Bezdek-Type Fuzzified Co-Clustering Algorithm

In this study, two co-clustering algorithms based on Bezdek-type fuzzification of fuzzy clustering are proposed for categorical multivariate data. The two proposed algorithms are motivated by the fact that there are only two fuzzy co-clustering methods currently available – entropy regularization an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics Jg. 19; H. 6; S. 852 - 860
1. Verfasser: Kanzawa, Yuchi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 20.11.2015
ISSN:1343-0130, 1883-8014
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, two co-clustering algorithms based on Bezdek-type fuzzification of fuzzy clustering are proposed for categorical multivariate data. The two proposed algorithms are motivated by the fact that there are only two fuzzy co-clustering methods currently available – entropy regularization and quadratic regularization – whereas there are three fuzzy clustering methods for vectorial data: entropy regularization, quadratic regularization, and Bezdek-type fuzzification. The first proposed algorithm forms the basis of the second algorithm. The first algorithm is a variant of a spherical clustering method, with the kernelization of a maximizing model of Bezdek-type fuzzy clustering with multi-medoids. By interpreting the first algorithm in this way, the second algorithm, a spectral clustering approach, is obtained. Numerical examples demonstrate that the proposed algorithms can produce satisfactory results when suitable parameter values are selected.
AbstractList In this study, two co-clustering algorithms based on Bezdek-type fuzzification of fuzzy clustering are proposed for categorical multivariate data. The two proposed algorithms are motivated by the fact that there are only two fuzzy co-clustering methods currently available – entropy regularization and quadratic regularization – whereas there are three fuzzy clustering methods for vectorial data: entropy regularization, quadratic regularization, and Bezdek-type fuzzification. The first proposed algorithm forms the basis of the second algorithm. The first algorithm is a variant of a spherical clustering method, with the kernelization of a maximizing model of Bezdek-type fuzzy clustering with multi-medoids. By interpreting the first algorithm in this way, the second algorithm, a spectral clustering approach, is obtained. Numerical examples demonstrate that the proposed algorithms can produce satisfactory results when suitable parameter values are selected.
Author Kanzawa, Yuchi
Author_xml – sequence: 1
  givenname: Yuchi
  surname: Kanzawa
  fullname: Kanzawa, Yuchi
BookMark eNp9j71OwzAUhS1UJErpCzDlBVzudezEGUtEKVIlljJb8V9xSZPKSYfm6QktEwPTOWf4jvTdk0nTNo6QR4QFgyITT_vKhBDGgWJxBCnYDZmilCmVgHwy9pSnFDCFOzLvuj3A2FkGHKeEPrvBui-6PR9dsjoNQ_DB2aRsaVmfut7F0OySZb1rY-g_Dw_k1ld15-a_OSMfq5dtuaab99e3crmhhkvRU4cCQWcaJDJZWG-59V7njmU2dxaNddwbrQshTCE5Mp1LyKUxXjBtsgrTGZHXXxPbrovOKxP6qg9t08cq1ApBXczV1Vz9mKuL-YiyP-gxhkMVz_9B32I2YJo
CitedBy_id crossref_primary_10_20965_jaciii_2019_p0493
crossref_primary_10_20965_jaciii_2016_p0561
crossref_primary_10_20965_jaciii_2018_p0747
crossref_primary_10_20965_jaciii_2016_p0497
crossref_primary_10_20965_jaciii_2019_p0485
crossref_primary_10_20965_jaciii_2018_p0524
crossref_primary_10_20965_jaciii_2018_p0034
crossref_primary_10_20965_jaciii_2022_p0884
crossref_primary_10_20965_jaciii_2021_p0073
crossref_primary_10_20965_jaciii_2018_p0163
Cites_doi 10.1080/01969727308546046
10.1007/978-1-4757-0450-1
10.1103/PhysRevE.76.066102
10.1109/FUZZ.2003.1206527
10.1109/GRC.2014.6982819
10.1109/FUZZ-IEEE.2012.6250781
ContentType Journal Article
CorporateAuthor Shibaura Institute of Technology
CorporateAuthor_xml – name: Shibaura Institute of Technology
DBID AAYXX
CITATION
DOI 10.20965/jaciii.2015.p0852
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 860
ExternalDocumentID 10_20965_jaciii_2015_p0852
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ISHAI
JSI
JSP
P2P
RJT
RZJ
TUS
ID FETCH-LOGICAL-c485t-e1510b6b081289dfd4dffb7e26d7ed1cde4fcbb955c98412b78078ccf52bc6a13
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370191300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1343-0130
IngestDate Tue Nov 18 21:24:27 EST 2025
Sat Nov 29 07:51:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c485t-e1510b6b081289dfd4dffb7e26d7ed1cde4fcbb955c98412b78078ccf52bc6a13
OpenAccessLink https://doi.org/10.20965/jaciii.2015.p0852
PageCount 9
ParticipantIDs crossref_citationtrail_10_20965_jaciii_2015_p0852
crossref_primary_10_20965_jaciii_2015_p0852
PublicationCentury 2000
PublicationDate 2015-11-20
PublicationDateYYYYMMDD 2015-11-20
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-20
  day: 20
PublicationDecade 2010
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2015
References key-10.20965/jaciii.2015.p0852-9
key-10.20965/jaciii.2015.p0852-11
key-10.20965/jaciii.2015.p0852-10
key-10.20965/jaciii.2015.p0852-13
key-10.20965/jaciii.2015.p0852-12
key-10.20965/jaciii.2015.p0852-6
key-10.20965/jaciii.2015.p0852-5
key-10.20965/jaciii.2015.p0852-8
key-10.20965/jaciii.2015.p0852-7
key-10.20965/jaciii.2015.p0852-2
key-10.20965/jaciii.2015.p0852-1
key-10.20965/jaciii.2015.p0852-4
key-10.20965/jaciii.2015.p0852-3
References_xml – ident: key-10.20965/jaciii.2015.p0852-9
– ident: key-10.20965/jaciii.2015.p0852-2
  doi: 10.1080/01969727308546046
– ident: key-10.20965/jaciii.2015.p0852-3
  doi: 10.1007/978-1-4757-0450-1
– ident: key-10.20965/jaciii.2015.p0852-10
  doi: 10.1103/PhysRevE.76.066102
– ident: key-10.20965/jaciii.2015.p0852-12
– ident: key-10.20965/jaciii.2015.p0852-13
– ident: key-10.20965/jaciii.2015.p0852-11
– ident: key-10.20965/jaciii.2015.p0852-6
  doi: 10.1109/FUZZ.2003.1206527
– ident: key-10.20965/jaciii.2015.p0852-4
– ident: key-10.20965/jaciii.2015.p0852-5
– ident: key-10.20965/jaciii.2015.p0852-1
– ident: key-10.20965/jaciii.2015.p0852-8
  doi: 10.1109/GRC.2014.6982819
– ident: key-10.20965/jaciii.2015.p0852-7
  doi: 10.1109/FUZZ-IEEE.2012.6250781
SSID ssj0001326041
ssib051641541
Score 2.0439115
Snippet In this study, two co-clustering algorithms based on Bezdek-type fuzzification of fuzzy clustering are proposed for categorical multivariate data. The two...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 852
Title Bezdek-Type Fuzzified Co-Clustering Algorithm
Volume 19
WOSCitedRecordID wos000370191300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWgcODCN6J8KQdulWGd2LF9hBUVElLFoUjlFMVjG1Zss6vtLlT76xnbSdYtKqIHLlFkJaMkbzJ-40zmEfK6Rh-pNRPUW8kptyy8c0bRClRtjdVcthDFJuTRkTo50Z_7ctuzKCcgu06dn-vlf4UaxxDs8OvsNeAejeIA7iPouEXYcftPwL93W-t-0JBgHhxuttuZDyxzuqDT-SZ0RYjrIPNvi9Vs_f30Cm46VgZAFH0YFgxnef_O1LZpGAhKAz3_3ZXPf0Li2f6K9PRrEF3JlxgQOMZoOcmiYsVD0VX_AcWlMaWqML3xC6FUZy6Tx0WV2tQOU2ySELgcvcvQiSbKBkBorBGu5M1yMp6at8q-NIWNhYWY0kQrTbLRBBtNtHGT3Cql0CzLujHkCMwWkUSy3bIc0tkJT2l6f9PpV6to9u0fl5bRmYyXHN8nd3vQinfJER6QG657SO4NYh1FH7sfEZr5RTH6RXHBL4rRLx6TL4cfjqcfaa-VQYErsaYOmdvE1AYZHqbQ1ltuvTfSlbWVzjKwjnswRgsBWnFWGhmEBgC8KA3ULauekL1u0bmnpIBaV16ABWckL0touVfMqVqg2wnVtvuEDbfcQN9IPuiZzJurn_4-ORjPWaY2Kn85-tm1jn5O7uyc9gXZW6827iW5DT_Xs7PVqwj3b7tVbGI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bezdek-Type+Fuzzified+Co-Clustering+Algorithm&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Kanzawa%2C+Yuchi&rft.date=2015-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=19&rft.issue=6&rft.spage=852&rft.epage=860&rft_id=info:doi/10.20965%2Fjaciii.2015.p0852&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2015_p0852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon