Variational quantum algorithm for ergotropy estimation in quantum many-body batteries

Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of quantum technologies. Of particular interest is the role of correlations in many-body quantum batteries and how these can affect the maximal w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review research Ročník 6; číslo 1; s. 013038
Hlavní autoři: Hoang, Duc Tuan, Metz, Friederike, Thomasen, Andreas, Anh-Tai, Tran Duong, Busch, Thomas, Fogarty, Thomás
Médium: Journal Article
Jazyk:angličtina
Vydáno: American Physical Society 11.01.2024
ISSN:2643-1564, 2643-1564
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of quantum technologies. Of particular interest is the role of correlations in many-body quantum batteries and how these can affect the maximal work extraction, quantified by the ergotropy. In this paper we simulate the charging process and work extraction of many-body quantum batteries on noisy intermediate-scale quantum devices and devise the variational quantum ergotropy (VQErgo) algorithm, which finds the optimal unitary operation that maximizes work extraction from the battery. We test VQErgo by calculating the ergotropy of a many-body quantum battery undergoing transverse field Ising dynamics following a sudden quench. We investigate the battery for different system sizes and charging times and analyze the minimum number of ansatz circuit repetitions needed for the variational optimization using both ideal and noisy simulators. We also discuss how the growth of long-range correlations can hamper the accuracy of VQErgo in larger systems, requiring increased repetitions of the ansatz circuit to reduce error. Finally, we optimize part of the VQErgo algorithm and calculate the ergotropy on one of IBM's quantum devices.
AbstractList Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of quantum technologies. Of particular interest is the role of correlations in many-body quantum batteries and how these can affect the maximal work extraction, quantified by the ergotropy. In this paper we simulate the charging process and work extraction of many-body quantum batteries on noisy intermediate-scale quantum devices and devise the variational quantum ergotropy (VQErgo) algorithm, which finds the optimal unitary operation that maximizes work extraction from the battery. We test VQErgo by calculating the ergotropy of a many-body quantum battery undergoing transverse field Ising dynamics following a sudden quench. We investigate the battery for different system sizes and charging times and analyze the minimum number of ansatz circuit repetitions needed for the variational optimization using both ideal and noisy simulators. We also discuss how the growth of long-range correlations can hamper the accuracy of VQErgo in larger systems, requiring increased repetitions of the ansatz circuit to reduce error. Finally, we optimize part of the VQErgo algorithm and calculate the ergotropy on one of IBM's quantum devices.
ArticleNumber 013038
Author Fogarty, Thomás
Metz, Friederike
Hoang, Duc Tuan
Busch, Thomas
Thomasen, Andreas
Anh-Tai, Tran Duong
Author_xml – sequence: 1
  givenname: Duc Tuan
  orcidid: 0000-0002-8976-7157
  surname: Hoang
  fullname: Hoang, Duc Tuan
– sequence: 2
  givenname: Friederike
  orcidid: 0000-0002-4745-7329
  surname: Metz
  fullname: Metz, Friederike
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0001-7111-3836
  surname: Thomasen
  fullname: Thomasen, Andreas
– sequence: 4
  givenname: Tran Duong
  orcidid: 0000-0003-1704-2621
  surname: Anh-Tai
  fullname: Anh-Tai, Tran Duong
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0003-0535-2833
  surname: Busch
  fullname: Busch, Thomas
– sequence: 6
  givenname: Thomás
  orcidid: 0000-0003-4940-5861
  surname: Fogarty
  fullname: Fogarty, Thomás
BookMark eNqFkNtKAzEQhoNUsB7eYV9ga7I5bPZGEPEEgiLqbZhkZ9vIdqNJKuzbW1sV6Y1XMwz_fPPPf0gmQxiQkILRGWOUnz4sxvSIH4-YEKJbzNSMMk653iPTSgleMqnE5E9_QE5SeqWUVpIxoeWUPL9A9JB9GKAv3lcw5NWygH4eos-LZdGFWGCchxzD21hgyn65ERd--FUvYRhLG9qxsJAzRo_pmOx30Cc8-a5H5Onq8unipry7v769OL8r3fp4LrtaMdASlLSOVki5c7LWlWWyRac6ITuHlavBdRUKRjUVrVVtUwkKFecNPyK3W2wb4NW8xbW5OJoA3mwGIc4NxOxdj0bThlquJbZOC5S2qYFZi9A0oISs3Zp1tmW5GFKK2Bnn8-bXHMH3hlHzFbnZidwos418DdA7gB9D_65-AlfLkSc
CitedBy_id crossref_primary_10_1088_1402_4896_ad95c5
crossref_primary_10_1103_5x8m_bhgd
crossref_primary_10_1109_TIFS_2025_3583901
crossref_primary_10_1088_2058_9565_ad8a85
crossref_primary_10_1103_PhysRevA_111_052216
crossref_primary_10_1088_2058_9565_ad80be
Cites_doi 10.1038/nphys3029
10.22331/q-2019-07-01-156
10.21468/SciPostPhys.2.1.003
10.1103/RevModPhys.94.015004
10.3390/batteries8050043
10.1021/acs.jctc.2c01176
10.1103/PhysRevA.100.032328
10.1038/s41586-023-06096-3
10.1038/s41534-019-0213-4
10.1021/acs.jctc.1c00877
10.1088/2058-9565/ac8444
10.1103/PhysRevResearch.4.043150
10.1103/PhysRevResearch.4.023219
10.7566/JPSJ.90.032001
10.1103/PhysRevE.99.052106
10.1103/PhysRevLett.119.180509
10.22331/q-2021-07-28-512
10.1038/s41467-017-02370-x
10.1038/s41467-021-21728-w
10.1103/PhysRevA.104.042418
10.1103/PhysRevX.7.021050
10.22331/q-2021-06-04-466
10.1088/1751-8113/49/14/143001
10.1103/PhysRevResearch.5.023078
10.1103/PhysRevA.99.032331
10.1103/PhysRevA.106.012612
10.1103/PhysRevLett.112.030602
10.1103/PhysRevLett.131.040601
10.1038/s41586-023-06195-1
10.1007/s11467-021-1130-5
10.1103/PRXQuantum.4.040303
10.1038/s41586-023-06095-4
10.1038/nature24622
10.1103/PhysRevA.106.022618
10.22331/q-2023-07-10-1049
10.1038/s41567-019-0648-8
10.1103/PRXQuantum.3.010346
10.22331/q-2023-07-13-1060
10.1021/acs.chemrev.9b00829
10.1103/PhysRevLett.111.240401
10.1038/s41586-019-1666-5
10.1103/PhysRevB.105.115405
10.1103/PhysRevE.105.044125
10.1146/annurev-physchem-040513-103724
10.1103/PhysRevLett.121.120602
10.1038/s41524-020-00353-z
10.1088/1367-2630/ac43ed
10.1088/1367-2630/18/2/023023
10.1038/s41534-020-00302-0
10.1103/PRXQuantum.3.020365
10.1116/5.0083192
10.1103/PhysRevA.107.023725
10.1038/s41467-017-01991-6
10.1103/PhysRevA.107.042419
10.22331/q-2019-10-07-191
10.1103/PhysRevA.99.062304
10.1103/PhysRevResearch.5.013155
10.1080/00107514.2019.1631555
10.1103/PhysRevB.99.205437
10.1103/PhysRevA.106.032212
10.1103/PhysRevX.7.031044
10.1103/RevModPhys.95.045005
10.1103/PhysRevB.98.205423
10.22331/q-2022-10-17-841
10.1103/PhysRevB.100.115142
10.1103/PhysRevLett.128.140501
10.1103/PRXQuantum.2.030353
10.1038/nature18274
10.1103/PhysRevLett.120.117702
10.1103/PhysRevA.106.032410
10.1038/s41467-018-07090-4
10.1103/PhysRevLett.129.070601
10.22331/q-2018-08-06-79
10.1103/PhysRevLett.130.210401
10.1038/s42254-021-00348-9
10.1103/PhysRevResearch.4.013173
10.1103/PhysRevLett.122.047702
10.22331/q-2022-07-07-759
10.1103/PhysRevA.101.032115
10.1103/PhysRevA.98.032309
10.1103/PhysRevE.87.042123
10.1109/9.119632
10.1103/PhysRevResearch.1.033062
10.1103/PRXQuantum.3.010345
10.1209/epl/i2004-10101-2
10.1103/PhysRevA.93.052119
10.21468/SciPostPhys.14.3.055
10.1038/ncomms5213
10.1116/5.0091121
10.1038/nature23879
10.1038/s41586-019-1040-7
10.1103/PhysRevLett.123.080602
10.1103/PhysRevA.97.022106
10.1038/s41534-022-00611-6
10.1103/PhysRevResearch.2.033421
10.1103/PhysRevA.106.062609
10.1038/s43588-022-00391-1
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.6.013038
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_8090b385edc84e5b97a1bbea99a6457c
10_1103_PhysRevResearch_6_013038
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c485t-f761a85a65bc02e03cc5782b15dec6f45fce2c7acf2e410804db6d9240a23393
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001147471000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2643-1564
IngestDate Fri Oct 03 12:51:57 EDT 2025
Tue Nov 18 22:06:17 EST 2025
Sat Nov 29 03:21:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-f761a85a65bc02e03cc5782b15dec6f45fce2c7acf2e410804db6d9240a23393
ORCID 0000-0001-7111-3836
0000-0003-1704-2621
0000-0002-4745-7329
0000-0003-4940-5861
0000-0002-8976-7157
0000-0003-0535-2833
OpenAccessLink https://doaj.org/article/8090b385edc84e5b97a1bbea99a6457c
ParticipantIDs doaj_primary_oai_doaj_org_article_8090b385edc84e5b97a1bbea99a6457c
crossref_citationtrail_10_1103_PhysRevResearch_6_013038
crossref_primary_10_1103_PhysRevResearch_6_013038
PublicationCentury 2000
PublicationDate 2024-01-11
PublicationDateYYYYMMDD 2024-01-11
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-11
  day: 11
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2024
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.6.013038Cc51R1
PhysRevResearch.6.013038Cc74R1
PhysRevResearch.6.013038Cc97R1
PhysRevResearch.6.013038Cc2R1
PhysRevResearch.6.013038Cc55R1
PhysRevResearch.6.013038Cc78R1
PhysRevResearch.6.013038Cc13R1
PhysRevResearch.6.013038Cc36R1
PhysRevResearch.6.013038Cc32R1
PhysRevResearch.6.013038Cc70R1
PhysRevResearch.6.013038Cc93R1
PhysRevResearch.6.013038Cc6R1
PhysRevResearch.6.013038Cc29R1
PhysRevResearch.6.013038Cc62R1
PhysRevResearch.6.013038Cc85R1
M. A. Nielsen (PhysRevResearch.6.013038Cc37R1) 2002
PhysRevResearch.6.013038Cc66R1
PhysRevResearch.6.013038Cc106R1
PhysRevResearch.6.013038Cc89R1
PhysRevResearch.6.013038Cc24R1
PhysRevResearch.6.013038Cc81R1
PhysRevResearch.6.013038Cc20R1
PhysRevResearch.6.013038Cc17R1
PhysRevResearch.6.013038Cc59R1
PhysRevResearch.6.013038Cc73R1
PhysRevResearch.6.013038Cc3R1
PhysRevResearch.6.013038Cc54R1
PhysRevResearch.6.013038Cc96R1
PhysRevResearch.6.013038Cc58R1
PhysRevResearch.6.013038Cc35R1
PhysRevResearch.6.013038Cc12R1
PhysRevResearch.6.013038Cc7R1
PhysRevResearch.6.013038Cc50R1
PhysRevResearch.6.013038Cc92R1
R. Majumdar (PhysRevResearch.6.013038Cc102R1) 2023
PhysRevResearch.6.013038Cc28R1
PhysRevResearch.6.013038Cc42R1
PhysRevResearch.6.013038Cc65R1
PhysRevResearch.6.013038Cc88R1
PhysRevResearch.6.013038Cc46R1
PhysRevResearch.6.013038Cc69R1
PhysRevResearch.6.013038Cc105R1
PhysRevResearch.6.013038Cc23R1
PhysRevResearch.6.013038Cc101R1
PhysRevResearch.6.013038Cc80R1
PhysRevResearch.6.013038Cc61R1
PhysRevResearch.6.013038Cc39R1
PhysRevResearch.6.013038Cc16R1
PhysRevResearch.6.013038Cc4R1
PhysRevResearch.6.013038Cc53R1
PhysRevResearch.6.013038Cc76R1
PhysRevResearch.6.013038Cc95R1
PhysRevResearch.6.013038Cc57R1
PhysRevResearch.6.013038Cc99R1
PhysRevResearch.6.013038Cc11R1
PhysRevResearch.6.013038Cc34R1
PhysRevResearch.6.013038Cc111R1
PhysRevResearch.6.013038Cc8R1
PhysRevResearch.6.013038Cc30R1
PhysRevResearch.6.013038Cc72R1
PhysRevResearch.6.013038Cc91R1
PhysRevResearch.6.013038Cc27R1
PhysRevResearch.6.013038Cc87R1
PhysRevResearch.6.013038Cc64R1
PhysRevResearch.6.013038Cc45R1
G. Vitagliano (PhysRevResearch.6.013038Cc31R1) 2018
PhysRevResearch.6.013038Cc68R1
PhysRevResearch.6.013038Cc104R1
PhysRevResearch.6.013038Cc22R1
PhysRevResearch.6.013038Cc100R1
PhysRevResearch.6.013038Cc19R1
PhysRevResearch.6.013038Cc15R1
PhysRevResearch.6.013038Cc38R1
PhysRevResearch.6.013038Cc5R1
PhysRevResearch.6.013038Cc52R1
PhysRevResearch.6.013038Cc75R1
PhysRevResearch.6.013038Cc1R1
PhysRevResearch.6.013038Cc56R1
PhysRevResearch.6.013038Cc79R1
PhysRevResearch.6.013038Cc14R1
PhysRevResearch.6.013038Cc90R1
PhysRevResearch.6.013038Cc33R1
PhysRevResearch.6.013038Cc9R1
PhysRevResearch.6.013038Cc10R1
PhysRevResearch.6.013038Cc94R1
PhysRevResearch.6.013038Cc110R1
PhysRevResearch.6.013038Cc71R1
PhysRevResearch.6.013038Cc26R1
PhysRevResearch.6.013038Cc49R1
PhysRevResearch.6.013038Cc40R1
PhysRevResearch.6.013038Cc63R1
PhysRevResearch.6.013038Cc86R1
PhysRevResearch.6.013038Cc44R1
PhysRevResearch.6.013038Cc67R1
PhysRevResearch.6.013038Cc107R1
PhysRevResearch.6.013038Cc25R1
PhysRevResearch.6.013038Cc103R1
PhysRevResearch.6.013038Cc21R1
PhysRevResearch.6.013038Cc82R1
PhysRevResearch.6.013038Cc18R1
References_xml – ident: PhysRevResearch.6.013038Cc38R1
  doi: 10.1038/nphys3029
– ident: PhysRevResearch.6.013038Cc86R1
  doi: 10.22331/q-2019-07-01-156
– ident: PhysRevResearch.6.013038Cc111R1
  doi: 10.21468/SciPostPhys.2.1.003
– ident: PhysRevResearch.6.013038Cc65R1
  doi: 10.1103/RevModPhys.94.015004
– ident: PhysRevResearch.6.013038Cc33R1
  doi: 10.3390/batteries8050043
– ident: PhysRevResearch.6.013038Cc69R1
  doi: 10.1021/acs.jctc.2c01176
– ident: PhysRevResearch.6.013038Cc107R1
  doi: 10.1103/PhysRevA.100.032328
– ident: PhysRevResearch.6.013038Cc55R1
  doi: 10.1038/s41586-023-06096-3
– ident: PhysRevResearch.6.013038Cc44R1
  doi: 10.1038/s41534-019-0213-4
– ident: PhysRevResearch.6.013038Cc67R1
  doi: 10.1021/acs.jctc.1c00877
– ident: PhysRevResearch.6.013038Cc8R1
  doi: 10.1088/2058-9565/ac8444
– ident: PhysRevResearch.6.013038Cc17R1
  doi: 10.1103/PhysRevResearch.4.043150
– ident: PhysRevResearch.6.013038Cc40R1
  doi: 10.1103/PhysRevResearch.4.023219
– ident: PhysRevResearch.6.013038Cc74R1
  doi: 10.7566/JPSJ.90.032001
– ident: PhysRevResearch.6.013038Cc13R1
  doi: 10.1103/PhysRevE.99.052106
– ident: PhysRevResearch.6.013038Cc100R1
  doi: 10.1103/PhysRevLett.119.180509
– ident: PhysRevResearch.6.013038Cc79R1
  doi: 10.22331/q-2021-07-28-512
– ident: PhysRevResearch.6.013038Cc29R1
  doi: 10.1038/s41467-017-02370-x
– ident: PhysRevResearch.6.013038Cc99R1
  doi: 10.1038/s41467-021-21728-w
– ident: PhysRevResearch.6.013038Cc91R1
  doi: 10.1103/PhysRevA.104.042418
– ident: PhysRevResearch.6.013038Cc90R1
  doi: 10.1103/PhysRevX.7.021050
– ident: PhysRevResearch.6.013038Cc72R1
  doi: 10.22331/q-2021-06-04-466
– ident: PhysRevResearch.6.013038Cc28R1
  doi: 10.1088/1751-8113/49/14/143001
– ident: PhysRevResearch.6.013038Cc92R1
  doi: 10.1103/PhysRevResearch.5.023078
– ident: PhysRevResearch.6.013038Cc96R1
  doi: 10.1103/PhysRevA.99.032331
– ident: PhysRevResearch.6.013038Cc51R1
  doi: 10.1103/PhysRevA.106.012612
– ident: PhysRevResearch.6.013038Cc24R1
  doi: 10.1103/PhysRevLett.112.030602
– ident: PhysRevResearch.6.013038Cc42R1
  doi: 10.1103/PhysRevLett.131.040601
– volume-title: Proceedings of the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE)
  year: 2023
  ident: PhysRevResearch.6.013038Cc102R1
– ident: PhysRevResearch.6.013038Cc57R1
  doi: 10.1038/s41586-023-06195-1
– ident: PhysRevResearch.6.013038Cc32R1
  doi: 10.1007/s11467-021-1130-5
– ident: PhysRevResearch.6.013038Cc53R1
  doi: 10.1103/PRXQuantum.4.040303
– ident: PhysRevResearch.6.013038Cc56R1
  doi: 10.1038/s41586-023-06095-4
– ident: PhysRevResearch.6.013038Cc93R1
  doi: 10.1038/nature24622
– ident: PhysRevResearch.6.013038Cc9R1
  doi: 10.1103/PhysRevA.106.022618
– ident: PhysRevResearch.6.013038Cc52R1
  doi: 10.22331/q-2023-07-10-1049
– ident: PhysRevResearch.6.013038Cc70R1
  doi: 10.1038/s41567-019-0648-8
– ident: PhysRevResearch.6.013038Cc46R1
  doi: 10.1103/PRXQuantum.3.010346
– ident: PhysRevResearch.6.013038Cc78R1
  doi: 10.22331/q-2023-07-13-1060
– ident: PhysRevResearch.6.013038Cc59R1
  doi: 10.1021/acs.chemrev.9b00829
– ident: PhysRevResearch.6.013038Cc5R1
  doi: 10.1103/PhysRevLett.111.240401
– ident: PhysRevResearch.6.013038Cc39R1
  doi: 10.1038/s41586-019-1666-5
– ident: PhysRevResearch.6.013038Cc35R1
  doi: 10.1103/PhysRevB.105.115405
– ident: PhysRevResearch.6.013038Cc97R1
  doi: 10.1103/PhysRevE.105.044125
– ident: PhysRevResearch.6.013038Cc1R1
  doi: 10.1146/annurev-physchem-040513-103724
– ident: PhysRevResearch.6.013038Cc30R1
  doi: 10.1103/PhysRevLett.121.120602
– ident: PhysRevResearch.6.013038Cc50R1
  doi: 10.1038/s41524-020-00353-z
– ident: PhysRevResearch.6.013038Cc10R1
  doi: 10.1088/1367-2630/ac43ed
– ident: PhysRevResearch.6.013038Cc63R1
  doi: 10.1088/1367-2630/18/2/023023
– ident: PhysRevResearch.6.013038Cc88R1
  doi: 10.1038/s41534-020-00302-0
– ident: PhysRevResearch.6.013038Cc73R1
  doi: 10.1103/PRXQuantum.3.020365
– ident: PhysRevResearch.6.013038Cc3R1
  doi: 10.1116/5.0083192
– ident: PhysRevResearch.6.013038Cc36R1
  doi: 10.1103/PhysRevA.107.023725
– ident: PhysRevResearch.6.013038Cc26R1
  doi: 10.1038/s41467-017-01991-6
– ident: PhysRevResearch.6.013038Cc20R1
  doi: 10.1103/PhysRevA.107.042419
– volume-title: Quantum Computation and Quantum Information
  year: 2002
  ident: PhysRevResearch.6.013038Cc37R1
– ident: PhysRevResearch.6.013038Cc89R1
  doi: 10.22331/q-2019-10-07-191
– ident: PhysRevResearch.6.013038Cc87R1
  doi: 10.1103/PhysRevA.99.062304
– ident: PhysRevResearch.6.013038Cc19R1
  doi: 10.1103/PhysRevResearch.5.013155
– ident: PhysRevResearch.6.013038Cc2R1
  doi: 10.1080/00107514.2019.1631555
– ident: PhysRevResearch.6.013038Cc15R1
  doi: 10.1103/PhysRevB.99.205437
– ident: PhysRevResearch.6.013038Cc34R1
  doi: 10.1103/PhysRevA.106.032212
– ident: PhysRevResearch.6.013038Cc25R1
  doi: 10.1103/PhysRevX.7.031044
– ident: PhysRevResearch.6.013038Cc76R1
  doi: 10.1103/RevModPhys.95.045005
– ident: PhysRevResearch.6.013038Cc14R1
  doi: 10.1103/PhysRevB.98.205423
– ident: PhysRevResearch.6.013038Cc27R1
  doi: 10.22331/q-2022-10-17-841
– ident: PhysRevResearch.6.013038Cc6R1
  doi: 10.1103/PhysRevB.100.115142
– ident: PhysRevResearch.6.013038Cc18R1
  doi: 10.1103/PhysRevLett.128.140501
– ident: PhysRevResearch.6.013038Cc80R1
  doi: 10.1103/PRXQuantum.2.030353
– ident: PhysRevResearch.6.013038Cc94R1
  doi: 10.1038/nature18274
– ident: PhysRevResearch.6.013038Cc21R1
  doi: 10.1103/PhysRevLett.120.117702
– ident: PhysRevResearch.6.013038Cc81R1
  doi: 10.1103/PhysRevA.106.032410
– ident: PhysRevResearch.6.013038Cc71R1
  doi: 10.1038/s41467-018-07090-4
– ident: PhysRevResearch.6.013038Cc105R1
  doi: 10.1103/PhysRevLett.129.070601
– ident: PhysRevResearch.6.013038Cc58R1
  doi: 10.22331/q-2018-08-06-79
– ident: PhysRevResearch.6.013038Cc12R1
  doi: 10.1103/PhysRevLett.130.210401
– ident: PhysRevResearch.6.013038Cc64R1
  doi: 10.1038/s42254-021-00348-9
– ident: PhysRevResearch.6.013038Cc68R1
  doi: 10.1103/PhysRevResearch.4.013173
– ident: PhysRevResearch.6.013038Cc7R1
  doi: 10.1103/PhysRevLett.122.047702
– ident: PhysRevResearch.6.013038Cc66R1
  doi: 10.22331/q-2022-07-07-759
– ident: PhysRevResearch.6.013038Cc16R1
  doi: 10.1103/PhysRevA.101.032115
– ident: PhysRevResearch.6.013038Cc95R1
  doi: 10.1103/PhysRevA.98.032309
– ident: PhysRevResearch.6.013038Cc4R1
  doi: 10.1103/PhysRevE.87.042123
– ident: PhysRevResearch.6.013038Cc110R1
  doi: 10.1109/9.119632
– ident: PhysRevResearch.6.013038Cc85R1
  doi: 10.1103/PhysRevResearch.1.033062
– ident: PhysRevResearch.6.013038Cc75R1
  doi: 10.1103/PRXQuantum.3.010345
– ident: PhysRevResearch.6.013038Cc23R1
  doi: 10.1209/epl/i2004-10101-2
– ident: PhysRevResearch.6.013038Cc103R1
  doi: 10.1103/PhysRevA.93.052119
– ident: PhysRevResearch.6.013038Cc49R1
  doi: 10.21468/SciPostPhys.14.3.055
– volume-title: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions
  year: 2018
  ident: PhysRevResearch.6.013038Cc31R1
– ident: PhysRevResearch.6.013038Cc61R1
  doi: 10.1038/ncomms5213
– ident: PhysRevResearch.6.013038Cc82R1
  doi: 10.1116/5.0091121
– ident: PhysRevResearch.6.013038Cc62R1
  doi: 10.1038/nature23879
– ident: PhysRevResearch.6.013038Cc101R1
  doi: 10.1038/s41586-019-1040-7
– ident: PhysRevResearch.6.013038Cc104R1
  doi: 10.1103/PhysRevLett.123.080602
– ident: PhysRevResearch.6.013038Cc22R1
  doi: 10.1103/PhysRevA.97.022106
– ident: PhysRevResearch.6.013038Cc106R1
  doi: 10.1038/s41534-022-00611-6
– ident: PhysRevResearch.6.013038Cc45R1
  doi: 10.1103/PhysRevResearch.2.033421
– ident: PhysRevResearch.6.013038Cc11R1
  doi: 10.1103/PhysRevA.106.062609
– ident: PhysRevResearch.6.013038Cc54R1
  doi: 10.1038/s43588-022-00391-1
SSID ssj0002511485
Score 2.3638487
Snippet Quantum batteries are predicted to have the potential to outperform their classical counterparts and are therefore an important element in the development of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 013038
Title Variational quantum algorithm for ergotropy estimation in quantum many-body batteries
URI https://doaj.org/article/8090b385edc84e5b97a1bbea99a6457c
Volume 6
WOSCitedRecordID wos001147471000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQAokF8Sm-5YE1xY4TOx4BgRgAIQSoW2SfbUCiDZS2Uhd-O-ckrSoWGFgyRD4ruVzs9-zzO0KOMxXSwIxLQPGQIL7liYZUJNqigVUymEYk6Vrd3hbdrr6bK_UVc8IaeeDGcScF08yKIvcOisznVivDsR-jtZFZriCOvoh65shUHIMjcM6KfJq6w8RJTKi89-NpPltHduKeXTyWMjcfzcn21_PL5RpZbYEhPW0eaJ0s-P4GWa4TNOFzkzw-IaltF-7oxwj9MepR8_ZcIbl_6VGEntQPnqvhoHqf0Kic0RxJpK_9Wese_veJrdyE2lpUEznyFnm4vHg4v0rakggJ4OsMk6AkN0VuZG6BpZ4JgKhHb3nuPMiQ5QF8CspASH0W0wczZ6VDjsVMKoQW22SxX_X9DqEuiAIcc0bokAGOW_iJvLAq4jMeZLFL1NQvJbRy4bFqxVtZ0wYmyh8eLWXZeHSX8JnleyOZ8Qebs-j6Wfsoel3fwFAo21AofwuFvf_oZJ-spIhb4ioL5wdkcTgY-UOyBOPh6-fgqI4yvN58XXwD1vTd3A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+quantum+algorithm+for+ergotropy+estimation+in+quantum+many-body+batteries&rft.jtitle=Physical+review+research&rft.au=Duc+Tuan+Hoang&rft.au=Friederike+Metz&rft.au=Andreas+Thomasen&rft.au=Tran+Duong+Anh-Tai&rft.date=2024-01-11&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=6&rft.issue=1&rft.spage=013038&rft_id=info:doi/10.1103%2FPhysRevResearch.6.013038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8090b385edc84e5b97a1bbea99a6457c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon