaard, Corina P. D. organization: Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), 1790 AB Den Burg, Texel, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE, Amsterdam – sequence: 4 givenname: Alison surname: Buchan fullname: Buchan, Alison organization: Department of Microbiology, The University of Tennessee – sequence: 5 givenname: Jan F. surname: Finke fullname: Finke, Jan F. organization: Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia – sequence: 6 givenname: Jed A. orcidid: 0000-0002-2361-1985 surname: Fuhrman fullname: Fuhrman, Jed A. organization: Department of Biological Sciences, University of Southern California – sequence: 7 givenname: Jay T. surname: Lennon fullname: Lennon, Jay T. organization: Department of Biology, Indiana University – sequence: 8 givenname: Mathias surname: Middelboe fullname: Middelboe, Mathias organization: Department of Biology, Marine Biological Section, University of Copenhagen, DK-3000, Helsingør – sequence: 9 givenname: Curtis A. orcidid: 0000-0002-0372-0033 surname: Suttle fullname: Suttle, Curtis A. organization: Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Department of Microbiology and Immunology, University of British Columbia, Department of Botany, University of British Columbia, Program in Integrated Microbial Diversity, Canadian Institute for Advanced Research – sequence: 10 givenname: Charles surname: Stock fullname: Stock, Charles organization: Geophysical Fluid Dynamics Laboratory – sequence: 11 givenname: William H. surname: Wilson fullname: Wilson, William H. organization: Sir Alister Hardy Foundation for Ocean Science, The Laboratory – sequence: 12 givenname: K. Eric surname: Wommack fullname: Wommack, K. Eric organization: Plant and Soil Sciences, Delaware Biotechnology Institute, Delaware Technology Park – sequence: 13 givenname: Steven W. surname: Wilhelm fullname: Wilhelm, Steven W. email: wilhelm@utk.edu organization: Department of Microbiology, The University of Tennessee – sequence: 14 givenname: Joshua S. orcidid: 0000-0002-3433-8312 surname: Weitz fullname: Weitz, Joshua S. email: jsweitz@gatech.edu organization: School of Biology, Georgia Institute of Technology, School of Physics, Georgia Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27572161$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LxDAQhoMorl9_wIMEvHjpmqRNmh5F_AJBED2HJJ1qpE3XpPXj35t1d1H2sKdM4HmHZ2b20bbvPSB0TMmUklye-87Z0BvXt1NGKJ-yYgvtMcJlxlkptv_VE3QU4xshhAomhBS7aMJKXjIq6B56foQMvnTnvB5c73Hf4OEVcID29x9f3QwbGD4BPO50cB7whwtjxNrXeKmgW2yhbbE2o6-1txAP0U6j2whHy_cAPV1fPV3eZvcPN3eXF_eZLSQfsqbUeSUMg7LSXNQVlE0jkpZJ1jXLiTVU1rm1ORcgAKStDKmAN6YpasFpfoDOFm1noX8fIQ6qc3Guoj30Y1RUUi5kTniZ0NM19K0fg09yijHKOSsYrxJ1sqRG00GtZsGlob_Val8JkAsgDR5jgEZZN_xuagjatYoSNb-O-ruOml9HsSJF2Vp01X1jKF-EYoL9C4Q_7Q2pH0JbqCM |
| CitedBy_id | crossref_primary_10_3390_md18120633 crossref_primary_10_3390_instruments4040032 crossref_primary_10_3390_v10110588 crossref_primary_10_1038_s43705_022_00169_6 crossref_primary_10_1073_pnas_2012443117 crossref_primary_10_3390_d13090426 crossref_primary_10_1016_j_soilbio_2025_109741 crossref_primary_10_3389_fmicb_2022_861793 crossref_primary_10_1093_ismejo_wrae231 crossref_primary_10_3389_fmicb_2020_00381 crossref_primary_10_1016_j_virusres_2021_198321 crossref_primary_10_3390_microorganisms9061269 crossref_primary_10_7554_eLife_31955 crossref_primary_10_1038_s41396_023_01468_z crossref_primary_10_3390_ijms25168690 crossref_primary_10_1093_femsec_fiz116 crossref_primary_10_3390_w15030556 crossref_primary_10_1038_s41396_020_0604_8 crossref_primary_10_1016_j_mib_2017_05_002 crossref_primary_10_3389_fmicb_2019_01593 crossref_primary_10_3389_fmicb_2022_1032918 crossref_primary_10_1111_1462_2920_16274 crossref_primary_10_1111_1462_2920_16395 crossref_primary_10_1038_ismej_2016_134 crossref_primary_10_1093_ismeco_ycaf150 crossref_primary_10_1038_s43705_023_00297_7 crossref_primary_10_3389_fmicb_2020_01494 crossref_primary_10_1016_j_pocean_2022_102900 crossref_primary_10_1038_nrmicro_2016_177 crossref_primary_10_1111_1462_2920_13890 crossref_primary_10_1007_s10750_023_05146_1 crossref_primary_10_1038_nrmicro_2016_176 crossref_primary_10_1146_annurev_virology_093020_015957 crossref_primary_10_3390_d14040237 crossref_primary_10_1038_s41564_018_0166_y crossref_primary_10_1186_s40168_024_01876_z crossref_primary_10_1038_s41522_024_00522_8 crossref_primary_10_3389_fmars_2022_846656 crossref_primary_10_3389_fmicb_2022_1026596 crossref_primary_10_1093_ve_vex011 crossref_primary_10_1016_j_rsma_2019_100589 crossref_primary_10_1038_nmicrobiol_2016_28 crossref_primary_10_1128_mSystems_00353_20 crossref_primary_10_7554_eLife_92345_3 crossref_primary_10_1128_MMBR_00193_20 crossref_primary_10_1111_1758_2229_12700 crossref_primary_10_1007_s00300_020_02700_8 crossref_primary_10_3389_fevo_2022_854228 crossref_primary_10_3389_fmicb_2020_524828 crossref_primary_10_1088_1478_3975_abde8d crossref_primary_10_3389_fmicb_2017_01199 crossref_primary_10_3390_microorganisms7090333 crossref_primary_10_1016_j_chom_2019_01_017 crossref_primary_10_1016_j_soilbio_2020_107767 crossref_primary_10_1016_j_virusres_2017_11_008 crossref_primary_10_1038_s41564_020_0725_x crossref_primary_10_7717_peerj_11111 crossref_primary_10_1016_j_jmarsys_2024_103963 crossref_primary_10_1038_s41467_018_07950_z crossref_primary_10_1186_s40168_017_0272_8 crossref_primary_10_1038_s41467_018_08286_4 crossref_primary_10_1007_s41745_023_00361_0 crossref_primary_10_1146_annurev_virology_100120_011239 crossref_primary_10_1002_ecy_2554 crossref_primary_10_7554_eLife_92345 crossref_primary_10_1128_jb_00428_24 crossref_primary_10_1186_s13059_024_03236_4 crossref_primary_10_5194_essd_13_1251_2021 crossref_primary_10_1111_1462_2920_14566 crossref_primary_10_3390_v9060152 crossref_primary_10_3389_fpubh_2022_858615 crossref_primary_10_3389_fcimb_2020_601573 crossref_primary_10_3389_fmicb_2019_00617 crossref_primary_10_1038_nature23295 crossref_primary_10_1038_s41396_017_0042_4 crossref_primary_10_1111_ele_13722 crossref_primary_10_1128_JB_00687_20 crossref_primary_10_1038_s41467_024_50635_z crossref_primary_10_1007_s11427_018_9414_7 crossref_primary_10_3389_fmicb_2020_573260 crossref_primary_10_1186_s40168_018_0422_7 crossref_primary_10_3389_fmicb_2022_877702 crossref_primary_10_1128_JB_00052_20 crossref_primary_10_1002_lno_11549 crossref_primary_10_1128_msystems_00568_24 crossref_primary_10_1038_s41579_019_0162_0 crossref_primary_10_1007_s10115_022_01730_4 crossref_primary_10_1038_s41579_019_0311_5 crossref_primary_10_1007_s10661_024_13176_y crossref_primary_10_3390_microorganisms11041054 crossref_primary_10_1073_pnas_2411074122 crossref_primary_10_3389_fmicb_2022_809989 crossref_primary_10_1080_10643389_2023_2223123 crossref_primary_10_1128_mbio_02409_25 crossref_primary_10_1093_nargab_lqae044 crossref_primary_10_1002_lno_10476 crossref_primary_10_1016_j_coviro_2019_05_013 crossref_primary_10_1038_s41579_022_00755_4 crossref_primary_10_3390_v14071448 crossref_primary_10_1093_ismejo_wraf066 crossref_primary_10_1186_s10152_017_0502_2 crossref_primary_10_1038_s41396_019_0565_y crossref_primary_10_3390_ijms24043937 crossref_primary_10_1016_j_tim_2020_01_010 crossref_primary_10_3390_microorganisms9061323 crossref_primary_10_1111_1462_2920_15640 crossref_primary_10_3390_w13202934 crossref_primary_10_1016_j_coviro_2019_05_008 crossref_primary_10_3389_fmicb_2019_01801 crossref_primary_10_1038_s41598_020_61691_y crossref_primary_10_1073_pnas_2010783117 crossref_primary_10_1093_femsec_fix119 crossref_primary_10_1016_j_tim_2021_07_004 crossref_primary_10_1038_s41396_020_00752_6 crossref_primary_10_3389_fmicb_2019_00167 crossref_primary_10_1007_s00248_017_1106_8 crossref_primary_10_3389_fmicb_2022_863686 crossref_primary_10_1038_ismej_2017_16 crossref_primary_10_1016_j_cell_2019_11_018 crossref_primary_10_3390_v10090496 crossref_primary_10_1093_femsec_fiaa187 crossref_primary_10_1111_1462_2920_13391 crossref_primary_10_1093_femsmc_xtae022 crossref_primary_10_1128_aem_01049_25 crossref_primary_10_1002_edn3_353 crossref_primary_10_1007_s10123_025_00677_0 crossref_primary_10_1186_s12859_017_1473_7 crossref_primary_10_3390_v17040513 crossref_primary_10_3389_fmicb_2023_1179414 crossref_primary_10_3390_microorganisms8091429 crossref_primary_10_1038_s41396_019_0580_z crossref_primary_10_1016_j_pocean_2018_12_017 crossref_primary_10_1016_j_watres_2022_118237 crossref_primary_10_1016_j_scitotenv_2021_147589 crossref_primary_10_1093_ve_veab070 crossref_primary_10_1111_ele_13122 crossref_primary_10_1016_j_microb_2024_100042 crossref_primary_10_1016_j_watbs_2022_100062 crossref_primary_10_1080_1040841X_2025_2493908 crossref_primary_10_1093_nar_gkx1264 crossref_primary_10_1002_lol2_10160 crossref_primary_10_1038_nmicrobiol_2017_64 crossref_primary_10_1038_s41396_023_01431_y crossref_primary_10_3389_fmicb_2023_1254535 crossref_primary_10_3390_v10090474 crossref_primary_10_7717_peerj_10049 crossref_primary_10_3390_microorganisms10040715 crossref_primary_10_1111_1758_2229_12773 crossref_primary_10_3390_v11111022 crossref_primary_10_1093_femsec_fiw238 crossref_primary_10_7717_peerj_10715 crossref_primary_10_1016_j_soilbio_2024_109401 crossref_primary_10_3390_jmse11030639 crossref_primary_10_1002_mbo3_1031 crossref_primary_10_3389_fmars_2016_00251 crossref_primary_10_1016_j_ecss_2021_107413 crossref_primary_10_1093_femsec_fiaa033 crossref_primary_10_3390_v12080881 crossref_primary_10_3389_fmicb_2020_00338 crossref_primary_10_3390_v9030043 crossref_primary_10_3389_fmicb_2019_00878 crossref_primary_10_1038_s41579_021_00602_y crossref_primary_10_3389_fmicb_2022_853973 crossref_primary_10_1186_s40793_022_00410_8 crossref_primary_10_1186_s12985_019_1120_1 crossref_primary_10_3389_fmicb_2020_00221 crossref_primary_10_3389_fmicb_2023_1337146 crossref_primary_10_1111_ejss_13531 crossref_primary_10_1038_s41467_024_52996_x crossref_primary_10_1002_imt2_59 crossref_primary_10_3390_jmse11020364 crossref_primary_10_1038_s41396_019_0397_9 crossref_primary_10_3390_ijms221910436 crossref_primary_10_3389_fmicb_2020_612053 crossref_primary_10_1002_lno_11711 crossref_primary_10_1186_s12859_019_3278_3 crossref_primary_10_3390_microorganisms8071077 crossref_primary_10_15212_ZOONOSES_2024_0041 crossref_primary_10_1016_j_mib_2017_04_010 crossref_primary_10_3389_fmicb_2022_938066 crossref_primary_10_3389_fmicb_2020_01210 crossref_primary_10_1007_s10750_020_04404_w crossref_primary_10_1007_s10750_016_3084_0 crossref_primary_10_1371_journal_pbio_1002503 crossref_primary_10_1093_ismeco_ycaf136 crossref_primary_10_3390_d14030230 crossref_primary_10_1371_journal_pbio_3001514 crossref_primary_10_1039_D2EW00755J crossref_primary_10_1186_s40793_024_00637_7 crossref_primary_10_1016_j_aquaculture_2022_738065 crossref_primary_10_1029_2023GB007912 crossref_primary_10_1038_ncomms15955 crossref_primary_10_1093_ismejo_wrad042 crossref_primary_10_1016_j_ecolmodel_2022_110183 crossref_primary_10_3390_v16060937 crossref_primary_10_1016_j_rsma_2024_103796 crossref_primary_10_3389_fmicb_2022_1011342 crossref_primary_10_1016_j_tim_2018_05_015 crossref_primary_10_1128_jvi_00275_23 crossref_primary_10_1371_journal_pone_0298139 crossref_primary_10_1007_s00705_018_3938_z crossref_primary_10_1111_1758_2229_12504 crossref_primary_10_1111_nph_18042 crossref_primary_10_1093_femsre_fux018 crossref_primary_10_1038_ismej_2017_194 crossref_primary_10_1016_j_apsoil_2021_104138 crossref_primary_10_1007_s00248_017_1038_3 crossref_primary_10_1016_j_watres_2019_01_003 |
| Cites_doi | 10.1038/ismej.2011.101 10.3354/ame031001 10.1038/340467a0 10.1002/lno.10113 10.1111/j.1365-2427.2008.01992.x 10.1111/j.1574-6941.2011.01251.x 10.4319/lo.1989.34.8.1545 10.1038/nature08060 10.1038/ismej.2011.214 10.1038/ismej.2008.31 10.1038/nrmicro3289 10.1073/pnas.0504062102 10.1111/j.1574-6976.2010.00258.x 10.1016/j.femsre.2003.08.001 10.3354/meps092099 10.4161/mge.20031 10.1002/1097-0320(20010701)44:3<236::AID-CYTO1116>3.0.CO;2-5 10.1038/nrmicro1750 10.4319/lo.2000.45.6.1320 10.1038/nature04160 10.1126/science.aac6284 10.3354/meps121217 10.1128/AEM.00267-11 10.1128/AEM.68.9.4307-4314.2002 10.1038/nrmicro1163 10.3354/ame01231 10.1371/journal.pbio.0040193 10.3354/ame013019 10.1029/2005GB002490 10.1038/nature12388 10.1038/nature07268 10.3354/ame01639 10.1038/nrmicro3404 10.1128/MMBR.64.1.69-114.2000 10.1038/ismej.2014.220 10.3354/meps089103 10.1073/pnas.0602399103 10.1007/978-3-642-79923-5_14 10.4319/lo.2013.58.2.0465 10.1016/j.tim.2012.11.003 10.1038/ismej.2015.125 10.3410/B4-17 |
| ContentType | Journal Article |
| Copyright | Macmillan Publishers Limited 2016 Copyright Nature Publishing Group Mar 2016 |
| Copyright_xml | – notice: Macmillan Publishers Limited 2016 – notice: Copyright Nature Publishing Group Mar 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1038/nmicrobiol.2015.24 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Proquest SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2058-5276 |
| ExternalDocumentID | 27572161 10_1038_nmicrobiol_2015_24 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA AFFHD ATHPR CITATION PHGZM PHGZT PQGLB CGR CUY CVF ECM EIF NPM AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c485t-f7a396b2e79a56d9e7ff6161b276d230cb18d3cc356e6ee8c9b09e5fbf4d6513 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 232 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383604600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2058-5276 |
| IngestDate | Sun Nov 09 12:25:01 EST 2025 Wed Jul 16 16:30:48 EDT 2025 Thu Apr 03 07:08:45 EDT 2025 Sat Nov 29 02:07:56 EST 2025 Tue Nov 18 20:58:50 EST 2025 Fri Feb 21 02:38:23 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-f7a396b2e79a56d9e7ff6161b276d230cb18d3cc356e6ee8c9b09e5fbf4d6513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2361-1985 0000-0002-0372-0033 0000-0002-3433-8312 |
| OpenAccessLink | https://www.nature.com/articles/nmicrobiol201524.pdf |
| PMID | 27572161 |
| PQID | 2215524259 |
| PQPubID | 2069616 |
| ParticipantIDs | proquest_miscellaneous_1815683057 proquest_journals_2215524259 pubmed_primary_27572161 crossref_citationtrail_10_1038_nmicrobiol_2015_24 crossref_primary_10_1038_nmicrobiol_2015_24 springer_journals_10_1038_nmicrobiol_2015_24 |
| PublicationCentury | 2000 |
| PublicationDate | 20160125 |
| PublicationDateYYYYMMDD | 2016-01-25 |
| PublicationDate_xml | – month: 1 year: 2016 text: 20160125 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature microbiology |
| PublicationTitleAbbrev | Nat Microbiol |
| PublicationTitleAlternate | Nat Microbiol |
| PublicationYear | 2016 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Maranger, Bird (CR12) 1995; 1210 Wommack, Colwell (CR13) 2000; 64 Brussaard (CR3) 2008; 20 Mojica (CR15) 2015; 60 Weitz, Hartman, Levin (CR7) 2005; 102 Giovannoni, Tempterton, Zhao (CR40) 2013; 499 Weitz (CR18) 2013; 21 CR17 Weinbauer (CR14) 2004; 28 Hatton (CR44) 2015; 349 Danovaro (CR34) 2008; 454 Danovaro (CR19) 2011; 35 Brum, Sullivan (CR35) 2015; 130 Payet, Suttle (CR9) 2013; 58 Strzepek, Maldonado, Higgins, Hall, Safi, Wilhelm, Boyd (CR28) 2005; 19 Thingstad (CR1) 2000; 45 Avrani, Schwartz, Lindell (CR8) 2012; 2 Suttle (CR33) 2007; 5 Murray, Jackson (CR10) 1992; 89 Fuhrman (CR22) 2006; 103 Carreira, Larsen, Glud, Brussaard, Middelboe (CR41) 2013; 69 Williamson, Houchin, McDaniel, Paul (CR43) 2002; 68 Bergh, Borhseim, Bratbak, Heldal (CR11) 1989; 340 CR27 Yang, Yokokawa, Motegi, Nagata (CR25) 2013; 710 Wilhelm (CR31) 2003; 310 Thingstad, Lignell (CR39) 1997; 13 Weitz, Wilhelm (CR5) 2012; 4 Jover, Effler, Buchan, Wilhelm, Weitz (CR6) 2014; 12 De Paepe, Taddei (CR38) 2006; 4 Rowe (CR30) 2008; 520 Edwards, Rohwer (CR16) 2005; 3 Wang, Eric Wommack, Chen (CR32) 2011; 770 Suttle, Chan (CR37) 1993; 92 Rohwer, Thurber (CR4) 2009; 459 Morel, Berthon (CR20) 1989; 340 Weitz (CR36) 2015; 90 Parsons, Breitbart, Lomas, Carlson (CR21) 2011; 6 De Corte, Sintes, Yokokawa, Reinthaler, Herndl (CR23) 2012; 60 Suttle (CR2) 2005; 437 Li, Dickie (CR24) 2001; 440 Clasen, Brigden, Payet, Suttle (CR26) 2008; 53 Matteson (CR29) 2012; 79 Bratbak, Heldal, Joint (CR42) 1995 AR Matteson (BFnmicrobiol201524_CR29) 2012; 79 RJ Parsons (BFnmicrobiol201524_CR21) 2011; 6 BFnmicrobiol201524_CR17 WKW Li (BFnmicrobiol201524_CR24) 2001; 440 MG Weinbauer (BFnmicrobiol201524_CR14) 2004; 28 JS Weitz (BFnmicrobiol201524_CR18) 2013; 21 S Giovannoni (BFnmicrobiol201524_CR40) 2013; 499 JM Rowe (BFnmicrobiol201524_CR30) 2008; 520 CA Suttle (BFnmicrobiol201524_CR37) 1993; 92 F Rohwer (BFnmicrobiol201524_CR4) 2009; 459 JA Fuhrman (BFnmicrobiol201524_CR22) 2006; 103 SW Wilhelm (BFnmicrobiol201524_CR31) 2003; 310 JS Weitz (BFnmicrobiol201524_CR7) 2005; 102 LF Jover (BFnmicrobiol201524_CR6) 2014; 12 JL Clasen (BFnmicrobiol201524_CR26) 2008; 53 AG Murray (BFnmicrobiol201524_CR10) 1992; 89 D De Corte (BFnmicrobiol201524_CR23) 2012; 60 IA Hatton (BFnmicrobiol201524_CR44) 2015; 349 CPD Brussaard (BFnmicrobiol201524_CR3) 2008; 20 S Avrani (BFnmicrobiol201524_CR8) 2012; 2 O Bergh (BFnmicrobiol201524_CR11) 1989; 340 R Danovaro (BFnmicrobiol201524_CR34) 2008; 454 R Danovaro (BFnmicrobiol201524_CR19) 2011; 35 R. F. Strzepek (BFnmicrobiol201524_CR28) 2005; 19 K Wang (BFnmicrobiol201524_CR32) 2011; 770 CA Suttle (BFnmicrobiol201524_CR2) 2005; 437 RA Edwards (BFnmicrobiol201524_CR16) 2005; 3 JR Brum (BFnmicrobiol201524_CR35) 2015; 130 CA Suttle (BFnmicrobiol201524_CR33) 2007; 5 M De Paepe (BFnmicrobiol201524_CR38) 2006; 4 BFnmicrobiol201524_CR27 JP Payet (BFnmicrobiol201524_CR9) 2013; 58 G Bratbak (BFnmicrobiol201524_CR42) 1995 KE Wommack (BFnmicrobiol201524_CR13) 2000; 64 TF Thingstad (BFnmicrobiol201524_CR1) 2000; 45 C Carreira (BFnmicrobiol201524_CR41) 2013; 69 SJ Williamson (BFnmicrobiol201524_CR43) 2002; 68 Y Yang (BFnmicrobiol201524_CR25) 2013; 710 JS Weitz (BFnmicrobiol201524_CR36) 2015; 90 TF Thingstad (BFnmicrobiol201524_CR39) 1997; 13 JS Weitz (BFnmicrobiol201524_CR5) 2012; 4 R Maranger (BFnmicrobiol201524_CR12) 1995; 1210 KDA Mojica (BFnmicrobiol201524_CR15) 2015; 60 A Morel (BFnmicrobiol201524_CR20) 1989; 340 28974689 - Nat Microbiol. 2017 Nov;2(11):1571 |
| References_xml | – volume: 6 start-page: 273 year: 2011 end-page: 284 ident: CR21 article-title: Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea publication-title: ISME J. doi: 10.1038/ismej.2011.101 – volume: 310 start-page: 1 year: 2003 end-page: 8 ident: CR31 article-title: UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame031001 – volume: 340 start-page: 467 year: 1989 end-page: 468 ident: CR11 article-title: High abundance of viruses found in aquatic environments publication-title: Nature doi: 10.1038/340467a0 – volume: 60 start-page: 1498 year: 2015 end-page: 1521 ident: CR15 article-title: Phytoplankton community structure in relation to vertical stratification along a north–south gradient in the Northeast Atlantic Ocean publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10113 – volume: 53 start-page: 1090 year: 2008 end-page: 1100 ident: CR26 article-title: Evidence that viral abundance across oceans and lakes is driven by different biological factors publication-title: Freshwater Biol. doi: 10.1111/j.1365-2427.2008.01992.x – volume: 79 start-page: 709 year: 2012 end-page: 719 ident: CR29 article-title: Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near New Zealand publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01251.x – volume: 340 start-page: 1545 year: 1989 end-page: 1562 ident: CR20 article-title: Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1989.34.8.1545 – volume: 459 start-page: 207 year: 2009 end-page: 212 ident: CR4 article-title: Viruses manipulate the marine environment publication-title: Nature doi: 10.1038/nature08060 – volume: 60 start-page: 1566 year: 2012 end-page: 1577 ident: CR23 article-title: Links between viruses and prokaryotes throughout the water column along a north Atlantic latitudinal transect publication-title: ISME J. doi: 10.1038/ismej.2011.214 – volume: 20 start-page: 575 year: 2008 end-page: 578 ident: CR3 article-title: Global-scale processes with a nanoscale drive: the role of marine viruses publication-title: ISME J. doi: 10.1038/ismej.2008.31 – volume: 12 start-page: 519 year: 2014 end-page: 528 ident: CR6 article-title: The elemental composition of virus particles: implications for marine biogeochemical cycles publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro3289 – volume: 102 start-page: 9535 year: 2005 end-page: 9540 ident: CR7 article-title: Coevolutionary arms races between bacteria and bacteriophage publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0504062102 – volume: 35 start-page: 993 year: 2011 end-page: 1034 ident: CR19 article-title: Marine viruses and global climate change publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2010.00258.x – volume: 28 start-page: 127 year: 2004 end-page: 181 ident: CR14 article-title: Ecology of prokaryotic viruses publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2003.08.001 – ident: CR27 – volume: 92 start-page: 99 year: 1993 end-page: 109 ident: CR37 article-title: Marine cyanophages infecting oceanic and coastal strains of : abundance, morphology, cross-infectivity and growth characteristics publication-title: Marine Ecol. Progr. Ser. doi: 10.3354/meps092099 – volume: 2 start-page: 88 year: 2012 end-page: 95 ident: CR8 article-title: Virus-host swinging party in the oceans: incorporating biological complexity into paradigms of antagonistic coexistence publication-title: Mobile Genet. Elements doi: 10.4161/mge.20031 – volume: 440 start-page: 236 year: 2001 end-page: 246 ident: CR24 article-title: Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry publication-title: Cytometry doi: 10.1002/1097-0320(20010701)44:3<236::AID-CYTO1116>3.0.CO;2-5 – volume: 5 start-page: 801 year: 2007 end-page: 812 ident: CR33 article-title: Marine viruses—major players in the global ecosystem publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro1750 – volume: 45 start-page: 1320 year: 2000 end-page: 1328 ident: CR1 article-title: Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2000.45.6.1320 – volume: 437 start-page: 356 year: 2005 end-page: 361 ident: CR2 article-title: Viruses in the sea publication-title: Nature doi: 10.1038/nature04160 – volume: 349 start-page: aac6284 year: 2015 ident: CR44 article-title: The predator–prey power law: biomass scaling across terrestrial and aquatic biomes publication-title: Science doi: 10.1126/science.aac6284 – volume: 1210 start-page: 217 year: 1995 end-page: 226 ident: CR12 article-title: Viral abundance in aquatic systems—a comparison between marine and fresh-waters publication-title: Marine Ecol. Progr. Ser. doi: 10.3354/meps121217 – volume: 770 start-page: 7459 year: 2011 end-page: 7468 ident: CR32 article-title: Abundance and distribution of spp. and cyanophages in the Chesapeake Bay publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00267-11 – volume: 68 start-page: 4307 year: 2002 end-page: 4314 ident: CR43 article-title: Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.9.4307-4314.2002 – volume: 3 start-page: 504 year: 2005 end-page: 510 ident: CR16 article-title: Viral metagenomics publication-title: Nature Rev. Microbiol doi: 10.1038/nrmicro1163 – volume: 520 start-page: 233 year: 2008 end-page: 244 ident: CR30 article-title: Constraints on viral production in the Sargasso Sea and North Atlantic publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame01231 – volume: 4 start-page: e193 year: 2006 ident: CR38 article-title: Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040193 – volume: 13 start-page: 19 year: 1997 end-page: 27 ident: CR39 article-title: Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame013019 – ident: CR17 – volume: 19 start-page: n/a-n/a issue: 4 year: 2005 ident: CR28 article-title: Spinning the “Ferrous Wheel”: The importance of the microbial community in an iron budget during the FeCycle experiment publication-title: Global Biogeochemical Cycles doi: 10.1029/2005GB002490 – volume: 499 start-page: E4 year: 2013 end-page: E5 ident: CR40 publication-title: Nature doi: 10.1038/nature12388 – volume: 454 start-page: 1084 year: 2008 end-page: 1U27 ident: CR34 article-title: Major viral impact on the functioning of benthic deep-sea ecosystems publication-title: Nature doi: 10.1038/nature07268 – volume: 69 start-page: 183 year: 2013 end-page: 192 ident: CR41 article-title: Heterogeneous distribution of prokaryotes and viruses at the microscale in a tidal sediment publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame01639 – volume: 130 start-page: 147 year: 2015 end-page: 159 ident: CR35 article-title: Rising to the challenge: accelerated pace of discovery transforms marine virology publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro3404 – volume: 64 start-page: 69 year: 2000 end-page: 114 ident: CR13 article-title: Virioplankton: viruses in aquatic ecosystems publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.64.1.69-114.2000 – volume: 90 start-page: 1352 year: 2015 end-page: 1364 ident: CR36 article-title: A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes publication-title: ISME J. doi: 10.1038/ismej.2014.220 – volume: 89 start-page: 103 year: 1992 end-page: 116 ident: CR10 article-title: Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles publication-title: Marine Ecol. Progr. Ser. doi: 10.3354/meps089103 – volume: 103 start-page: 13104 year: 2006 end-page: 13109 ident: CR22 article-title: Annually reoccurring bacterial communities are predictable from ocean conditions publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0602399103 – start-page: 249 year: 1995 end-page: 264 ident: CR42 publication-title: Molecular Ecology of Aquatic Microbes doi: 10.1007/978-3-642-79923-5_14 – volume: 4 start-page: 17 year: 2012 ident: CR5 article-title: Ocean viruses and their effects on microbial communities and biogeochemical cycles publication-title: F1000 Biol. Reports – volume: 58 start-page: 465 year: 2013 end-page: 474 ident: CR9 article-title: To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2013.58.2.0465 – volume: 21 start-page: 82 year: 2013 end-page: 91 ident: CR18 article-title: Phage–bacteria infection networks publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.11.003 – volume: 710 start-page: 193 year: 2013 end-page: 202 ident: CR25 article-title: Large-scale distribution of viruses in deep waters of the pacific and southern oceans publication-title: Aquatic Microbial Ecol. – volume: 68 start-page: 4307 year: 2002 ident: BFnmicrobiol201524_CR43 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.9.4307-4314.2002 – volume: 12 start-page: 519 year: 2014 ident: BFnmicrobiol201524_CR6 publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro3289 – volume: 5 start-page: 801 year: 2007 ident: BFnmicrobiol201524_CR33 publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro1750 – volume: 90 start-page: 1352 year: 2015 ident: BFnmicrobiol201524_CR36 publication-title: ISME J. doi: 10.1038/ismej.2014.220 – volume: 92 start-page: 99 year: 1993 ident: BFnmicrobiol201524_CR37 publication-title: Marine Ecol. Progr. Ser. doi: 10.3354/meps092099 – volume: 53 start-page: 1090 year: 2008 ident: BFnmicrobiol201524_CR26 publication-title: Freshwater Biol. doi: 10.1111/j.1365-2427.2008.01992.x – volume: 64 start-page: 69 year: 2000 ident: BFnmicrobiol201524_CR13 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.64.1.69-114.2000 – volume: 103 start-page: 13104 year: 2006 ident: BFnmicrobiol201524_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0602399103 – volume: 79 start-page: 709 year: 2012 ident: BFnmicrobiol201524_CR29 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01251.x – volume: 437 start-page: 356 year: 2005 ident: BFnmicrobiol201524_CR2 publication-title: Nature doi: 10.1038/nature04160 – volume: 102 start-page: 9535 year: 2005 ident: BFnmicrobiol201524_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0504062102 – volume: 60 start-page: 1498 year: 2015 ident: BFnmicrobiol201524_CR15 publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10113 – volume: 6 start-page: 273 year: 2011 ident: BFnmicrobiol201524_CR21 publication-title: ISME J. doi: 10.1038/ismej.2011.101 – ident: BFnmicrobiol201524_CR27 – volume: 454 start-page: 1084 year: 2008 ident: BFnmicrobiol201524_CR34 publication-title: Nature doi: 10.1038/nature07268 – volume: 60 start-page: 1566 year: 2012 ident: BFnmicrobiol201524_CR23 publication-title: ISME J. doi: 10.1038/ismej.2011.214 – volume: 69 start-page: 183 year: 2013 ident: BFnmicrobiol201524_CR41 publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame01639 – ident: BFnmicrobiol201524_CR17 doi: 10.1038/ismej.2015.125 – volume: 21 start-page: 82 year: 2013 ident: BFnmicrobiol201524_CR18 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.11.003 – volume: 58 start-page: 465 year: 2013 ident: BFnmicrobiol201524_CR9 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2013.58.2.0465 – volume: 499 start-page: E4 year: 2013 ident: BFnmicrobiol201524_CR40 publication-title: Nature doi: 10.1038/nature12388 – volume: 770 start-page: 7459 year: 2011 ident: BFnmicrobiol201524_CR32 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00267-11 – volume: 45 start-page: 1320 year: 2000 ident: BFnmicrobiol201524_CR1 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2000.45.6.1320 – volume: 2 start-page: 88 year: 2012 ident: BFnmicrobiol201524_CR8 publication-title: Mobile Genet. Elements doi: 10.4161/mge.20031 – volume: 89 start-page: 103 year: 1992 ident: BFnmicrobiol201524_CR10 publication-title: Marine Ecol. Progr. Ser. doi: 10.3354/meps089103 – volume: 340 start-page: 467 year: 1989 ident: BFnmicrobiol201524_CR11 publication-title: Nature doi: 10.1038/340467a0 – volume: 520 start-page: 233 year: 2008 ident: BFnmicrobiol201524_CR30 publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame01231 – start-page: 249 volume-title: Molecular Ecology of Aquatic Microbes year: 1995 ident: BFnmicrobiol201524_CR42 doi: 10.1007/978-3-642-79923-5_14 – volume: 440 start-page: 236 year: 2001 ident: BFnmicrobiol201524_CR24 publication-title: Cytometry doi: 10.1002/1097-0320(20010701)44:3<236::AID-CYTO1116>3.0.CO;2-5 – volume: 349 start-page: aac6284 year: 2015 ident: BFnmicrobiol201524_CR44 publication-title: Science doi: 10.1126/science.aac6284 – volume: 1210 start-page: 217 year: 1995 ident: BFnmicrobiol201524_CR12 publication-title: Marine Ecol. Progr. Ser. doi: 10.3354/meps121217 – volume: 340 start-page: 1545 year: 1989 ident: BFnmicrobiol201524_CR20 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1989.34.8.1545 – volume: 4 start-page: 17 year: 2012 ident: BFnmicrobiol201524_CR5 publication-title: F1000 Biol. Reports doi: 10.3410/B4-17 – volume: 35 start-page: 993 year: 2011 ident: BFnmicrobiol201524_CR19 publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2010.00258.x – volume: 4 start-page: e193 year: 2006 ident: BFnmicrobiol201524_CR38 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040193 – volume: 710 start-page: 193 year: 2013 ident: BFnmicrobiol201524_CR25 publication-title: Aquatic Microbial Ecol. – volume: 13 start-page: 19 year: 1997 ident: BFnmicrobiol201524_CR39 publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame013019 – volume: 20 start-page: 575 year: 2008 ident: BFnmicrobiol201524_CR3 publication-title: ISME J. doi: 10.1038/ismej.2008.31 – volume: 28 start-page: 127 year: 2004 ident: BFnmicrobiol201524_CR14 publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2003.08.001 – volume: 3 start-page: 504 year: 2005 ident: BFnmicrobiol201524_CR16 publication-title: Nature Rev. Microbiol doi: 10.1038/nrmicro1163 – volume: 130 start-page: 147 year: 2015 ident: BFnmicrobiol201524_CR35 publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro3404 – volume: 459 start-page: 207 year: 2009 ident: BFnmicrobiol201524_CR4 publication-title: Nature doi: 10.1038/nature08060 – volume: 310 start-page: 1 year: 2003 ident: BFnmicrobiol201524_CR31 publication-title: Aquatic Microbial Ecol. doi: 10.3354/ame031001 – volume: 19 start-page: n/a-n/a issue: 4 year: 2005 ident: BFnmicrobiol201524_CR28 publication-title: Global Biogeochemical Cycles doi: 10.1029/2005GB002490 – reference: 28974689 - Nat Microbiol. 2017 Nov;2(11):1571 |
| SSID | ssj0001626686 |
| Score | 2.4557226 |
| Snippet | Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 15024 |
| SubjectTerms | 631/114/2397 631/326/1321 631/326/171 631/326/171/1878 Aquatic Organisms - growth & development Cell density Infectious Diseases Life Sciences Medical Microbiology Microbiology Oceans Oceans and Seas Parasitology Population Density Scaling Seawater - microbiology Seawater - virology Spatio-Temporal Analysis Virology Viruses Viruses - growth & development |
| Title | Re-examination of the relationship between marine virus and microbial cell abundances |
| URI | https://link.springer.com/article/10.1038/nmicrobiol.2015.24 https://www.ncbi.nlm.nih.gov/pubmed/27572161 https://www.proquest.com/docview/2215524259 https://www.proquest.com/docview/1815683057 |
| Volume | 1 |
| WOSCitedRecordID | wos000383604600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2058-5276 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001626686 issn: 2058-5276 databaseCode: M7P dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2058-5276 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001626686 issn: 2058-5276 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuyBx4f0ILJWRuIHZxo5fJwRoVxxQVa0WqbfIr4hKbFqadgX_Hk_qtEIr9sI5ju14xp7JzOdvAN4g_0lQ3NFk_SpaOSMo0m7R6LRzVVPFceh5Zr-qyUTPZmaaA25dhlUOZ2J_UIeFxxj5CWNIFpY0zHxY_qRYNQqzq7mExgEcIUsC76F7032MJXnrUst8V2bM9Ul7Oc_8RojqEu9Z9bc9uuZkXkuQ9nbn7P7_zvgB3MseJ_m4VZGHcCu2j-DOtgbl78fw7TzS-MsiIgZlRBYNST4hWQ0gue_zJclgLnJp8a4guZqvNh2xbSD5O1P3mAAg1uG9EgRmP4GLs9OLz19orrVAfaXFmjbKciMdi8pYIYOJqmlk8gYdUzKk3xTvSh2491zIKGPU3rixiaJBnJ8UJX8Kh-2ijc-B2ORQmuTXKR9UFcZeJ3PYBKYbJHbnwRZQDgte-8xDjuUwftR9Ppzrei-kGoVUs6qAt7t3llsWjhtbHw8CqfOO7Oq9NAp4vXuc9hKuj23jYtPVJVLn6HQCqgKebeW_G44pgTxHZQHvBoXYd_7vuby4eS4v4W5q2Md0mDiGw_VqE1_BbX-1nnerERyomR7B0afTyfR81Ov2H5cGA5c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3oVAASPBCUw3TvzIASEEVK26rCq0SL1ZfkWsRLPLZrfQH8V_xJPHrlBFbz1wTuw4nvHMZ8_4G4AXyH_iZWZp9H45zW3BKdJu0WCVtXmZh4FveGaHcjRSx8fF0Qb87u_CYFplbxMbQ-2nDs_IdxlDsrCoYcW72Q-KVaMwutqX0GjV4jCc_Yxbtvrtwcco35eM7X0af9inXVUB6nLFF7SUJiuEZUEWhgtfBFmWIuIey6TwEZA7myqfOZdxEUQIyhV2UAReYkab4GkWu70CVyOKYKrJFDxaH-nEzYFQoruaM8jUbnUy6eiUMImMv2H53-7vHKY9F49t3Nzerf9sgm7DzQ5Pk_ftArgDG6G6C9fbCptn9-Drl0DDL4P5PqiBZFqSiHjJvE8B_DaZkS5VjZwYvAlJTifzZU1M5Uk3rbF7DG8QY_HWDKad34fxZfzSNmxW0yo8BGIiXC4iapXOy9wPnIrOvvRMlUhbn3mTQNrLV7uOZR2LfXzXTbQ_U3qtExp1QrM8gVerNrOWY-TCt3d6-evO3tR6LfwEnq8eR0uB82OqMF3WOkViIBXtu0zgQatuq88xyZHFKU3gda9_687_PZZHF4_lGWztjz8P9fBgdPgYbsRGzekV4zuwuZgvwxO45k4Xk3r-tFlIBPQl6-UfLlZekw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Re-examination+of+the+relationship+between+marine+virus+and+microbial+cell+abundances&rft.jtitle=Nature+microbiology&rft.au=Wigington%2C+Charles+H&rft.au=Sonderegger%2C+Derek&rft.au=Brussaard%2C+Corina+P+D&rft.au=Buchan%2C+Alison&rft.date=2016-01-25&rft.eissn=2058-5276&rft.volume=1&rft.spage=15024&rft_id=info:doi/10.1038%2Fnmicrobiol.2015.24&rft_id=info%3Apmid%2F27572161&rft.externalDocID=27572161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |