Integrative analysis of network pharmacology and proteomics to identify key targets of Tuomin-Zhiti-Decoction for allergic rhinitis

Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. The aim of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology Jg. 296; H. NA; S. 115448
Hauptverfasser: Cheng, Jinjun, Zhang, Meiling, Zheng, Yanfei, Wang, Ji, Wang, Qi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier B.V 05.10.2022
Schlagworte:
ISSN:0378-8741, 1872-7573, 1872-7573
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR. Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinated the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation. TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD aganist AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking. TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine. [Display omitted] •Integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD.•The combined methodology provides a scientific method for the sensible development of traditional Chinese medicine.•TZD may have therapeutic potential for treating AR.•CD40 and IL6 are the main targets.•Quercetin and wogonin may play more effective roles in AR.
AbstractList Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR. Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinaed the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation. TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD against AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking. TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine.
Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown.ETHNOPHARMACOLOGICAL RELEVANCEAllergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown.The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR.AIM OF THE STUDYThe aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR.Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinaed the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation.MATERIALS AND METHODSMice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinaed the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation.TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD against AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking.RESULTSTZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD against AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking.TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine.CONCLUSIONTZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine.
Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR. Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinated the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation. TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD aganist AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking. TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine.
Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR. Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinated the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation. TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD aganist AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking. TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine. [Display omitted] •Integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD.•The combined methodology provides a scientific method for the sensible development of traditional Chinese medicine.•TZD may have therapeutic potential for treating AR.•CD40 and IL6 are the main targets.•Quercetin and wogonin may play more effective roles in AR.
Ethnopharmacological relevance Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. Aim of the study The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR. Materials and methods Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinaed the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation. Results: TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD against AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking. Conclusion: TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine. Graphical abstract Image 1. Highlights: Integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD. The combined methodology provides a scientific method for the sensible development of traditional Chinese medicine. TZD may have therapeutic potential for treating AR. CD40 and IL6 are the main targets. Quercetin and wogonin may play more effective roles in AR.
ArticleNumber 115448
Author Wang, Qi
Wang, Ji
Zheng, Yanfei
Cheng, Jinjun
Zhang, Meiling
Author_xml – sequence: 1
  givenname: Jinjun
  surname: Cheng
  fullname: Cheng, Jinjun
  email: carlosjjcheng@163.com
  organization: National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
– sequence: 2
  givenname: Meiling
  surname: Zhang
  fullname: Zhang, Meiling
  email: feimlzhang@163.com
  organization: DongZhiMen Hospital, Beijing University of Chinese Medicine, Beijing, China
– sequence: 3
  givenname: Yanfei
  surname: Zheng
  fullname: Zheng, Yanfei
  email: yanfei_z@163.com
  organization: National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
– sequence: 4
  givenname: Ji
  surname: Wang
  fullname: Wang, Ji
  email: doctorwang2009@126.com
  organization: National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
– sequence: 5
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  email: wangqi710@126.com
  organization: National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35680038$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtuFDEUQC0URDaBD6BBLmlm47e9okIJj0iRaEJDY3k8d3a9mbEX2xs0NT_OLJtQUCTVLXyOpXvPGTqJKQJCbylZUkLVxXa5hd2SEcaWlEohzAu0oEazRkvNT9CCcG0aowU9RWelbAkhmgryCp1yqQwh3CzQ7-tYYZ1dDfeAXXTDVELBqccR6q-U7_Bu4_LofBrSepqBDu9yqpDG4AuuCYcOYg39hO9gwtXlNdS_-u1-RmLzYxNqaK7AJ19DirhPGbthgLwOHudNiPNzeY1e9m4o8OZhnqPvnz_dXn5tbr59ub78eNN4YWRtoJPam075FkApQrUn3DOiiFCdajXvyYq3jAvpDe1lC6sV15S3EpyUrIOOn6P3x3_nFX7uoVQ7huJhGFyEtC-WGUa5MHyln0c1NUwIrszzqNJSEU7pakbfPaD7doTO7nIYXZ7sY44ZoEfA51RKhv4fQok9JLdbOye3h-T2mHx29H-OD9Udrl2zC8OT5oejCfPR7wNkW3yA6KELGXy1XQpP2H8AJzzG3w
CitedBy_id crossref_primary_10_1007_s12602_025_10547_w
crossref_primary_10_1016_j_jpba_2023_115294
crossref_primary_10_1016_j_cpan_2024_12_002
crossref_primary_10_3389_fphar_2022_1062026
crossref_primary_10_5582_ddt_2025_01059
crossref_primary_10_1186_s13020_023_00853_2
crossref_primary_10_3389_fimmu_2024_1492181
crossref_primary_10_1016_j_jep_2023_116170
crossref_primary_10_1016_j_jep_2024_118102
crossref_primary_10_1016_j_psj_2023_102865
crossref_primary_10_1097_MD_0000000000039598
crossref_primary_10_3389_fgene_2024_1242974
crossref_primary_10_3389_fphar_2023_1213602
crossref_primary_10_1007_s00210_024_03353_8
crossref_primary_10_1016_j_allmed_2025_100029
crossref_primary_10_1364_BOE_555014
crossref_primary_10_3390_ph18040540
Cites_doi 10.1016/j.csbj.2021.05.015
10.1111/all.14067
10.1016/j.jdermsci.2007.01.001
10.1142/S0192415X19500204
10.1016/j.fitote.2020.104496
10.1016/j.jaci.2010.06.047
10.1186/s13223-020-00434-0
10.1093/nar/gkaa1063
10.3389/fimmu.2020.01368
10.1016/j.jaci.2015.10.050
10.1242/dev.137075
10.1155/2021/6694109
10.1111/all.12407
10.1093/database/baq020
10.1016/S0140-6736(11)60130-X
10.1016/j.intimp.2021.107590
10.2217/imt.15.1
10.1093/nar/gkx1037
10.1016/j.jaci.2017.08.039
10.1016/j.alit.2017.08.011
10.2500/aap.2020.41.200041
10.1111/all.12470
10.1016/j.jaci.2017.03.050
10.1097/ACI.0000000000000414
10.1186/1758-2946-6-13
10.1093/nar/gkaa1100
10.1111/all.14300
10.1016/j.rmed.2009.01.008
10.1016/j.jaci.2009.11.022
10.1097/MCP.0000000000000228
10.3389/fimmu.2018.01275
10.1093/nar/gkaa1074
10.1210/jc.2003-031562
10.1038/srep13127
10.1042/BSR20190673
10.1111/cea.13588
10.1038/s41401-019-0228-6
10.1093/nar/gky949
10.1016/j.intimp.2019.105676
10.1164/rccm.201408-1565OC
10.1016/j.molimm.2019.08.013
10.1093/nar/gku1205
10.1038/s41572-020-00227-0
10.1016/j.fct.2019.110924
10.3390/molecules23113039
10.1126/science.1100283
10.1016/j.jaci.2020.03.029
10.1186/1752-0509-8-S4-S11
10.1089/omi.2011.0118
10.1093/nar/29.1.137
10.1021/acs.jafc.0c00461
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jep.2022.115448
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-7573
ExternalDocumentID 35680038
10_1016_j_jep_2022_115448
S0378874122004871
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAWTL
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HX~
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSP
SSZ
T5K
TN5
WUQ
ZGI
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c485t-ed57c8d6cbee66017c03c206046d6b73f093b2345c81f5be993713b5ea552ded3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832827800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-8741
1872-7573
IngestDate Thu Oct 02 11:31:32 EDT 2025
Sun Sep 28 12:23:40 EDT 2025
Mon Sep 29 06:11:55 EDT 2025
Wed Feb 19 02:26:59 EST 2025
Tue Nov 18 20:24:45 EST 2025
Sat Nov 29 07:13:34 EST 2025
Fri Feb 23 02:40:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue NA
Keywords Network pharmacology
Tuomin-Zhiti-Decoction
Chinese herbal formula
Allergic rhinitis
Molecular docking
Proteomics
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c485t-ed57c8d6cbee66017c03c206046d6b73f093b2345c81f5be993713b5ea552ded3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35680038
PQID 2675603119
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2821348397
proquest_miscellaneous_2718244368
proquest_miscellaneous_2675603119
pubmed_primary_35680038
crossref_primary_10_1016_j_jep_2022_115448
crossref_citationtrail_10_1016_j_jep_2022_115448
elsevier_sciencedirect_doi_10_1016_j_jep_2022_115448
PublicationCentury 2000
PublicationDate 2022-10-05
PublicationDateYYYYMMDD 2022-10-05
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-05
  day: 05
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Journal of ethnopharmacology
PublicationTitleAlternate J Ethnopharmacol
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Cai, Wang (bib28) 2019; 39
Fang, Dong, Liu, Guo, Zhao, Zhang, Bu, Liu, Huo, Cao, Dong, Wu, Zeng, Wu, Zhao (bib14) 2021; 49
Guo, Li (bib19) 2019; 25
Pinelli, Ford (bib38) 2015; 7
Pharmacopoeia (bib37) 2020
Dorofeeva, Shilovskiy, Tulaeva, Focke-Tejkl, Flicker, Kudlay, Khaitov, Karsonova, Riabova, Karaulov, Khanferyan, Pickl, Wekerle, Valenta (bib13) 2021; 76
Chin, Chen, Wu, Ho, Ko, Lin (bib9) 2014; 8
consortium (bib11) 2019; 47
Zuberbier, Lötvall, Simoens, Subramanian, Church (bib57) 2014; 69
Greiner, Hellings, Rotiroti, Scadding (bib18) 2011; 378
Yu, Wang, Han, He (bib53) 2012; 16
Biethahn, Orinska, Vigorito, Goyeneche-Patino, Mirghomizadeh, Föger, Bulfone-Paus (bib3) 2014; 69
Lin, Zheng, Li, Yang, Hu (bib29) 2015; 5
Humbles, Lloyd, McMillan, Friend, Xanthou, McKenna, Ghiran, Gerard, Yu, Orkin, Gerard (bib22) 2004; 305
Pipet, Botturi, Pinot, Vervloet, Magnan (bib40) 2009; 103
Tulaeva, Kratzer, Campana, Curin, van Hage, Karsonova, Riabova, Karaulov, Khaitov, Pickl, Valenta (bib48) 2020; 11
Gon, Hashimoto (bib17) 2018; 67
Yu, Cui (bib54) 2016; 143
Bousquet, Anto, Bachert, Baiardini, Bosnic-Anticevich, Walter Canonica, Melén, Palomares, Scadding, Togias, Toppila-Salmi (bib4) 2020; 6
Piñero, Saüch, Sanz, Furlong (bib39) 2021; 19
Zheng, Wang, Zhang (bib56) 2018; 18
Meng, Wang, Zhang (bib33) 2019; 74
Fu, Ni, Wang, Hong (bib15) 2018; 23
Pechsrichuang, Jacquet (bib36) 2020; 50
Paiva Ferreira, Paiva Ferreira, Bezerra Barros, Mozzini Monteiro, de Araújo Silva, Pereira, Figueiredo, Alves, Rodrigues, Piuvezam (bib35) 2021; 96
Steelant, Seys, Van Gerven, Van Woensel, Farré, Wawrzyniak, Kortekaas Krohn, Bullens, Talavera, Raap, Boon, Akdis, Boeckxstaens, Ceuppens, Hellings (bib46) 2018; 141
Huimin Zhang, Ni, Yang, Zheng, Yin, Wang (bib21) 2012; 27
Lucas, Dorward, Sharma, Rennie, Felton, Alessandri, Duffin, Schwarze, Haslett, Rossi (bib31) 2015; 191
Cheng, Zhou, Liu, Wang, Xu (bib8) 2021; 2021
Brozek, Bousquet, Baena-Cagnani, Bonini, Canonica, Casale, van Wijk, Ohta, Zuberbier, Schünemann (bib6) 2010; 126
Pruitt, Maglott (bib41) 2001; 29
Ding, Li, Zhang, Ma, Zhao, Che, Cao, Wang, Liu, Zhang, He (bib12) 2020; 135
Vgontzas, Zoumakis, Bixler, Lin, Follett, Kales, Chrousos (bib49) 2004; 89
Liu, Grimm, Dai, Hou, Xiao, Cao (bib30) 2020; 41
Yanfei Zheng, Li, Zhang, Li, Chen, Tong, Sun, Jiao, Wang (bib52) 2014; 32
Jin, Ye, Luan, Liu, Zhang, Yang, Wang (bib24) 2020; 144
Wishart, Feunang, Guo, Lo, Marcu, Grant, Sajed, Johnson, Li, Sayeeda, Assempour, Iynkkaran, Liu, Maciejewski, Gale, Wilson, Chin, Cummings, Le, Pon, Knox, Wilson (bib51) 2018; 46
Massanari, Nelson, Casale, Busse, Kianifard, Geba, Zeldin (bib32) 2010; 125
Zhang, Hu, Cheng, Xu, Velickovic, He, Sun, He, Liu, Wu (bib55) 2020; 68
Safran, Dalah, Alexander, Rosen, Iny Stein, Shmoish, Nativ, Bahir, Doniger, Krug, Sirota-Madi, Olender, Golan, Stelzer, Harel, Lancet (bib44) 2010
Szklarczyk, Gable, Nastou, Lyon, Kirsch, Pyysalo, Doncheva, Legeay, Fang, Bork, Jensen, von Mering (bib47) 2021; 49
Komlósi, Kovács, Sokolowska, van de Veen, Akdis, Akdis (bib26) 2020; 40
Bui, Piao, Hyeon, Fan, Choi, Jung, Jang, Shin, Song, Chai (bib7) 2019; 47
Jafarinia, Sadat Hosseini, Kasiri, Fazel, Fathi, Ganjalikhani Hakemi, Eskandari (bib23) 2020; 16
Steelant, Farré, Wawrzyniak, Belmans, Dekimpe, Vanheel, Van Gerven, Kortekaas Krohn, Bullens, Ceuppens, Akdis, Boeckxstaens, Seys, Hellings (bib45) 2016; 137
Amberger, Bocchini, Schiettecatte, Scott, Hamosh (bib1) 2015; 43
Hou, Zhang, Gao, Sun, Wang, Qi, Chen, Gao (bib20) 2019; 74
Wise, Lin, Toskala, Orlandi, Akdis, Alt, Azar, Baroody, Bachert, Canonica, Chacko, Cingi, Ciprandi, Corey, Cox, Creticos, Custovic, Damask, DeConde, DelGaudio, Ebert, Eloy, Flanagan, Fokkens, Franzese, Gosepath, Halderman, Hamilton, Hoffman, Hohlfeld, Houser, Hwang, Incorvaia, Jarvis, Khalid, Kilpeläinen, Kingdom, Krouse, Larenas-Linnemann, Laury, Lee, Levy, Luong, Marple, McCoul, McMains, Melén, Mims, Moscato, Mullol, Nelson, Patadia, Pawankar, Pfaar, Platt, Reisacher, Rondón, Rudmik, Ryan, Sastre, Schlosser, Settipane, Sharma, Sheikh, Smith, Tantilipikorn, Tversky, Veling, Wang, Westman, Wickman, Zacharek (bib50) 2018; 8
Brożek, Bousquet, Agache, Agarwal, Bachert, Bosnic-Anticevich, Brignardello-Petersen, Canonica, Casale, Chavannes, Correia de Sousa, Cruz, Cuello-Garcia, Demoly, Dykewicz, Etxeandia-Ikobaltzeta, Florez, Fokkens, Fonseca, Hellings, Klimek, Kowalski, Kuna, Laisaar, Larenas-Linnemann, Lødrup Carlsen, Manning, Meltzer, Mullol, Muraro, O'Hehir, Ohta, Panzner, Papadopoulos, Park, Passalacqua, Pawankar, Price, Riva, Roldán, Ryan, Sadeghirad, Samolinski, Schmid-Grendelmeier, Sheikh, Togias, Valero, Valiulis, Valovirta, Ventresca, Wallace, Waserman, Wickman, Wiercioch, Yepes-Nuñez, Zhang, Zhang, Zidarn, Zuberbier, Schünemann (bib5) 2017; 140
Consortium (bib10) 2021; 49
Lee, Shim, Heo, Pae, Seo, Han, Sohn, Jang, Chung (bib27) 2007; 46
Andersson, Tufvesson, Diamant, Bjermer (bib2) 2016; 22
Kim, Kim, Jeong, Kim (bib25) 2019; 114
Rodríguez-Domínguez, Berings, Rohrbach, Huang, Curin, Gevaert, Matricardi, Valenta, Vrtala (bib42) 2020; 146
Ru, Li, Wang, Zhou, Li, Huang, Li, Guo, Tao, Yang, Xu, Li, Wang, Yang (bib43) 2014; 6
Gaudenzio, Marichal, Galli, Reber (bib16) 2018; 9
Nelson (bib34) 2020; 41
Wise (10.1016/j.jep.2022.115448_bib50) 2018; 8
Lin (10.1016/j.jep.2022.115448_bib29) 2015; 5
Steelant (10.1016/j.jep.2022.115448_bib45) 2016; 137
Brozek (10.1016/j.jep.2022.115448_bib6) 2010; 126
Fu (10.1016/j.jep.2022.115448_bib15) 2018; 23
Vgontzas (10.1016/j.jep.2022.115448_bib49) 2004; 89
Consortium (10.1016/j.jep.2022.115448_bib10) 2021; 49
Lee (10.1016/j.jep.2022.115448_bib27) 2007; 46
Liu (10.1016/j.jep.2022.115448_bib30) 2020; 41
Tulaeva (10.1016/j.jep.2022.115448_bib48) 2020; 11
Lucas (10.1016/j.jep.2022.115448_bib31) 2015; 191
Paiva Ferreira (10.1016/j.jep.2022.115448_bib35) 2021; 96
Pechsrichuang (10.1016/j.jep.2022.115448_bib36) 2020; 50
Chin (10.1016/j.jep.2022.115448_bib9) 2014; 8
Kim (10.1016/j.jep.2022.115448_bib25) 2019; 114
Pinelli (10.1016/j.jep.2022.115448_bib38) 2015; 7
Cheng (10.1016/j.jep.2022.115448_bib8) 2021; 2021
Ru (10.1016/j.jep.2022.115448_bib43) 2014; 6
Greiner (10.1016/j.jep.2022.115448_bib18) 2011; 378
Huimin Zhang (10.1016/j.jep.2022.115448_bib21) 2012; 27
Steelant (10.1016/j.jep.2022.115448_bib46) 2018; 141
Ding (10.1016/j.jep.2022.115448_bib12) 2020; 135
Rodríguez-Domínguez (10.1016/j.jep.2022.115448_bib42) 2020; 146
Amberger (10.1016/j.jep.2022.115448_bib1) 2015; 43
Nelson (10.1016/j.jep.2022.115448_bib34) 2020; 41
Wishart (10.1016/j.jep.2022.115448_bib51) 2018; 46
Hou (10.1016/j.jep.2022.115448_bib20) 2019; 74
Komlósi (10.1016/j.jep.2022.115448_bib26) 2020; 40
Pipet (10.1016/j.jep.2022.115448_bib40) 2009; 103
Dorofeeva (10.1016/j.jep.2022.115448_bib13) 2021; 76
Gaudenzio (10.1016/j.jep.2022.115448_bib16) 2018; 9
Jin (10.1016/j.jep.2022.115448_bib24) 2020; 144
Piñero (10.1016/j.jep.2022.115448_bib39) 2021; 19
Andersson (10.1016/j.jep.2022.115448_bib2) 2016; 22
Fang (10.1016/j.jep.2022.115448_bib14) 2021; 49
Yu (10.1016/j.jep.2022.115448_bib54) 2016; 143
Zuberbier (10.1016/j.jep.2022.115448_bib57) 2014; 69
Zheng (10.1016/j.jep.2022.115448_bib56) 2018; 18
Brożek (10.1016/j.jep.2022.115448_bib5) 2017; 140
Pharmacopoeia (10.1016/j.jep.2022.115448_bib37) 2020
Safran (10.1016/j.jep.2022.115448_bib44) 2010; 2010
Guo (10.1016/j.jep.2022.115448_bib19) 2019; 25
consortium (10.1016/j.jep.2022.115448_bib11) 2019; 47
Jafarinia (10.1016/j.jep.2022.115448_bib23) 2020; 16
Pruitt (10.1016/j.jep.2022.115448_bib41) 2001; 29
Meng (10.1016/j.jep.2022.115448_bib33) 2019; 74
Humbles (10.1016/j.jep.2022.115448_bib22) 2004; 305
Bui (10.1016/j.jep.2022.115448_bib7) 2019; 47
Massanari (10.1016/j.jep.2022.115448_bib32) 2010; 125
Yu (10.1016/j.jep.2022.115448_bib53) 2012; 16
Gon (10.1016/j.jep.2022.115448_bib17) 2018; 67
Biethahn (10.1016/j.jep.2022.115448_bib3) 2014; 69
Bousquet (10.1016/j.jep.2022.115448_bib4) 2020; 6
Zhang (10.1016/j.jep.2022.115448_bib55) 2020; 68
Lin (10.1016/j.jep.2022.115448_bib28) 2019; 39
Szklarczyk (10.1016/j.jep.2022.115448_bib47) 2021; 49
Yanfei Zheng (10.1016/j.jep.2022.115448_bib52) 2014; 32
References_xml – volume: 46
  start-page: D1074
  year: 2018
  end-page: d1082
  ident: bib51
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res.
– year: 2010
  ident: bib44
  article-title: GeneCards Version 3: the human gene integrator
  publication-title: Database (Oxford) 2010
– volume: 25
  start-page: 9262
  year: 2019
  end-page: 9271
  ident: bib19
  article-title: Bioinformatics analysis of key genes and pathways associated with thrombosis in essential thrombocythemia
  publication-title: Med. Sci. Mon. Int. Med. J. Exp. Clin. Res.
– volume: 43
  start-page: D789
  year: 2015
  end-page: D798
  ident: bib1
  article-title: OMIM.org: online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders
  publication-title: Nucleic Acids Res.
– volume: 49
  start-page: D605
  year: 2021
  end-page: d612
  ident: bib47
  article-title: The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets
  publication-title: Nucleic Acids Res.
– volume: 76
  start-page: 131
  year: 2021
  end-page: 149
  ident: bib13
  article-title: Past, present, and future of allergen immunotherapy vaccines
  publication-title: Allergy
– volume: 18
  start-page: 16
  year: 2018
  end-page: 25
  ident: bib56
  article-title: Association between allergic and nonallergic rhinitis and obstructive sleep apnea
  publication-title: Curr. Opin. Allergy Clin. Immunol.
– volume: 8
  start-page: 108
  year: 2018
  end-page: 352
  ident: bib50
  article-title: International consensus statement on allergy and rhinology: allergic rhinitis
  publication-title: Int. Forum. Allergy Rhinol.
– volume: 6
  start-page: 95
  year: 2020
  ident: bib4
  article-title: Allergic rhinitis
  publication-title: Nat. Rev. Dis. Prim.
– volume: 143
  start-page: 3050
  year: 2016
  end-page: 3060
  ident: bib54
  article-title: Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination
  publication-title: Development
– volume: 6
  start-page: 13
  year: 2014
  ident: bib43
  article-title: TCMSP: a database of systems pharmacology for drug discovery from herbal medicines
  publication-title: J. Cheminf.
– volume: 23
  year: 2018
  ident: bib15
  article-title: Coptisine suppresses mast cell degranulation and ovalbumin-induced allergic rhinitis
  publication-title: Molecules
– year: 2020
  ident: bib37
  article-title: Pharmacopoeia of the People’s Republic of China 2020 Edition
– volume: 74
  start-page: 2320
  year: 2019
  end-page: 2328
  ident: bib33
  article-title: Recent developments and highlights in allergic rhinitis
  publication-title: Allergy
– volume: 29
  start-page: 137
  year: 2001
  end-page: 140
  ident: bib41
  article-title: RefSeq and LocusLink: NCBI gene-centered resources
  publication-title: Nucleic Acids Res.
– volume: 140
  start-page: 950
  year: 2017
  end-page: 958
  ident: bib5
  article-title: Allergic rhinitis and its impact on asthma (ARIA) guidelines-2016 revision
  publication-title: J. Allergy Clin. Immunol.
– volume: 305
  start-page: 1776
  year: 2004
  end-page: 1779
  ident: bib22
  article-title: A critical role for eosinophils in allergic airways remodeling
  publication-title: Science
– volume: 50
  start-page: 543
  year: 2020
  end-page: 557
  ident: bib36
  article-title: Molecular approaches to allergen-specific immunotherapy: are we so far from clinical implementation?
  publication-title: Clin. Exp. Allergy
– volume: 11
  start-page: 1368
  year: 2020
  ident: bib48
  article-title: Preventive allergen-specific vaccination against allergy: mission possible?
  publication-title: Front. Immunol.
– volume: 47
  start-page: D520
  year: 2019
  end-page: d528
  ident: bib11
  article-title: Protein Data Bank: the single global archive for 3D macromolecular structure data
  publication-title: Nucleic Acids Res.
– volume: 103
  start-page: 800
  year: 2009
  end-page: 812
  ident: bib40
  article-title: Allergen-specific immunotherapy in allergic rhinitis and asthma. Mechanisms and proof of efficacy
  publication-title: Respir. Med.
– volume: 5
  start-page: 13127
  year: 2015
  ident: bib29
  article-title: Lentiviral shRNA against KCa3.1 inhibits allergic response in allergic rhinitis and suppresses mast cell activity via PI3K/AKT signaling pathway
  publication-title: Sci. Rep.
– volume: 8
  start-page: S11
  year: 2014
  ident: bib9
  article-title: cytoHubba: identifying hub objects and sub-networks from complex interactome
  publication-title: BMC Syst. Biol.
– volume: 22
  start-page: 10
  year: 2016
  end-page: 17
  ident: bib2
  article-title: Revisiting the role of the mast cell in asthma
  publication-title: Curr. Opin. Pulm. Med.
– volume: 16
  start-page: 36
  year: 2020
  ident: bib23
  article-title: Quercetin with the potential effect on allergic diseases
  publication-title: Allergy Asthma Clin. Immunol.
– volume: 7
  start-page: 399
  year: 2015
  end-page: 410
  ident: bib38
  article-title: Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance
  publication-title: Immunotherapy
– volume: 40
  start-page: 15
  year: 2020
  end-page: 24
  ident: bib26
  article-title: Highlights of novel vaccination strategies in allergen immunotherapy
  publication-title: Immunol. Allergy Clin.
– volume: 41
  start-page: 138
  year: 2020
  end-page: 144
  ident: bib30
  article-title: CB-Dock: a web server for cavity detection-guided protein-ligand blind docking
  publication-title: Acta Pharmacol. Sin.
– volume: 146
  start-page: 1097
  year: 2020
  end-page: 1108
  ident: bib42
  article-title: Molecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy
  publication-title: J. Allergy Clin. Immunol.
– volume: 126
  start-page: 466
  year: 2010
  end-page: 476
  ident: bib6
  article-title: Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision
  publication-title: J. Allergy Clin. Immunol.
– volume: 144
  start-page: 104496
  year: 2020
  ident: bib24
  article-title: Tussilagone inhibits allergic responses in OVA-induced allergic rhinitis Guinea pigs and IgE-stimulated RBL-2H3 cells
  publication-title: Fitoterapia
– volume: 378
  start-page: 2112
  year: 2011
  end-page: 2122
  ident: bib18
  article-title: Allergic rhinitis
  publication-title: Lancet
– volume: 74
  start-page: 105676
  year: 2019
  ident: bib20
  article-title: Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis
  publication-title: Int. Immunopharm.
– volume: 69
  start-page: 752
  year: 2014
  end-page: 762
  ident: bib3
  article-title: miRNA-155 controls mast cell activation by regulating the PI3Kγ pathway and anaphylaxis in a mouse model
  publication-title: Allergy
– volume: 19
  start-page: 2960
  year: 2021
  end-page: 2967
  ident: bib39
  article-title: The DisGeNET cytoscape app: exploring and visualizing disease genomics data
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 32
  start-page: 1874
  year: 2014
  end-page: 1876
  ident: bib52
  article-title: Discussion on mechanism of tuomin zhiti decoction based on theory of constitution of TCM for of Th1/Th2 balance regulation
  publication-title: Chin. Arch. Tradit. Chin. Med.
– volume: 39
  year: 2019
  ident: bib28
  article-title: Honeysuckle extract relieves ovalbumin-induced allergic rhinitis by inhibiting AR-induced inflammation and autoimmunity
  publication-title: Biosci. Rep.
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  ident: bib53
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: Omics
– volume: 114
  start-page: 362
  year: 2019
  end-page: 368
  ident: bib25
  article-title: Potential anti-inflammatory effect of Madi-Ryuk and its active ingredient tannic acid on allergic rhinitis
  publication-title: Mol. Immunol.
– volume: 47
  start-page: 405
  year: 2019
  end-page: 421
  ident: bib7
  article-title: Preventive effect of bupleurum chinense on nasal inflammation via suppressing T helper type 2, eosinophil and mast cell activation
  publication-title: Am. J. Chin. Med.
– volume: 2021
  start-page: 6694109
  year: 2021
  ident: bib8
  article-title: The role of CD40 in allergic rhinitis and airway remodelling
  publication-title: Mediat. Inflamm.
– volume: 69
  start-page: 1275
  year: 2014
  end-page: 1279
  ident: bib57
  article-title: Economic burden of inadequate management of allergic diseases in the European Union: a GA(2) LEN review
  publication-title: Allergy
– volume: 125
  start-page: 383
  year: 2010
  end-page: 389
  ident: bib32
  article-title: Effect of pretreatment with omalizumab on the tolerability of specific immunotherapy in allergic asthma
  publication-title: J. Allergy Clin. Immunol.
– volume: 191
  start-page: 626
  year: 2015
  end-page: 636
  ident: bib31
  article-title: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 137
  start-page: 1043
  year: 2016
  end-page: 1053
  ident: bib45
  article-title: Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression
  publication-title: J. Allergy Clin. Immunol.
– volume: 96
  start-page: 107590
  year: 2021
  ident: bib35
  article-title: MHTP, a synthetic alkaloid, attenuates combined allergic rhinitis and asthma syndrome through downregulation of the p38/ERK1/2 MAPK signaling pathway in mice
  publication-title: Int. Immunopharm.
– volume: 135
  start-page: 110924
  year: 2020
  ident: bib12
  article-title: Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis
  publication-title: Food Chem. Toxicol.
– volume: 46
  start-page: 31
  year: 2007
  end-page: 40
  ident: bib27
  article-title: Wogonin suppresses TARC expression induced by mite antigen via heme oxygenase 1 in human keratinocytes. Suppressive effect of wogonin on mite antigen-induced TARC expression
  publication-title: J. Dermatol. Sci.
– volume: 89
  start-page: 2119
  year: 2004
  end-page: 2126
  ident: bib49
  article-title: Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 27
  start-page: 492
  year: 2012
  end-page: 495
  ident: bib21
  article-title: Case series reports of 52 allergic rhinitis adults treating by Tuomin Zhiti Decoction
  publication-title: China J. Tradit. Chin. Med. Pharm.
– volume: 49
  start-page: D480
  year: 2021
  end-page: d489
  ident: bib10
  article-title: UniProt: the universal protein knowledgebase in 2021
  publication-title: Nucleic Acids Res.
– volume: 68
  start-page: 4027
  year: 2020
  end-page: 4035
  ident: bib55
  article-title: Changes in allergenicity of ovalbumin in vitro and in vivo on conjugation with quercetin
  publication-title: J. Agric. Food Chem.
– volume: 9
  start-page: 1275
  year: 2018
  ident: bib16
  article-title: Genetic and imaging approaches reveal pro-inflammatory and immunoregulatory roles of mast cells in contact hypersensitivity
  publication-title: Front. Immunol.
– volume: 141
  start-page: 951
  year: 2018
  end-page: 963
  ident: bib46
  article-title: Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis
  publication-title: J. Allergy Clin. Immunol.
– volume: 49
  start-page: D1197
  year: 2021
  end-page: d1206
  ident: bib14
  article-title: HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine
  publication-title: Nucleic Acids Res.
– volume: 67
  start-page: 12
  year: 2018
  end-page: 17
  ident: bib17
  article-title: Role of airway epithelial barrier dysfunction in pathogenesis of asthma
  publication-title: Allergol. Int.
– volume: 41
  start-page: 314
  year: 2020
  end-page: 325
  ident: bib34
  article-title: Allergy immunotherapy: future directions for the 2020s
  publication-title: Allergy Asthma Proc.
– volume: 19
  start-page: 2960
  year: 2021
  ident: 10.1016/j.jep.2022.115448_bib39
  article-title: The DisGeNET cytoscape app: exploring and visualizing disease genomics data
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.05.015
– volume: 74
  start-page: 2320
  issue: 12
  year: 2019
  ident: 10.1016/j.jep.2022.115448_bib33
  article-title: Recent developments and highlights in allergic rhinitis
  publication-title: Allergy
  doi: 10.1111/all.14067
– volume: 46
  start-page: 31
  issue: 1
  year: 2007
  ident: 10.1016/j.jep.2022.115448_bib27
  article-title: Wogonin suppresses TARC expression induced by mite antigen via heme oxygenase 1 in human keratinocytes. Suppressive effect of wogonin on mite antigen-induced TARC expression
  publication-title: J. Dermatol. Sci.
  doi: 10.1016/j.jdermsci.2007.01.001
– volume: 47
  start-page: 405
  issue: 2
  year: 2019
  ident: 10.1016/j.jep.2022.115448_bib7
  article-title: Preventive effect of bupleurum chinense on nasal inflammation via suppressing T helper type 2, eosinophil and mast cell activation
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X19500204
– volume: 144
  start-page: 104496
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib24
  article-title: Tussilagone inhibits allergic responses in OVA-induced allergic rhinitis Guinea pigs and IgE-stimulated RBL-2H3 cells
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2020.104496
– volume: 126
  start-page: 466
  issue: 3
  year: 2010
  ident: 10.1016/j.jep.2022.115448_bib6
  article-title: Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2010.06.047
– volume: 16
  start-page: 36
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib23
  article-title: Quercetin with the potential effect on allergic diseases
  publication-title: Allergy Asthma Clin. Immunol.
  doi: 10.1186/s13223-020-00434-0
– volume: 49
  start-page: D1197
  issue: D1
  year: 2021
  ident: 10.1016/j.jep.2022.115448_bib14
  article-title: HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1063
– volume: 11
  start-page: 1368
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib48
  article-title: Preventive allergen-specific vaccination against allergy: mission possible?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01368
– volume: 137
  start-page: 1043
  issue: 4
  year: 2016
  ident: 10.1016/j.jep.2022.115448_bib45
  article-title: Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2015.10.050
– volume: 143
  start-page: 3050
  issue: 17
  year: 2016
  ident: 10.1016/j.jep.2022.115448_bib54
  article-title: Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination
  publication-title: Development
  doi: 10.1242/dev.137075
– volume: 2021
  start-page: 6694109
  year: 2021
  ident: 10.1016/j.jep.2022.115448_bib8
  article-title: The role of CD40 in allergic rhinitis and airway remodelling
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2021/6694109
– volume: 8
  start-page: 108
  issue: 2
  year: 2018
  ident: 10.1016/j.jep.2022.115448_bib50
  article-title: International consensus statement on allergy and rhinology: allergic rhinitis
  publication-title: Int. Forum. Allergy Rhinol.
– volume: 69
  start-page: 752
  issue: 6
  year: 2014
  ident: 10.1016/j.jep.2022.115448_bib3
  article-title: miRNA-155 controls mast cell activation by regulating the PI3Kγ pathway and anaphylaxis in a mouse model
  publication-title: Allergy
  doi: 10.1111/all.12407
– volume: 2010
  year: 2010
  ident: 10.1016/j.jep.2022.115448_bib44
  article-title: GeneCards Version 3: the human gene integrator
  publication-title: Database (Oxford)
  doi: 10.1093/database/baq020
– volume: 378
  start-page: 2112
  issue: 9809
  year: 2011
  ident: 10.1016/j.jep.2022.115448_bib18
  article-title: Allergic rhinitis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60130-X
– volume: 96
  start-page: 107590
  year: 2021
  ident: 10.1016/j.jep.2022.115448_bib35
  article-title: MHTP, a synthetic alkaloid, attenuates combined allergic rhinitis and asthma syndrome through downregulation of the p38/ERK1/2 MAPK signaling pathway in mice
  publication-title: Int. Immunopharm.
  doi: 10.1016/j.intimp.2021.107590
– volume: 25
  start-page: 9262
  year: 2019
  ident: 10.1016/j.jep.2022.115448_bib19
  article-title: Bioinformatics analysis of key genes and pathways associated with thrombosis in essential thrombocythemia
  publication-title: Med. Sci. Mon. Int. Med. J. Exp. Clin. Res.
– volume: 7
  start-page: 399
  issue: 4
  year: 2015
  ident: 10.1016/j.jep.2022.115448_bib38
  article-title: Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance
  publication-title: Immunotherapy
  doi: 10.2217/imt.15.1
– volume: 32
  start-page: 1874
  issue: 8
  year: 2014
  ident: 10.1016/j.jep.2022.115448_bib52
  article-title: Discussion on mechanism of tuomin zhiti decoction based on theory of constitution of TCM for of Th1/Th2 balance regulation
  publication-title: Chin. Arch. Tradit. Chin. Med.
– year: 2020
  ident: 10.1016/j.jep.2022.115448_bib37
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  ident: 10.1016/j.jep.2022.115448_bib51
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1037
– volume: 141
  start-page: 951
  issue: 3
  year: 2018
  ident: 10.1016/j.jep.2022.115448_bib46
  article-title: Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2017.08.039
– volume: 67
  start-page: 12
  issue: 1
  year: 2018
  ident: 10.1016/j.jep.2022.115448_bib17
  article-title: Role of airway epithelial barrier dysfunction in pathogenesis of asthma
  publication-title: Allergol. Int.
  doi: 10.1016/j.alit.2017.08.011
– volume: 41
  start-page: 314
  issue: 5
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib34
  article-title: Allergy immunotherapy: future directions for the 2020s
  publication-title: Allergy Asthma Proc.
  doi: 10.2500/aap.2020.41.200041
– volume: 27
  start-page: 492
  issue: 2
  year: 2012
  ident: 10.1016/j.jep.2022.115448_bib21
  article-title: Case series reports of 52 allergic rhinitis adults treating by Tuomin Zhiti Decoction
  publication-title: China J. Tradit. Chin. Med. Pharm.
– volume: 69
  start-page: 1275
  issue: 10
  year: 2014
  ident: 10.1016/j.jep.2022.115448_bib57
  article-title: Economic burden of inadequate management of allergic diseases in the European Union: a GA(2) LEN review
  publication-title: Allergy
  doi: 10.1111/all.12470
– volume: 140
  start-page: 950
  issue: 4
  year: 2017
  ident: 10.1016/j.jep.2022.115448_bib5
  article-title: Allergic rhinitis and its impact on asthma (ARIA) guidelines-2016 revision
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2017.03.050
– volume: 18
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.jep.2022.115448_bib56
  article-title: Association between allergic and nonallergic rhinitis and obstructive sleep apnea
  publication-title: Curr. Opin. Allergy Clin. Immunol.
  doi: 10.1097/ACI.0000000000000414
– volume: 6
  start-page: 13
  year: 2014
  ident: 10.1016/j.jep.2022.115448_bib43
  article-title: TCMSP: a database of systems pharmacology for drug discovery from herbal medicines
  publication-title: J. Cheminf.
  doi: 10.1186/1758-2946-6-13
– volume: 49
  start-page: D480
  issue: D1
  year: 2021
  ident: 10.1016/j.jep.2022.115448_bib10
  article-title: UniProt: the universal protein knowledgebase in 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1100
– volume: 76
  start-page: 131
  issue: 1
  year: 2021
  ident: 10.1016/j.jep.2022.115448_bib13
  article-title: Past, present, and future of allergen immunotherapy vaccines
  publication-title: Allergy
  doi: 10.1111/all.14300
– volume: 103
  start-page: 800
  issue: 6
  year: 2009
  ident: 10.1016/j.jep.2022.115448_bib40
  article-title: Allergen-specific immunotherapy in allergic rhinitis and asthma. Mechanisms and proof of efficacy
  publication-title: Respir. Med.
  doi: 10.1016/j.rmed.2009.01.008
– volume: 125
  start-page: 383
  issue: 2
  year: 2010
  ident: 10.1016/j.jep.2022.115448_bib32
  article-title: Effect of pretreatment with omalizumab on the tolerability of specific immunotherapy in allergic asthma
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2009.11.022
– volume: 22
  start-page: 10
  issue: 1
  year: 2016
  ident: 10.1016/j.jep.2022.115448_bib2
  article-title: Revisiting the role of the mast cell in asthma
  publication-title: Curr. Opin. Pulm. Med.
  doi: 10.1097/MCP.0000000000000228
– volume: 9
  start-page: 1275
  year: 2018
  ident: 10.1016/j.jep.2022.115448_bib16
  article-title: Genetic and imaging approaches reveal pro-inflammatory and immunoregulatory roles of mast cells in contact hypersensitivity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01275
– volume: 49
  start-page: D605
  issue: D1
  year: 2021
  ident: 10.1016/j.jep.2022.115448_bib47
  article-title: The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1074
– volume: 89
  start-page: 2119
  issue: 5
  year: 2004
  ident: 10.1016/j.jep.2022.115448_bib49
  article-title: Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2003-031562
– volume: 5
  start-page: 13127
  year: 2015
  ident: 10.1016/j.jep.2022.115448_bib29
  article-title: Lentiviral shRNA against KCa3.1 inhibits allergic response in allergic rhinitis and suppresses mast cell activity via PI3K/AKT signaling pathway
  publication-title: Sci. Rep.
  doi: 10.1038/srep13127
– volume: 39
  issue: 7
  year: 2019
  ident: 10.1016/j.jep.2022.115448_bib28
  article-title: Honeysuckle extract relieves ovalbumin-induced allergic rhinitis by inhibiting AR-induced inflammation and autoimmunity
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20190673
– volume: 50
  start-page: 543
  issue: 5
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib36
  article-title: Molecular approaches to allergen-specific immunotherapy: are we so far from clinical implementation?
  publication-title: Clin. Exp. Allergy
  doi: 10.1111/cea.13588
– volume: 41
  start-page: 138
  issue: 1
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib30
  article-title: CB-Dock: a web server for cavity detection-guided protein-ligand blind docking
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-019-0228-6
– volume: 47
  start-page: D520
  issue: D1
  year: 2019
  ident: 10.1016/j.jep.2022.115448_bib11
  article-title: Protein Data Bank: the single global archive for 3D macromolecular structure data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky949
– volume: 74
  start-page: 105676
  year: 2019
  ident: 10.1016/j.jep.2022.115448_bib20
  article-title: Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis
  publication-title: Int. Immunopharm.
  doi: 10.1016/j.intimp.2019.105676
– volume: 191
  start-page: 626
  issue: 6
  year: 2015
  ident: 10.1016/j.jep.2022.115448_bib31
  article-title: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201408-1565OC
– volume: 114
  start-page: 362
  year: 2019
  ident: 10.1016/j.jep.2022.115448_bib25
  article-title: Potential anti-inflammatory effect of Madi-Ryuk and its active ingredient tannic acid on allergic rhinitis
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2019.08.013
– volume: 43
  start-page: D789
  year: 2015
  ident: 10.1016/j.jep.2022.115448_bib1
  article-title: OMIM.org: online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1205
– volume: 6
  start-page: 95
  issue: 1
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib4
  article-title: Allergic rhinitis
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/s41572-020-00227-0
– volume: 40
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib26
  article-title: Highlights of novel vaccination strategies in allergen immunotherapy
  publication-title: Immunol. Allergy Clin.
– volume: 135
  start-page: 110924
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib12
  article-title: Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2019.110924
– volume: 23
  issue: 11
  year: 2018
  ident: 10.1016/j.jep.2022.115448_bib15
  article-title: Coptisine suppresses mast cell degranulation and ovalbumin-induced allergic rhinitis
  publication-title: Molecules
  doi: 10.3390/molecules23113039
– volume: 305
  start-page: 1776
  issue: 5691
  year: 2004
  ident: 10.1016/j.jep.2022.115448_bib22
  article-title: A critical role for eosinophils in allergic airways remodeling
  publication-title: Science
  doi: 10.1126/science.1100283
– volume: 146
  start-page: 1097
  issue: 5
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib42
  article-title: Molecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2020.03.029
– volume: 8
  start-page: S11
  issue: Suppl. 4
  year: 2014
  ident: 10.1016/j.jep.2022.115448_bib9
  article-title: cytoHubba: identifying hub objects and sub-networks from complex interactome
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-8-S4-S11
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: 10.1016/j.jep.2022.115448_bib53
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: Omics
  doi: 10.1089/omi.2011.0118
– volume: 29
  start-page: 137
  issue: 1
  year: 2001
  ident: 10.1016/j.jep.2022.115448_bib41
  article-title: RefSeq and LocusLink: NCBI gene-centered resources
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.1.137
– volume: 68
  start-page: 4027
  issue: 13
  year: 2020
  ident: 10.1016/j.jep.2022.115448_bib55
  article-title: Changes in allergenicity of ovalbumin in vitro and in vivo on conjugation with quercetin
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c00461
SSID ssj0007140
Score 2.4901197
Snippet Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal...
Ethnopharmacological relevance Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115448
SubjectTerms Allergic rhinitis
Chinese herbal formula
drugs
gene expression regulation
histamine
histopathology
immunoglobulin E
interleukin-6
Molecular docking
nasal mucosa
Network pharmacology
Oriental traditional medicine
ovalbumin
pharmacology
Proteomics
quercetin
therapeutics
Tuomin-Zhiti-Decoction
Title Integrative analysis of network pharmacology and proteomics to identify key targets of Tuomin-Zhiti-Decoction for allergic rhinitis
URI https://dx.doi.org/10.1016/j.jep.2022.115448
https://www.ncbi.nlm.nih.gov/pubmed/35680038
https://www.proquest.com/docview/2675603119
https://www.proquest.com/docview/2718244368
https://www.proquest.com/docview/2821348397
Volume 296
WOSCitedRecordID wos000832827800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7573
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007140
  issn: 0378-8741
  databaseCode: AIEXJ
  dateStart: 20120507
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxoEL4jflx2QktANdqiaOY-c4wRBDYqpEkQqXKHGcNVXlVG06rWcO_Ns8x3ESMVoBEpeoimwn6ffZfs9-7zNCr2GGcDlLpSN8JhyfSd_hceg7rowJSUmQSldUh02wiws-nYbjXu-HzYW5WjCl-PV1uPyvUMM9AFunzv4F3E2jcAN-A-hwBdjh-kfAn9cCEDokKO5IjigT8D1YtmLV21omoCilTk6uxB7yKnM32w6gdw9MnHhVfbKBIsr5NsvL3HkHTqtoohT1cSyrS60FPct1LNJ6h8Ury5kquo9vYwtkHRicq_mmoWuzmP1J5gs7xVb36-JfY5XJvN0TsI10lzLAC6424tv1tRs5NiavC_xczow81lCaYZoz8AuoOQTlxiRg1iPmw7nUgqSeN6wkh3g74zVxiJ9147ptTzOIay2CQ4_REIbHw9Pzs-nHZlJnJre2eRm7QV6FCv7yoF0mzi4XpjJlJvfQ3RoRfGq4cx_1pHqAjscGmO0JnrQ5eesTfIzHHcgeou8dgmFLMFxkuCYY7iIMBVLcEgyXBbYEw0AwXBNMV_89wTAQDFuCYUuwR-jL-7PJ2w9OfZQHjAGclo5MKRM8DUQiZRDALCBGRHhauClIg4SRbBSSxCM-FdzNaCK11eyShMqYUi-VKXmMDlSh5FOE3Zj5lFDfZQnz01TvszOekETqlGk3GfXRyP77kah17vVxK4vIBjTOIwAs0oBFBrA-etNUWRqRl32FfQtpVFupxvqMgH_7qr2y8EcwguttuVjJYrOOPPDZ9VnvbrinDJiQYIiTYF87XKszgsPD-uiJ4VfzNYQGXAcBPPu3l3-O7rT99QU6KFcb-RLdFleA-OoI3WJTflT3mJ9UbOhU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+analysis+of+network+pharmacology+and+proteomics+to+identify+key+targets+of+Tuomin-Zhiti-Decoction+for+allergic+rhinitis&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Cheng%2C+Jinjun&rft.au=Zhang%2C+Meiling&rft.au=Zheng%2C+Yanfei&rft.au=Wang%2C+Ji&rft.date=2022-10-05&rft.pub=Elsevier+B.V&rft.issn=0378-8741&rft.eissn=1872-7573&rft_id=info:doi/10.1016%2Fj.jep.2022.115448&rft.externalDocID=S0378874122004871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon