Variational quantum algorithm for ergotropy estimation in quantum many-body batteries
Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of quantum technologies. Of particular interest is the role of correlations in many-body quantum batteries and how these can affect the maximal w...
Uloženo v:
| Vydáno v: | Physical review research Ročník 6; číslo 1; s. 013038 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
American Physical Society
11.01.2024
|
| ISSN: | 2643-1564, 2643-1564 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of quantum technologies. Of particular interest is the role of correlations in many-body quantum batteries and how these can affect the maximal work extraction, quantified by the ergotropy. In this paper we simulate the charging process and work extraction of many-body quantum batteries on noisy intermediate-scale quantum devices and devise the variational quantum ergotropy (VQErgo) algorithm, which finds the optimal unitary operation that maximizes work extraction from the battery. We test VQErgo by calculating the ergotropy of a many-body quantum battery undergoing transverse field Ising dynamics following a sudden quench. We investigate the battery for different system sizes and charging times and analyze the minimum number of ansatz circuit repetitions needed for the variational optimization using both ideal and noisy simulators. We also discuss how the growth of long-range correlations can hamper the accuracy of VQErgo in larger systems, requiring increased repetitions of the ansatz circuit to reduce error. Finally, we optimize part of the VQErgo algorithm and calculate the ergotropy on one of IBM's quantum devices. |
|---|---|
| AbstractList | Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of quantum technologies. Of particular interest is the role of correlations in many-body quantum batteries and how these can affect the maximal work extraction, quantified by the ergotropy. In this paper we simulate the charging process and work extraction of many-body quantum batteries on noisy intermediate-scale quantum devices and devise the variational quantum ergotropy (VQErgo) algorithm, which finds the optimal unitary operation that maximizes work extraction from the battery. We test VQErgo by calculating the ergotropy of a many-body quantum battery undergoing transverse field Ising dynamics following a sudden quench. We investigate the battery for different system sizes and charging times and analyze the minimum number of ansatz circuit repetitions needed for the variational optimization using both ideal and noisy simulators. We also discuss how the growth of long-range correlations can hamper the accuracy of VQErgo in larger systems, requiring increased repetitions of the ansatz circuit to reduce error. Finally, we optimize part of the VQErgo algorithm and calculate the ergotropy on one of IBM's quantum devices. |
| ArticleNumber | 013038 |
| Author | Fogarty, Thomás Metz, Friederike Hoang, Duc Tuan Busch, Thomas Thomasen, Andreas Anh-Tai, Tran Duong |
| Author_xml | – sequence: 1 givenname: Duc Tuan orcidid: 0000-0002-8976-7157 surname: Hoang fullname: Hoang, Duc Tuan – sequence: 2 givenname: Friederike orcidid: 0000-0002-4745-7329 surname: Metz fullname: Metz, Friederike – sequence: 3 givenname: Andreas orcidid: 0000-0001-7111-3836 surname: Thomasen fullname: Thomasen, Andreas – sequence: 4 givenname: Tran Duong orcidid: 0000-0003-1704-2621 surname: Anh-Tai fullname: Anh-Tai, Tran Duong – sequence: 5 givenname: Thomas orcidid: 0000-0003-0535-2833 surname: Busch fullname: Busch, Thomas – sequence: 6 givenname: Thomás orcidid: 0000-0003-4940-5861 surname: Fogarty fullname: Fogarty, Thomás |
| BookMark | eNqFkNtKAzEQhoNUsB7eYV9ga7I5bPZGEPEEgiLqbZhkZ9vIdqNJKuzbW1sV6Y1XMwz_fPPPf0gmQxiQkILRGWOUnz4sxvSIH4-YEKJbzNSMMk653iPTSgleMqnE5E9_QE5SeqWUVpIxoeWUPL9A9JB9GKAv3lcw5NWygH4eos-LZdGFWGCchxzD21hgyn65ERd--FUvYRhLG9qxsJAzRo_pmOx30Cc8-a5H5Onq8unipry7v769OL8r3fp4LrtaMdASlLSOVki5c7LWlWWyRac6ITuHlavBdRUKRjUVrVVtUwkKFecNPyK3W2wb4NW8xbW5OJoA3mwGIc4NxOxdj0bThlquJbZOC5S2qYFZi9A0oISs3Zp1tmW5GFKK2Bnn8-bXHMH3hlHzFbnZidwos418DdA7gB9D_65-AlfLkSc |
| CitedBy_id | crossref_primary_10_1088_1402_4896_ad95c5 crossref_primary_10_1103_5x8m_bhgd crossref_primary_10_1109_TIFS_2025_3583901 crossref_primary_10_1088_2058_9565_ad8a85 crossref_primary_10_1103_PhysRevA_111_052216 crossref_primary_10_1088_2058_9565_ad80be |
| Cites_doi | 10.1038/nphys3029 10.22331/q-2019-07-01-156 10.21468/SciPostPhys.2.1.003 10.1103/RevModPhys.94.015004 10.3390/batteries8050043 10.1021/acs.jctc.2c01176 10.1103/PhysRevA.100.032328 10.1038/s41586-023-06096-3 10.1038/s41534-019-0213-4 10.1021/acs.jctc.1c00877 10.1088/2058-9565/ac8444 10.1103/PhysRevResearch.4.043150 10.1103/PhysRevResearch.4.023219 10.7566/JPSJ.90.032001 10.1103/PhysRevE.99.052106 10.1103/PhysRevLett.119.180509 10.22331/q-2021-07-28-512 10.1038/s41467-017-02370-x 10.1038/s41467-021-21728-w 10.1103/PhysRevA.104.042418 10.1103/PhysRevX.7.021050 10.22331/q-2021-06-04-466 10.1088/1751-8113/49/14/143001 10.1103/PhysRevResearch.5.023078 10.1103/PhysRevA.99.032331 10.1103/PhysRevA.106.012612 10.1103/PhysRevLett.112.030602 10.1103/PhysRevLett.131.040601 10.1038/s41586-023-06195-1 10.1007/s11467-021-1130-5 10.1103/PRXQuantum.4.040303 10.1038/s41586-023-06095-4 10.1038/nature24622 10.1103/PhysRevA.106.022618 10.22331/q-2023-07-10-1049 10.1038/s41567-019-0648-8 10.1103/PRXQuantum.3.010346 10.22331/q-2023-07-13-1060 10.1021/acs.chemrev.9b00829 10.1103/PhysRevLett.111.240401 10.1038/s41586-019-1666-5 10.1103/PhysRevB.105.115405 10.1103/PhysRevE.105.044125 10.1146/annurev-physchem-040513-103724 10.1103/PhysRevLett.121.120602 10.1038/s41524-020-00353-z 10.1088/1367-2630/ac43ed 10.1088/1367-2630/18/2/023023 10.1038/s41534-020-00302-0 10.1103/PRXQuantum.3.020365 10.1116/5.0083192 10.1103/PhysRevA.107.023725 10.1038/s41467-017-01991-6 10.1103/PhysRevA.107.042419 10.22331/q-2019-10-07-191 10.1103/PhysRevA.99.062304 10.1103/PhysRevResearch.5.013155 10.1080/00107514.2019.1631555 10.1103/PhysRevB.99.205437 10.1103/PhysRevA.106.032212 10.1103/PhysRevX.7.031044 10.1103/RevModPhys.95.045005 10.1103/PhysRevB.98.205423 10.22331/q-2022-10-17-841 10.1103/PhysRevB.100.115142 10.1103/PhysRevLett.128.140501 10.1103/PRXQuantum.2.030353 10.1038/nature18274 10.1103/PhysRevLett.120.117702 10.1103/PhysRevA.106.032410 10.1038/s41467-018-07090-4 10.1103/PhysRevLett.129.070601 10.22331/q-2018-08-06-79 10.1103/PhysRevLett.130.210401 10.1038/s42254-021-00348-9 10.1103/PhysRevResearch.4.013173 10.1103/PhysRevLett.122.047702 10.22331/q-2022-07-07-759 10.1103/PhysRevA.101.032115 10.1103/PhysRevA.98.032309 10.1103/PhysRevE.87.042123 10.1109/9.119632 10.1103/PhysRevResearch.1.033062 10.1103/PRXQuantum.3.010345 10.1209/epl/i2004-10101-2 10.1103/PhysRevA.93.052119 10.21468/SciPostPhys.14.3.055 10.1038/ncomms5213 10.1116/5.0091121 10.1038/nature23879 10.1038/s41586-019-1040-7 10.1103/PhysRevLett.123.080602 10.1103/PhysRevA.97.022106 10.1038/s41534-022-00611-6 10.1103/PhysRevResearch.2.033421 10.1103/PhysRevA.106.062609 10.1038/s43588-022-00391-1 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1103/PhysRevResearch.6.013038 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2643-1564 |
| ExternalDocumentID | oai_doaj_org_article_8090b385edc84e5b97a1bbea99a6457c 10_1103_PhysRevResearch_6_013038 |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
| ID | FETCH-LOGICAL-c485t-f761a85a65bc02e03cc5782b15dec6f45fce2c7acf2e410804db6d9240a23393 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001147471000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2643-1564 |
| IngestDate | Fri Oct 03 12:51:57 EDT 2025 Tue Nov 18 22:06:17 EST 2025 Sat Nov 29 03:21:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-f761a85a65bc02e03cc5782b15dec6f45fce2c7acf2e410804db6d9240a23393 |
| ORCID | 0000-0001-7111-3836 0000-0003-1704-2621 0000-0002-4745-7329 0000-0003-4940-5861 0000-0002-8976-7157 0000-0003-0535-2833 |
| OpenAccessLink | https://doaj.org/article/8090b385edc84e5b97a1bbea99a6457c |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8090b385edc84e5b97a1bbea99a6457c crossref_citationtrail_10_1103_PhysRevResearch_6_013038 crossref_primary_10_1103_PhysRevResearch_6_013038 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-11 |
| PublicationDateYYYYMMDD | 2024-01-11 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Physical review research |
| PublicationYear | 2024 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevResearch.6.013038Cc51R1 PhysRevResearch.6.013038Cc74R1 PhysRevResearch.6.013038Cc97R1 PhysRevResearch.6.013038Cc2R1 PhysRevResearch.6.013038Cc55R1 PhysRevResearch.6.013038Cc78R1 PhysRevResearch.6.013038Cc13R1 PhysRevResearch.6.013038Cc36R1 PhysRevResearch.6.013038Cc32R1 PhysRevResearch.6.013038Cc70R1 PhysRevResearch.6.013038Cc93R1 PhysRevResearch.6.013038Cc6R1 PhysRevResearch.6.013038Cc29R1 PhysRevResearch.6.013038Cc62R1 PhysRevResearch.6.013038Cc85R1 M. A. Nielsen (PhysRevResearch.6.013038Cc37R1) 2002 PhysRevResearch.6.013038Cc66R1 PhysRevResearch.6.013038Cc106R1 PhysRevResearch.6.013038Cc89R1 PhysRevResearch.6.013038Cc24R1 PhysRevResearch.6.013038Cc81R1 PhysRevResearch.6.013038Cc20R1 PhysRevResearch.6.013038Cc17R1 PhysRevResearch.6.013038Cc59R1 PhysRevResearch.6.013038Cc73R1 PhysRevResearch.6.013038Cc3R1 PhysRevResearch.6.013038Cc54R1 PhysRevResearch.6.013038Cc96R1 PhysRevResearch.6.013038Cc58R1 PhysRevResearch.6.013038Cc35R1 PhysRevResearch.6.013038Cc12R1 PhysRevResearch.6.013038Cc7R1 PhysRevResearch.6.013038Cc50R1 PhysRevResearch.6.013038Cc92R1 R. Majumdar (PhysRevResearch.6.013038Cc102R1) 2023 PhysRevResearch.6.013038Cc28R1 PhysRevResearch.6.013038Cc42R1 PhysRevResearch.6.013038Cc65R1 PhysRevResearch.6.013038Cc88R1 PhysRevResearch.6.013038Cc46R1 PhysRevResearch.6.013038Cc69R1 PhysRevResearch.6.013038Cc105R1 PhysRevResearch.6.013038Cc23R1 PhysRevResearch.6.013038Cc101R1 PhysRevResearch.6.013038Cc80R1 PhysRevResearch.6.013038Cc61R1 PhysRevResearch.6.013038Cc39R1 PhysRevResearch.6.013038Cc16R1 PhysRevResearch.6.013038Cc4R1 PhysRevResearch.6.013038Cc53R1 PhysRevResearch.6.013038Cc76R1 PhysRevResearch.6.013038Cc95R1 PhysRevResearch.6.013038Cc57R1 PhysRevResearch.6.013038Cc99R1 PhysRevResearch.6.013038Cc11R1 PhysRevResearch.6.013038Cc34R1 PhysRevResearch.6.013038Cc111R1 PhysRevResearch.6.013038Cc8R1 PhysRevResearch.6.013038Cc30R1 PhysRevResearch.6.013038Cc72R1 PhysRevResearch.6.013038Cc91R1 PhysRevResearch.6.013038Cc27R1 PhysRevResearch.6.013038Cc87R1 PhysRevResearch.6.013038Cc64R1 PhysRevResearch.6.013038Cc45R1 G. Vitagliano (PhysRevResearch.6.013038Cc31R1) 2018 PhysRevResearch.6.013038Cc68R1 PhysRevResearch.6.013038Cc104R1 PhysRevResearch.6.013038Cc22R1 PhysRevResearch.6.013038Cc100R1 PhysRevResearch.6.013038Cc19R1 PhysRevResearch.6.013038Cc15R1 PhysRevResearch.6.013038Cc38R1 PhysRevResearch.6.013038Cc5R1 PhysRevResearch.6.013038Cc52R1 PhysRevResearch.6.013038Cc75R1 PhysRevResearch.6.013038Cc1R1 PhysRevResearch.6.013038Cc56R1 PhysRevResearch.6.013038Cc79R1 PhysRevResearch.6.013038Cc14R1 PhysRevResearch.6.013038Cc90R1 PhysRevResearch.6.013038Cc33R1 PhysRevResearch.6.013038Cc9R1 PhysRevResearch.6.013038Cc10R1 PhysRevResearch.6.013038Cc94R1 PhysRevResearch.6.013038Cc110R1 PhysRevResearch.6.013038Cc71R1 PhysRevResearch.6.013038Cc26R1 PhysRevResearch.6.013038Cc49R1 PhysRevResearch.6.013038Cc40R1 PhysRevResearch.6.013038Cc63R1 PhysRevResearch.6.013038Cc86R1 PhysRevResearch.6.013038Cc44R1 PhysRevResearch.6.013038Cc67R1 PhysRevResearch.6.013038Cc107R1 PhysRevResearch.6.013038Cc25R1 PhysRevResearch.6.013038Cc103R1 PhysRevResearch.6.013038Cc21R1 PhysRevResearch.6.013038Cc82R1 PhysRevResearch.6.013038Cc18R1 |
| References_xml | – ident: PhysRevResearch.6.013038Cc38R1 doi: 10.1038/nphys3029 – ident: PhysRevResearch.6.013038Cc86R1 doi: 10.22331/q-2019-07-01-156 – ident: PhysRevResearch.6.013038Cc111R1 doi: 10.21468/SciPostPhys.2.1.003 – ident: PhysRevResearch.6.013038Cc65R1 doi: 10.1103/RevModPhys.94.015004 – ident: PhysRevResearch.6.013038Cc33R1 doi: 10.3390/batteries8050043 – ident: PhysRevResearch.6.013038Cc69R1 doi: 10.1021/acs.jctc.2c01176 – ident: PhysRevResearch.6.013038Cc107R1 doi: 10.1103/PhysRevA.100.032328 – ident: PhysRevResearch.6.013038Cc55R1 doi: 10.1038/s41586-023-06096-3 – ident: PhysRevResearch.6.013038Cc44R1 doi: 10.1038/s41534-019-0213-4 – ident: PhysRevResearch.6.013038Cc67R1 doi: 10.1021/acs.jctc.1c00877 – ident: PhysRevResearch.6.013038Cc8R1 doi: 10.1088/2058-9565/ac8444 – ident: PhysRevResearch.6.013038Cc17R1 doi: 10.1103/PhysRevResearch.4.043150 – ident: PhysRevResearch.6.013038Cc40R1 doi: 10.1103/PhysRevResearch.4.023219 – ident: PhysRevResearch.6.013038Cc74R1 doi: 10.7566/JPSJ.90.032001 – ident: PhysRevResearch.6.013038Cc13R1 doi: 10.1103/PhysRevE.99.052106 – ident: PhysRevResearch.6.013038Cc100R1 doi: 10.1103/PhysRevLett.119.180509 – ident: PhysRevResearch.6.013038Cc79R1 doi: 10.22331/q-2021-07-28-512 – ident: PhysRevResearch.6.013038Cc29R1 doi: 10.1038/s41467-017-02370-x – ident: PhysRevResearch.6.013038Cc99R1 doi: 10.1038/s41467-021-21728-w – ident: PhysRevResearch.6.013038Cc91R1 doi: 10.1103/PhysRevA.104.042418 – ident: PhysRevResearch.6.013038Cc90R1 doi: 10.1103/PhysRevX.7.021050 – ident: PhysRevResearch.6.013038Cc72R1 doi: 10.22331/q-2021-06-04-466 – ident: PhysRevResearch.6.013038Cc28R1 doi: 10.1088/1751-8113/49/14/143001 – ident: PhysRevResearch.6.013038Cc92R1 doi: 10.1103/PhysRevResearch.5.023078 – ident: PhysRevResearch.6.013038Cc96R1 doi: 10.1103/PhysRevA.99.032331 – ident: PhysRevResearch.6.013038Cc51R1 doi: 10.1103/PhysRevA.106.012612 – ident: PhysRevResearch.6.013038Cc24R1 doi: 10.1103/PhysRevLett.112.030602 – ident: PhysRevResearch.6.013038Cc42R1 doi: 10.1103/PhysRevLett.131.040601 – volume-title: Proceedings of the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) year: 2023 ident: PhysRevResearch.6.013038Cc102R1 – ident: PhysRevResearch.6.013038Cc57R1 doi: 10.1038/s41586-023-06195-1 – ident: PhysRevResearch.6.013038Cc32R1 doi: 10.1007/s11467-021-1130-5 – ident: PhysRevResearch.6.013038Cc53R1 doi: 10.1103/PRXQuantum.4.040303 – ident: PhysRevResearch.6.013038Cc56R1 doi: 10.1038/s41586-023-06095-4 – ident: PhysRevResearch.6.013038Cc93R1 doi: 10.1038/nature24622 – ident: PhysRevResearch.6.013038Cc9R1 doi: 10.1103/PhysRevA.106.022618 – ident: PhysRevResearch.6.013038Cc52R1 doi: 10.22331/q-2023-07-10-1049 – ident: PhysRevResearch.6.013038Cc70R1 doi: 10.1038/s41567-019-0648-8 – ident: PhysRevResearch.6.013038Cc46R1 doi: 10.1103/PRXQuantum.3.010346 – ident: PhysRevResearch.6.013038Cc78R1 doi: 10.22331/q-2023-07-13-1060 – ident: PhysRevResearch.6.013038Cc59R1 doi: 10.1021/acs.chemrev.9b00829 – ident: PhysRevResearch.6.013038Cc5R1 doi: 10.1103/PhysRevLett.111.240401 – ident: PhysRevResearch.6.013038Cc39R1 doi: 10.1038/s41586-019-1666-5 – ident: PhysRevResearch.6.013038Cc35R1 doi: 10.1103/PhysRevB.105.115405 – ident: PhysRevResearch.6.013038Cc97R1 doi: 10.1103/PhysRevE.105.044125 – ident: PhysRevResearch.6.013038Cc1R1 doi: 10.1146/annurev-physchem-040513-103724 – ident: PhysRevResearch.6.013038Cc30R1 doi: 10.1103/PhysRevLett.121.120602 – ident: PhysRevResearch.6.013038Cc50R1 doi: 10.1038/s41524-020-00353-z – ident: PhysRevResearch.6.013038Cc10R1 doi: 10.1088/1367-2630/ac43ed – ident: PhysRevResearch.6.013038Cc63R1 doi: 10.1088/1367-2630/18/2/023023 – ident: PhysRevResearch.6.013038Cc88R1 doi: 10.1038/s41534-020-00302-0 – ident: PhysRevResearch.6.013038Cc73R1 doi: 10.1103/PRXQuantum.3.020365 – ident: PhysRevResearch.6.013038Cc3R1 doi: 10.1116/5.0083192 – ident: PhysRevResearch.6.013038Cc36R1 doi: 10.1103/PhysRevA.107.023725 – ident: PhysRevResearch.6.013038Cc26R1 doi: 10.1038/s41467-017-01991-6 – ident: PhysRevResearch.6.013038Cc20R1 doi: 10.1103/PhysRevA.107.042419 – volume-title: Quantum Computation and Quantum Information year: 2002 ident: PhysRevResearch.6.013038Cc37R1 – ident: PhysRevResearch.6.013038Cc89R1 doi: 10.22331/q-2019-10-07-191 – ident: PhysRevResearch.6.013038Cc87R1 doi: 10.1103/PhysRevA.99.062304 – ident: PhysRevResearch.6.013038Cc19R1 doi: 10.1103/PhysRevResearch.5.013155 – ident: PhysRevResearch.6.013038Cc2R1 doi: 10.1080/00107514.2019.1631555 – ident: PhysRevResearch.6.013038Cc15R1 doi: 10.1103/PhysRevB.99.205437 – ident: PhysRevResearch.6.013038Cc34R1 doi: 10.1103/PhysRevA.106.032212 – ident: PhysRevResearch.6.013038Cc25R1 doi: 10.1103/PhysRevX.7.031044 – ident: PhysRevResearch.6.013038Cc76R1 doi: 10.1103/RevModPhys.95.045005 – ident: PhysRevResearch.6.013038Cc14R1 doi: 10.1103/PhysRevB.98.205423 – ident: PhysRevResearch.6.013038Cc27R1 doi: 10.22331/q-2022-10-17-841 – ident: PhysRevResearch.6.013038Cc6R1 doi: 10.1103/PhysRevB.100.115142 – ident: PhysRevResearch.6.013038Cc18R1 doi: 10.1103/PhysRevLett.128.140501 – ident: PhysRevResearch.6.013038Cc80R1 doi: 10.1103/PRXQuantum.2.030353 – ident: PhysRevResearch.6.013038Cc94R1 doi: 10.1038/nature18274 – ident: PhysRevResearch.6.013038Cc21R1 doi: 10.1103/PhysRevLett.120.117702 – ident: PhysRevResearch.6.013038Cc81R1 doi: 10.1103/PhysRevA.106.032410 – ident: PhysRevResearch.6.013038Cc71R1 doi: 10.1038/s41467-018-07090-4 – ident: PhysRevResearch.6.013038Cc105R1 doi: 10.1103/PhysRevLett.129.070601 – ident: PhysRevResearch.6.013038Cc58R1 doi: 10.22331/q-2018-08-06-79 – ident: PhysRevResearch.6.013038Cc12R1 doi: 10.1103/PhysRevLett.130.210401 – ident: PhysRevResearch.6.013038Cc64R1 doi: 10.1038/s42254-021-00348-9 – ident: PhysRevResearch.6.013038Cc68R1 doi: 10.1103/PhysRevResearch.4.013173 – ident: PhysRevResearch.6.013038Cc7R1 doi: 10.1103/PhysRevLett.122.047702 – ident: PhysRevResearch.6.013038Cc66R1 doi: 10.22331/q-2022-07-07-759 – ident: PhysRevResearch.6.013038Cc16R1 doi: 10.1103/PhysRevA.101.032115 – ident: PhysRevResearch.6.013038Cc95R1 doi: 10.1103/PhysRevA.98.032309 – ident: PhysRevResearch.6.013038Cc4R1 doi: 10.1103/PhysRevE.87.042123 – ident: PhysRevResearch.6.013038Cc110R1 doi: 10.1109/9.119632 – ident: PhysRevResearch.6.013038Cc85R1 doi: 10.1103/PhysRevResearch.1.033062 – ident: PhysRevResearch.6.013038Cc75R1 doi: 10.1103/PRXQuantum.3.010345 – ident: PhysRevResearch.6.013038Cc23R1 doi: 10.1209/epl/i2004-10101-2 – ident: PhysRevResearch.6.013038Cc103R1 doi: 10.1103/PhysRevA.93.052119 – ident: PhysRevResearch.6.013038Cc49R1 doi: 10.21468/SciPostPhys.14.3.055 – volume-title: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions year: 2018 ident: PhysRevResearch.6.013038Cc31R1 – ident: PhysRevResearch.6.013038Cc61R1 doi: 10.1038/ncomms5213 – ident: PhysRevResearch.6.013038Cc82R1 doi: 10.1116/5.0091121 – ident: PhysRevResearch.6.013038Cc62R1 doi: 10.1038/nature23879 – ident: PhysRevResearch.6.013038Cc101R1 doi: 10.1038/s41586-019-1040-7 – ident: PhysRevResearch.6.013038Cc104R1 doi: 10.1103/PhysRevLett.123.080602 – ident: PhysRevResearch.6.013038Cc22R1 doi: 10.1103/PhysRevA.97.022106 – ident: PhysRevResearch.6.013038Cc106R1 doi: 10.1038/s41534-022-00611-6 – ident: PhysRevResearch.6.013038Cc45R1 doi: 10.1103/PhysRevResearch.2.033421 – ident: PhysRevResearch.6.013038Cc11R1 doi: 10.1103/PhysRevA.106.062609 – ident: PhysRevResearch.6.013038Cc54R1 doi: 10.1038/s43588-022-00391-1 |
| SSID | ssj0002511485 |
| Score | 2.3638487 |
| Snippet | Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 013038 |
| Title | Variational quantum algorithm for ergotropy estimation in quantum many-body batteries |
| URI | https://doaj.org/article/8090b385edc84e5b97a1bbea99a6457c |
| Volume | 6 |
| WOSCitedRecordID | wos001147471000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQAokF8Sm-5YE1xY4TOx4BgRgAIQSoW2SfbUCiDZS2Uhd-O-ckrSoWGFgyRD4ruVzs9-zzO0KOMxXSwIxLQPGQIL7liYZUJNqigVUymEYk6Vrd3hbdrr6bK_UVc8IaeeDGcScF08yKIvcOisznVivDsR-jtZFZriCOvoh65shUHIMjcM6KfJq6w8RJTKi89-NpPltHduKeXTyWMjcfzcn21_PL5RpZbYEhPW0eaJ0s-P4GWa4TNOFzkzw-IaltF-7oxwj9MepR8_ZcIbl_6VGEntQPnqvhoHqf0Kic0RxJpK_9Wese_veJrdyE2lpUEznyFnm4vHg4v0rakggJ4OsMk6AkN0VuZG6BpZ4JgKhHb3nuPMiQ5QF8CspASH0W0wczZ6VDjsVMKoQW22SxX_X9DqEuiAIcc0bokAGOW_iJvLAq4jMeZLFL1NQvJbRy4bFqxVtZ0wYmyh8eLWXZeHSX8JnleyOZ8Qebs-j6Wfsoel3fwFAo21AofwuFvf_oZJ-spIhb4ioL5wdkcTgY-UOyBOPh6-fgqI4yvN58XXwD1vTd3A |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+quantum+algorithm+for+ergotropy+estimation+in+quantum+many-body+batteries&rft.jtitle=Physical+review+research&rft.au=Duc+Tuan+Hoang&rft.au=Friederike+Metz&rft.au=Andreas+Thomasen&rft.au=Tran+Duong+Anh-Tai&rft.date=2024-01-11&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=6&rft.issue=1&rft.spage=013038&rft_id=info:doi/10.1103%2FPhysRevResearch.6.013038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8090b385edc84e5b97a1bbea99a6457c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |