Automatic Segmentation of Standing Trees from Forest Images Based on Deep Learning

Semantic segmentation of standing trees is important to obtain factors of standing trees from images automatically and effectively. Aiming at the accurate segmentation of multiple standing trees in complex backgrounds, some traditional methods have shortcomings such as low segmentation accuracy and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 17; s. 6663
Hlavní autoři: Shi, Lijuan, Wang, Guoying, Mo, Lufeng, Yi, Xiaomei, Wu, Xiaoping, Wu, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Semantic segmentation of standing trees is important to obtain factors of standing trees from images automatically and effectively. Aiming at the accurate segmentation of multiple standing trees in complex backgrounds, some traditional methods have shortcomings such as low segmentation accuracy and manual intervention. To achieve accurate segmentation of standing tree images effectively, SEMD, a lightweight network segmentation model based on deep learning, is proposed in this article. DeepLabV3+ is chosen as the base framework to perform multi-scale fusion of the convolutional features of the standing trees in images, so as to reduce the loss of image edge details during the standing tree segmentation and reduce the loss of feature information. MobileNet, a lightweight network, is integrated into the backbone network to reduce the computational complexity. Furthermore, SENet, an attention mechanism, is added to obtain the feature information efficiently and suppress the generation of useless feature information. The extensive experimental results show that using the SEMD model the MIoU of the semantic segmentation of standing tree images of different varieties and categories under simple and complex backgrounds reaches 91.78% and 86.90%, respectively. The lightweight network segmentation model SEMD based on deep learning proposed in this paper can solve the problem of multiple standing trees segmentation with high accuracy.
AbstractList Semantic segmentation of standing trees is important to obtain factors of standing trees from images automatically and effectively. Aiming at the accurate segmentation of multiple standing trees in complex backgrounds, some traditional methods have shortcomings such as low segmentation accuracy and manual intervention. To achieve accurate segmentation of standing tree images effectively, SEMD, a lightweight network segmentation model based on deep learning, is proposed in this article. DeepLabV3+ is chosen as the base framework to perform multi-scale fusion of the convolutional features of the standing trees in images, so as to reduce the loss of image edge details during the standing tree segmentation and reduce the loss of feature information. MobileNet, a lightweight network, is integrated into the backbone network to reduce the computational complexity. Furthermore, SENet, an attention mechanism, is added to obtain the feature information efficiently and suppress the generation of useless feature information. The extensive experimental results show that using the SEMD model the MIoU of the semantic segmentation of standing tree images of different varieties and categories under simple and complex backgrounds reaches 91.78% and 86.90%, respectively. The lightweight network segmentation model SEMD based on deep learning proposed in this paper can solve the problem of multiple standing trees segmentation with high accuracy.
Semantic segmentation of standing trees is important to obtain factors of standing trees from images automatically and effectively. Aiming at the accurate segmentation of multiple standing trees in complex backgrounds, some traditional methods have shortcomings such as low segmentation accuracy and manual intervention. To achieve accurate segmentation of standing tree images effectively, SEMD, a lightweight network segmentation model based on deep learning, is proposed in this article. DeepLabV3+ is chosen as the base framework to perform multi-scale fusion of the convolutional features of the standing trees in images, so as to reduce the loss of image edge details during the standing tree segmentation and reduce the loss of feature information. MobileNet, a lightweight network, is integrated into the backbone network to reduce the computational complexity. Furthermore, SENet, an attention mechanism, is added to obtain the feature information efficiently and suppress the generation of useless feature information. The extensive experimental results show that using the SEMD model the MIoU of the semantic segmentation of standing tree images of different varieties and categories under simple and complex backgrounds reaches 91.78% and 86.90%, respectively. The lightweight network segmentation model SEMD based on deep learning proposed in this paper can solve the problem of multiple standing trees segmentation with high accuracy.Semantic segmentation of standing trees is important to obtain factors of standing trees from images automatically and effectively. Aiming at the accurate segmentation of multiple standing trees in complex backgrounds, some traditional methods have shortcomings such as low segmentation accuracy and manual intervention. To achieve accurate segmentation of standing tree images effectively, SEMD, a lightweight network segmentation model based on deep learning, is proposed in this article. DeepLabV3+ is chosen as the base framework to perform multi-scale fusion of the convolutional features of the standing trees in images, so as to reduce the loss of image edge details during the standing tree segmentation and reduce the loss of feature information. MobileNet, a lightweight network, is integrated into the backbone network to reduce the computational complexity. Furthermore, SENet, an attention mechanism, is added to obtain the feature information efficiently and suppress the generation of useless feature information. The extensive experimental results show that using the SEMD model the MIoU of the semantic segmentation of standing tree images of different varieties and categories under simple and complex backgrounds reaches 91.78% and 86.90%, respectively. The lightweight network segmentation model SEMD based on deep learning proposed in this paper can solve the problem of multiple standing trees segmentation with high accuracy.
Audience Academic
Author Mo, Lufeng
Yi, Xiaomei
Wang, Guoying
Wu, Xiaoping
Wu, Peng
Shi, Lijuan
AuthorAffiliation 1 College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
2 School of Information Engineering, Huzhou University, Huzhou 313000, China
AuthorAffiliation_xml – name: 2 School of Information Engineering, Huzhou University, Huzhou 313000, China
– name: 1 College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
Author_xml – sequence: 1
  givenname: Lijuan
  surname: Shi
  fullname: Shi, Lijuan
– sequence: 2
  givenname: Guoying
  surname: Wang
  fullname: Wang, Guoying
– sequence: 3
  givenname: Lufeng
  surname: Mo
  fullname: Mo, Lufeng
– sequence: 4
  givenname: Xiaomei
  surname: Yi
  fullname: Yi, Xiaomei
– sequence: 5
  givenname: Xiaoping
  surname: Wu
  fullname: Wu, Xiaoping
– sequence: 6
  givenname: Peng
  orcidid: 0000-0001-8946-3447
  surname: Wu
  fullname: Wu, Peng
BookMark eNptkk1v1DAQhi1URNuFA_8gEhc4bOuP2I4vSNtCYaWVkGg5WxNnHLxK4sXOIvHv8XarilbIB4_Gz7zj-TgnJ1OckJC3jF4IYehl5pxppZR4Qc5Yzetlwzk9-cc-Jec5bynlQojmFTkVijaMcX5Gvq_2cxxhDq66xX7EaS52nKroq9sZpi5MfXWXEHPlUxyrm5gwz9V6hL64riBjVxX6E-Ku2iCkqfCvyUsPQ8Y3D_eC_Lj5fHf9dbn59mV9vdosXd3IeYmUq5YpZ2RnjJDSNFTWmgETQupGKABjgKKj4FsmOtVqYXynUXJBleJKLMj6qNtF2NpdCiOkPzZCsPeOmHoLqRQ2oNWNAm6gddia2nllGuCoZas9GOFLxgX5eNTa7dsRO1f6kGB4Ivr0ZQo_bR9_W1MrWsu6CLx_EEjx1770yI4hOxwGmDDus-Wa8UY2isuCvnuGbuM-TaVVB4rVpRHsIHhxpHooBYTJx5LXldPhGFyZvw_Fv9K1koLp-4APxwCXYs4J_ePvGbWHNbGPa1LYy2esC8fBlyRh-E_EX_MxvOs
CitedBy_id crossref_primary_10_3390_agronomy13082059
crossref_primary_10_3390_app14114884
crossref_primary_10_1007_s11676_025_01825_y
crossref_primary_10_1007_s00371_023_03218_w
crossref_primary_10_3390_jimaging9040074
crossref_primary_10_1016_j_isprsjprs_2024_01_012
crossref_primary_10_3390_f14081547
crossref_primary_10_3390_electronics13204139
crossref_primary_10_3390_rs16091643
crossref_primary_10_3390_electronics14132533
crossref_primary_10_3390_f14122334
crossref_primary_10_3390_jimaging10060132
crossref_primary_10_3390_f16030419
crossref_primary_10_1016_j_ufug_2024_128316
crossref_primary_10_3390_f14051054
Cites_doi 10.1016/j.isprsjprs.2017.02.011
10.3390/rs13163054
10.1109/TMM.2017.2728318
10.1109/CVPR.2017.660
10.1049/iet-ipr.2019.1462
10.3390/jmse9060671
10.1016/j.jvcir.2018.03.001
10.1016/j.patrec.2020.07.029
10.1109/CVPR.2018.00474
10.1007/s00530-022-00945-3
10.1109/IGARSS39084.2020.9324600
10.1109/TFUZZ.2016.2514366
10.1016/j.cviu.2015.08.009
10.1109/TPAMI.2016.2644615
10.1364/JOT.86.000570
10.1109/TMI.2020.3048055
10.1007/s13042-018-0889-3
10.1049/ipr2.12090
10.1016/j.patrec.2022.04.025
10.1007/978-3-030-01234-2_49
10.1016/j.jss.2017.06.032
10.1016/j.compag.2020.105952
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2015.7298965
10.1016/j.eswa.2022.118493
10.1109/TIP.2016.2577382
10.1109/ACCESS.2020.3021739
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22176663
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_786a29abceb94cf698a2e75b7fa93f13
PMC9460454
A746531714
10_3390_s22176663
GrantInformation_xml – fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2021C02005
– fundername: Natural Science Foundation of China
  grantid: U1809208
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c485t-e026b16c95d993559805471a13357836aa99a0ec0afb13d6b739fd7e523066263
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851983400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:08:19 EDT 2025
Tue Nov 04 02:05:42 EST 2025
Fri Sep 05 08:41:00 EDT 2025
Tue Oct 07 07:11:28 EDT 2025
Tue Nov 04 18:17:10 EST 2025
Sat Nov 29 07:17:32 EST 2025
Tue Nov 18 21:55:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-e026b16c95d993559805471a13357836aa99a0ec0afb13d6b739fd7e523066263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8946-3447
OpenAccessLink https://doaj.org/article/786a29abceb94cf698a2e75b7fa93f13
PMID 36081122
PQID 2711498014
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_786a29abceb94cf698a2e75b7fa93f13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460454
proquest_miscellaneous_2712858625
proquest_journals_2711498014
gale_infotracacademiconefile_A746531714
crossref_primary_10_3390_s22176663
crossref_citationtrail_10_3390_s22176663
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_4) 2021; 181
Chen (ref_13) 2017; 40
Tung (ref_23) 2016; 143
Roy (ref_11) 2020; 14
ref_12
ref_10
Liu (ref_25) 2018; 53
ref_30
Li (ref_24) 2016; 25
ref_19
ref_18
ref_16
Hu (ref_8) 2019; 10
Fang (ref_26) 2017; 220
Chen (ref_21) 2020; 15
Dechesne (ref_1) 2017; 126
Ge (ref_6) 2022; 158
Kim (ref_7) 2017; 20
ref_20
Yao (ref_3) 2016; 24
Baheti (ref_14) 2020; 138
Badrinarayanan (ref_28) 2017; 39
ref_2
Peng (ref_17) 2020; 8
ref_29
ref_27
ref_9
Yang (ref_15) 2019; 86
Ge (ref_5) 2022; 210
Nath (ref_22) 2020; 40
References_xml – volume: 126
  start-page: 129
  year: 2017
  ident: ref_1
  article-title: Semantic segmentation of forest stands of pure species combining airborne lidar data and very high resolution multispectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.02.011
– ident: ref_2
  doi: 10.3390/rs13163054
– volume: 20
  start-page: 208
  year: 2017
  ident: ref_7
  article-title: Interactive Image Segmentation Using Semi-transparent Wearable Glasses
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2017.2728318
– ident: ref_30
  doi: 10.1109/CVPR.2017.660
– volume: 14
  start-page: 1653
  year: 2020
  ident: ref_11
  article-title: FuSENet: Fused squeeze-and-excitation network for spectral-spatial hyperspectral image classification
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.1462
– ident: ref_16
  doi: 10.3390/jmse9060671
– volume: 53
  start-page: 76
  year: 2018
  ident: ref_25
  article-title: Rate control schemes for panoramic video coding
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2018.03.001
– volume: 138
  start-page: 223
  year: 2020
  ident: ref_14
  article-title: Semantic scene segmentation in unstructured environment with modified DeepLabV3+
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.029
– ident: ref_19
  doi: 10.1109/CVPR.2018.00474
– ident: ref_9
  doi: 10.1007/s00530-022-00945-3
– ident: ref_29
  doi: 10.1109/IGARSS39084.2020.9324600
– ident: ref_18
– volume: 24
  start-page: 1307
  year: 2016
  ident: ref_3
  article-title: A Big Bang-Big Crunch Type-2 Fuzzy Logic System for Machine-Vision-Based Event Detection and Summarization in Real-World Ambient-Assisted Living
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2016.2514366
– volume: 143
  start-page: 191
  year: 2016
  ident: ref_23
  article-title: Scene parsing by nonparametric label transfer of content-adaptive windows
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.08.009
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_28
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 86
  start-page: 570
  year: 2019
  ident: ref_15
  article-title: Real-time DeepLabv3+ for pedestrian segmentation
  publication-title: J. Opt. Technol.
  doi: 10.1364/JOT.86.000570
– volume: 40
  start-page: 2534
  year: 2020
  ident: ref_22
  article-title: Diminishing Uncertainty Within the Training Pool: Active Learning for Medical Image Segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3048055
– volume: 10
  start-page: 1909
  year: 2019
  ident: ref_8
  article-title: An end-to-end differential network learning method for semantic segmentation
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0889-3
– volume: 15
  start-page: 1115
  year: 2020
  ident: ref_21
  article-title: Identification of plant disease images via a squeeze-and-excitation MobileNet model and twice transfer learning
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12090
– ident: ref_12
– volume: 158
  start-page: 71
  year: 2022
  ident: ref_6
  article-title: A hybrid active contour model based on pre-fitting energy and adaptive functions for fast image segmentation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.04.025
– ident: ref_10
  doi: 10.1007/978-3-030-01234-2_49
– volume: 220
  start-page: 223
  year: 2017
  ident: ref_26
  article-title: ADAM-17 expression is enhanced by FoxM1 and is a poor prognostic sign in gastric carcinoma
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2017.06.032
– volume: 181
  start-page: 105952
  year: 2021
  ident: ref_4
  article-title: Semantic segmentation for partially occluded apple trees based on deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105952
– volume: 40
  start-page: 834
  year: 2017
  ident: ref_13
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref_27
  doi: 10.1109/CVPR.2015.7298965
– volume: 210
  start-page: 118493
  year: 2022
  ident: ref_5
  article-title: An active contour model driven by adaptive local pre-fitting energy function based on Jeffreys divergence for image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118493
– volume: 25
  start-page: 3801
  year: 2016
  ident: ref_24
  article-title: Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2577382
– ident: ref_20
– volume: 8
  start-page: 164546
  year: 2020
  ident: ref_17
  article-title: Semantic Segmentation of Litchi Branches Using DeepLabV3+ Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021739
SSID ssj0023338
Score 2.4639504
Snippet Semantic segmentation of standing trees is important to obtain factors of standing trees from images automatically and effectively. Aiming at the accurate...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6663
SubjectTerms Accuracy
attention mechanism
Deep learning
Neural networks
semantic segmentation
Semantics
standing tree image
Trees
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3db9MwEMBP0PEAD3xPBDZkEBK8RG0SO7afULcxsQemig1pPEWOY5dJLClNyt_PXepmKyCeeE0uyUVnn32273cAbyorcRIsdGwSXcZcGR5ro7Etp36iuEjwId8Xm5Cnp-riQs9CenQbjlVufGLvqNe0Zzq3jU54XDWWVszHqcR5vCbyyfvFj5hqSNFeayiocRt2CLylRrAzO_k0-zoEYBnGY2u6UIah_rhNU8Ij5tnWmNSj-_900L8fmrwxCh0_-L_6P4T7YTbKpuvm8whuufox3LvBKHwCn6errum5ruzMza9CqlLNGs_OQk4MO1861zLKVGFU6rPt2MkV-qmWHeAYWTGUPnJuwQLLdf4Uvhx_OD_8GIdCDLHlSnSxw0CtTHKrRaWJx46KCxzUDMa3grJAjNHaTJydGF8mWZWXMtO-ko5WnHPC3ezCqG5q9wyYSTOfVKqyxL0ROD1Stkqk91xxLpXgEbzbmKKwgVJOxTK-FxitkNWKwWoRvB5EF2s0x9-EDsiegwDRtPsLzXJehM5ZSJWbVJvSulJz63OtTOqkKKU3GtXFl7yl1lBQn0dlrAmpC_hLRM8qppIodVRKPoK9jfWL4Aza4trYEbwabmM3pr0ZU7tm1cukSmB4KSKQWw1tS_XtO_Xltx4IrnlOJMXn__74C7ibUu5Gf0BuD0bdcuX24Y792V22y5ehr_wC310lgQ
  priority: 102
  providerName: ProQuest
Title Automatic Segmentation of Standing Trees from Forest Images Based on Deep Learning
URI https://www.proquest.com/docview/2711498014
https://www.proquest.com/docview/2712858625
https://pubmed.ncbi.nlm.nih.gov/PMC9460454
https://doaj.org/article/786a29abceb94cf698a2e75b7fa93f13
Volume 22
WOSCitedRecordID wos000851983400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMefYHCAA-KnCIzKICS4RGscO7aPLXRih1XVNqRyihzH3iaxdGpSjvztvJe6VQtIXLjkkLxKzntx_L6p3-cBvK-dwiRYmtRmpkqFtiI11uCzzMNQC5nhj0LfbEJNp3o-N7OdVl-0J2yNB1477kjpwnJjK-crI1wojLbcK1mpYE0e-n61HLOejZiKUitH5bXmCOUo6o9azgmEWOR7q08P6f_zVfz79sid9eb4MTyKiSIbrQf4BO745ik83MEHPoOz0apb9MhVdu4vb2IVUcMWgZ3HchV2sfS-ZVREwqgLZ9uxkxt8hbRsjMtXzdD6s_e3LGJWL5_D1-PJxacvaeyRkDqhZZd61FBVVjgja0OodKMxB1OZRekpqUDDWmPs0LuhDVWW10WlchNq5eljcEEkmhdw0Cwa_xKY5ejPWteOkDQSMxft6kyFILQQSkuRwMeN70oXAeLUx-J7iUKC3Fxu3ZzAu63p7Zqa8TejMQVga0Cg6_4Ehr-M4S__Ff4EPlD4SpqOOBhnY1UB3hKBrcqRIoAcdXlP4HAT4TLO07bkCvWgIYJOAm-3l3GG0d8mtvGLVW_DtUTlJxNQe0_G3tD3rzTXVz2r24iCIIev_se9voYHnIov-h1uh3DQLVf-Ddx3P7rrdjmAu2qu-qMewL3xZDo7G_STAo-nPyd4bnZyOvv2Czd7Ec4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLbGQAIO_EYUBhgEgku0xrFj-4BQx5hWbVSIFak34zh2mcSS0qQg_in-Rt5Lk24FxG0HrsmLYydfPvs5732PkGe5k7AIFjqysc4iriyPtNWAZRb6iosYLgpNsQk5GqnJRL_fID-7XBgMq-w4sSHqvHS4R77NJKzcNWqdvJ59jbBqFP5d7UpoLGFx4H98B5etejXchff7nLG9t-M3-1FbVSByXIk68uB1ZHHqtMg1iotDmwIY2oKzJjClwVqtbd-7vg1ZnORpJhMdculx-zRF7RZo9wK5CDwuMYRMTk4dvAT8vaV6UZLo_nbFGMovpsnanNeUBvhzAvg9KPPMLLd3_X97PjfItXY9TQfLD-Am2fDFLXL1jMribfJhsKjLRpmWHvnpSZtsVdAy0KM2q4eO595XFHNtKBYrrWo6PAGmregOzPI5Betd72e0VaOd3iEfz2VQd8lmURb-HqGWJSHOVe5QuUfAAk-5PJYhcMW5VIL3yMvuZRvX6qxjuY8vBvwtxIVZ4aJHnq5MZ0txkb8Z7SBiVgaoB94cKOdT09KLkSq1TNvM-UxzF1KtLPNSZDJYDd2FRl4g3gyyFnTG2Tb5AoaE-l9mIFFnL5YxdH-rw5dp6awyp-DqkSer00BE-HfJFr5cNDZMCXCQRY_INSivdX39THH8uZE01zxFLcj7_775Y3J5f_zu0BwORwcPyBWGmShNuN8W2aznC_-QXHLf6uNq_qj5Lin5dN5A_wVzTHHn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELbGQAge-I1WGGAQCF6iNo4d2w8IdZSKaqia2JD6ZhzHLpO2pDQpiH-Nv467NO1WQLztgdf44tjx57PPvvuOkOe5k7AJFjqysc4iriyPtNWAZRZ6iosYXgpNsgk5HqvJRB9skZ-rWBh0q1zpxEZR56XDM_Iuk7Bz18h10g2tW8TBYPhm9jXCDFJ407pKp7GEyL7_8R3Mt-r1aABj_YKx4bujt--jNsNA5LgSdeTBAsni1GmRayQah_oFaGsLhpvA8AZrtbY973o2ZHGSp5lMdMilx6PUFHlcoN5L5LJMEolpI-TkzNhLwPZbMhklie51K8aQijFNNta_Jk3An4vB7w6a51a84c3_-V_dIjfafTbtLyfGbbLlizvk-jn2xbvkY39Rlw1jLT3009M2CKugZaCHbbQPPZp7X1GMwaGYxLSq6egUNHBF92D1zylID7yf0ZaldnqPfLqQTt0n20VZ-B1CLUtCnKvcIaOPgI2fcnksQ-CKc6kE75BXq4E3ruVfxzQgJwbsMMSIWWOkQ56tRWdL0pG_Ce0hetYCyBPePCjnU9OqHSNVapm2mfOZ5i6kWlnmpchksBqaC5W8ROwZ1GbQGGfboAzoEvKCmb5E_r1YxtD83RXWTKvmKnMGtA55ui4GBYW3Trbw5aKRYUqA4Sw6RG7AeqPpmyXF8ZeG6lzzFDkiH_z740_IVcC3-TAa7z8k1xgGqDRegLtku54v_CNyxX2rj6v542aKUvL5onH-C8PFeps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+of+Standing+Trees+from+Forest+Images+Based+on+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shi%2C+Lijuan&rft.au=Wang%2C+Guoying&rft.au=Mo%2C+Lufeng&rft.au=Yi%2C+Xiaomei&rft.date=2022-09-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=17&rft_id=info:doi/10.3390%2Fs22176663&rft_id=info%3Apmid%2F36081122&rft.externalDocID=PMC9460454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon