Miniterm, a Novel Virtual Sensor for Predictive Maintenance for the Industry 4.0 Era
This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 22; H. 16; S. 6222 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.08.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors’ knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works. |
|---|---|
| AbstractList | This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors' knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works.This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors' knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works. This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors’ knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works. |
| Audience | Academic |
| Author | Garcia, Eduardo Montés, Nicolás Llopis, Javier Lacasa, Antonio |
| AuthorAffiliation | 2 Department of Mathematics, Physics and Technological Sciences, University CEU Cardenal Herrera, C/ San Bartolome 55, 46115 Valencia, Alfara del Patriarca, Spain 1 Ford Spain, Poligono Industrial Ford S/N, 46440 Valencia, Almussafes, Spain |
| AuthorAffiliation_xml | – name: 2 Department of Mathematics, Physics and Technological Sciences, University CEU Cardenal Herrera, C/ San Bartolome 55, 46115 Valencia, Alfara del Patriarca, Spain – name: 1 Ford Spain, Poligono Industrial Ford S/N, 46440 Valencia, Almussafes, Spain |
| Author_xml | – sequence: 1 givenname: Eduardo orcidid: 0000-0002-4210-9835 surname: Garcia fullname: Garcia, Eduardo – sequence: 2 givenname: Nicolás orcidid: 0000-0002-0661-3479 surname: Montés fullname: Montés, Nicolás – sequence: 3 givenname: Javier orcidid: 0000-0001-5543-2255 surname: Llopis fullname: Llopis, Javier – sequence: 4 givenname: Antonio orcidid: 0000-0003-4379-0682 surname: Lacasa fullname: Lacasa, Antonio |
| BookMark | eNptkl1rFDEUhgep2A-98B8MeKPgbvM1mcyNUErVhVYFq7fhTHJmm2UmqUlmof_ebLcUWySEHM553jc54RxXBz54rKq3lCw578hpYoxKyRh7UR1RwcRCMUYO_okPq-OUNoQwzrl6VR1ySWjTKXpUXV857zLG6WMN9bewxbH-7WKeYax_ok8h1kPZPyJaZ7LbYn0Fzmf04A3el_IN1itv55TjXS2WpL6I8Lp6OcCY8M3DeVL9-nxxff51cfn9y-r87HJhhGrywgKltKMKuUEwg5UKVA-N4tBZS6kgwLhqsaOGAKC0hoI0nbKKDoMgPecn1WrvawNs9G10E8Q7HcDp-0SIaw0xOzOi7qkdlGgQh64VVihlOwm97C1wtEztvD7tvW7nfkJr0OcI4xPTpxXvbvQ6bHUnqJCCFYP3DwYx_JkxZT25ZHAcwWOYk2YtaSVRgtGCvnuGbsIcffmqHSVFo1TXFGq5p9ZQGnB-COVeU5bFyZkyAYMr-bOWlW6katoi-LAXmBhSijg8vp4SvRsU_TgohT19xhqXIbuwa86N_1H8BbTVvy4 |
| CitedBy_id | crossref_primary_10_3390_en17236170 crossref_primary_10_3390_app14219781 crossref_primary_10_3390_math10142398 crossref_primary_10_5604_01_3001_0053_7130 crossref_primary_10_3390_s23020894 crossref_primary_10_1007_s00170_024_14270_8 crossref_primary_10_1007_s44245_023_00017_4 crossref_primary_10_1186_s13636_025_00417_2 crossref_primary_10_4102_jtscm_v17i0_941 crossref_primary_10_3390_s23146569 crossref_primary_10_1080_00207543_2025_2453107 crossref_primary_10_3390_machines12110760 crossref_primary_10_3390_pr11092665 crossref_primary_10_3390_su142416723 crossref_primary_10_1016_j_jmsy_2023_04_009 crossref_primary_10_1007_s12065_025_01079_x crossref_primary_10_1016_j_jmsy_2025_08_011 crossref_primary_10_3390_s23073493 crossref_primary_10_3390_s25102973 crossref_primary_10_1088_1757_899X_1284_1_012012 |
| Cites_doi | 10.1016/j.ymssp.2015.10.007 10.1108/13552519510083110 10.1016/j.ijpe.2012.10.020 10.1016/j.cie.2018.03.005 10.1080/00207540600678896 10.5220/0009594001170124 10.3390/math10142398 10.1016/j.ijmecsci.2018.02.041 10.5220/0009594100260034 10.1111/mice.12059 10.1016/j.ymssp.2009.01.009 10.1080/00207540802244240 10.1155/2015/793161 10.1016/j.matpr.2017.12.219 10.1007/s00362-013-0559-1 10.1016/j.ymssp.2005.09.012 10.1108/13552511011084508 10.1007/s00170-009-2482-0 10.1016/j.cie.2012.02.002 10.18637/jss.v058.i03 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22166222 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b1df845eef974d488d96ab6bda3ed283 PMC9414642 A724886857 10_3390_s22166222 |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GrantInformation_xml | – fundername: CDIT (Centre for the Development of Industrial Technology) grantid: IDI-20190878 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c485t-da111918e3ceacfd68a8ba583a9dd1140a2387e91c0aae6dc1a6c98d81ff40b33 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845292200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:45:52 EDT 2025 Tue Nov 04 01:46:00 EST 2025 Fri Sep 05 07:01:30 EDT 2025 Tue Oct 07 07:25:39 EDT 2025 Tue Nov 04 18:24:00 EST 2025 Sat Nov 29 07:18:52 EST 2025 Tue Nov 18 21:51:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-da111918e3ceacfd68a8ba583a9dd1140a2387e91c0aae6dc1a6c98d81ff40b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-4210-9835 0000-0002-0661-3479 0000-0001-5543-2255 0000-0003-4379-0682 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2706458895?pq-origsite=%requestingapplication% |
| PMID | 36015981 |
| PQID | 2706458895 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b1df845eef974d488d96ab6bda3ed283 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9414642 proquest_miscellaneous_2707608421 proquest_journals_2706458895 gale_infotracacademiconefile_A724886857 crossref_primary_10_3390_s22166222 crossref_citationtrail_10_3390_s22166222 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Dolgui (ref_1) 2013; 142 Gusikhin (ref_21) 2019; Volume 613 Khan (ref_4) 2010; 16 Bect (ref_25) 2015; 68 Duffuaa (ref_2) 1995; 1 ref_12 Tsui (ref_27) 2015; 2015 Ahmad (ref_8) 2012; 63 ref_18 Li (ref_19) 2009; 47 Wang (ref_28) 2016; 70 Jardine (ref_9) 2006; 20 Zhao (ref_14) 2018; 118 Corcoran (ref_13) 2018; 140 Nigro (ref_15) 2014; 29 Killick (ref_17) 2014; 58 ref_24 ref_23 ref_22 ref_20 Lei (ref_26) 2009; 23 ref_3 ref_29 Peng (ref_6) 2010; 50 Jeong (ref_11) 2007; 45 Kumar (ref_10) 2018; 5 ref_5 ref_7 Aly (ref_16) 2014; 55 |
| References_xml | – ident: ref_7 – volume: 70 start-page: 201 year: 2016 ident: ref_28 article-title: K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.007 – volume: 1 start-page: 20 year: 1995 ident: ref_2 article-title: Maintenance and quality: The missing link publication-title: J. Qual. Maint. Eng. doi: 10.1108/13552519510083110 – ident: ref_5 – ident: ref_3 – volume: 142 start-page: 259 year: 2013 ident: ref_1 article-title: A taxonomy of line balancing problems and their solution approaches publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2012.10.020 – volume: 118 start-page: 383 year: 2018 ident: ref_14 article-title: Optimal replacement policies for a shock model with a change point publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.03.005 – volume: 45 start-page: 2007 year: 2007 ident: ref_11 article-title: Integrated decision-support system for diagnosis, maintenance planning and scheduling of manufacturing systems publication-title: Int. J. Prod. Res. doi: 10.1080/00207540600678896 – ident: ref_24 doi: 10.5220/0009594001170124 – ident: ref_18 – ident: ref_23 – ident: ref_22 doi: 10.3390/math10142398 – volume: 140 start-page: 179 year: 2018 ident: ref_13 article-title: Monitoring power-law creep using failure forecast method publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.02.041 – ident: ref_29 doi: 10.5220/0009594100260034 – ident: ref_12 – volume: 68 start-page: 78 year: 2015 ident: ref_25 article-title: Identification of abnormal events by data monitoring: Application to complex systems publication-title: Appl. Complex Syst. Comput. Ind. – volume: 29 start-page: 416 year: 2014 ident: ref_15 article-title: Localized structural damage detection. A change point publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12059 – volume: Volume 613 start-page: 101 year: 2019 ident: ref_21 article-title: Towards a Novel Maintenance Support System Based On mini-terms: Mini-term 4.0 publication-title: Informatics in Control, Automation and Robotics, Proceedings of the ICINCO, Porto, Portugal, 29–31 July 2018 – volume: 23 start-page: 1535 year: 2009 ident: ref_26 article-title: Gear crack level identification based on weighted Knearest neighbor classification algorithm publication-title: J. Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2009.01.009 – volume: 47 start-page: 6145 year: 2009 ident: ref_19 article-title: Real time production improvement through bottleneck control publication-title: Int. J. Prod. Res. doi: 10.1080/00207540802244240 – volume: 2015 start-page: 793161 year: 2015 ident: ref_27 article-title: Prognostics and Health Management: A Review on Data Driven Approaches publication-title: Math. Probl. Eng. doi: 10.1155/2015/793161 – volume: 5 start-page: 6128 year: 2018 ident: ref_10 article-title: Condition based maintenance of bearings and gears for fault detection. A review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2017.12.219 – volume: 55 start-page: 1159 year: 2014 ident: ref_16 article-title: An ANOVA-type test for multiple change points publication-title: Stat. Pap. doi: 10.1007/s00362-013-0559-1 – volume: 20 start-page: 1483 year: 2006 ident: ref_9 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech. Syst. Signals Process. doi: 10.1016/j.ymssp.2005.09.012 – ident: ref_20 – volume: 16 start-page: 341 year: 2010 ident: ref_4 article-title: Development of an analytical relation between maintenance, quality and productivity publication-title: J. Qual. Maint. Eng. doi: 10.1108/13552511011084508 – volume: 50 start-page: 297 year: 2010 ident: ref_6 article-title: Current status of machine prognostics in condition-based maintenance: A review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2482-0 – volume: 63 start-page: 135 year: 2012 ident: ref_8 article-title: An overview of time-based and condition-based maintenance in industrial application publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2012.02.002 – volume: 58 start-page: 1 year: 2014 ident: ref_17 article-title: Changepoint: An R Package for Changepoint Analysis publication-title: J. Stat. Softw. doi: 10.18637/jss.v058.i03 |
| SSID | ssj0023338 |
| Score | 2.4908245 |
| Snippet | This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6222 |
| SubjectTerms | Algorithms Design and construction fault detection IIoT Industry 4.0 Maintenance Manufacturing Methods Miniterm Preventive maintenance Production capacity Programmable controllers Programmable logic controllers Quality control Sensors sub-cicle time Useful life virtual sensor |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-k-KAP4idGq6wi6IOxyWazH49VWnzpUbBK35bZ7AYP2pzkroX-951JcsedCr74FMhOwu7sfCazvwF4xx8akUt1WivbXAVX5xitzo1GZyuU3IZjaDZhZjN7fu5Ot1p9cU3YCA88Mu4glLG1qk6ppcg3krhFpzHoELFKkXwjW1-KetbJ1JRqVZR5jThCFSX1B0spS62llDveZwDp_9MU_14eueVvjh_CgylQFIfjBB_BndQ9hvtb8IFP4OxkzhFjf_lRoJgtrtOF-DHv-UCI-EbZ6aIXFJGK057_xbBVEyfI6BAMsZGGIQr-xNS740aoT4U46vEpfD8-OvvyNZ-6JOSNsvUqj1gySJtNVUNGtI3aog1YE6NdjJTtFEhe2SRXNgVi0rEpUTfORlu2rSpCVT2DvW7RpecgonL0Ji1NUwcVkMw4OnQ61HShNFBm8GHNPd9MEOLcyeLCUyrBjPYbRmfwdkP6a8TN-BvRZ96CDQFDXQ83SAD8JAD-XwKQwXveQM8KSZNpcDpXQEtiaCt_aCQ9pG1tMthf77GfNHXppWHEPmtdncGbzTDpGP84wS4trgYaowurZJmB2ZGNnanvjnTznwNat1PkjJR88T_W-hLuST5-MRQg7sPeqr9Kr-Buc72aL_vXgwrcArqjDlw priority: 102 providerName: Directory of Open Access Journals |
| Title | Miniterm, a Novel Virtual Sensor for Predictive Maintenance for the Industry 4.0 Era |
| URI | https://www.proquest.com/docview/2706458895 https://www.proquest.com/docview/2707608421 https://pubmed.ncbi.nlm.nih.gov/PMC9414642 https://doaj.org/article/b1df845eef974d488d96ab6bda3ed283 |
| Volume | 22 |
| WOSCitedRecordID | wos000845292200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48EYElsogJDiQbeIkfpzQLuoKDq0qWFA5RU7sQKUlWdLuSlz47cykbtgC4sTFkeJJ4mjsedgz3wA8o41GQ6E6leJVmBY6C41VIpTCaJUYTmU4umITcjZTi4We-_TolQ-r3MrETlBv0J4pbhuF8Ng2Je2Yj7kknDWldPbq7FtINaTorNUX1NiDIQFvqQEM52-n80-9A5agP7ZBF0rQ1R-vOI-F4Jzv6KQOuv9PAf170OQlLXR88_-O_xbc8NYoO9xMn9twxdV34PoljMK7cDJdklnafn3JDJs1F-6UfVy2lHXC3qML3LQMzV42b-nAh0QnmxqCoCAcD9d1oYXJfIGQ7yw9iNikNffgw_Hk5PWb0JdiCMtUZevQmpiQ4JRLSpTUlRXKqMJkyE1tLbpUkUHVL52Oy8gYJ2wZG1FqZVVcVWlUJMl9GNRN7R4As6nGNwkuy6xIC4O6wmijRZHhBX1NHsCLLTPy0uOUU7mM0xz9FeJb3vMtgKc96dkGnONvREfE0Z6A8LS7G037OffLMy9iW6k0c65C_8qiULNamEIU1iTOogUWwHOaDzmtehxMaXzyAv4S4Wflh5LjQ0JlMoD9Lf9zLw5W-S92B_Ck78aFTKczpnbNeUcjRaRSHgcgd6baztB3e-rllw4SXKeo8VL-8N8ffwTXOGVvdPGL-zBYt-fuMVwtL9bLVTuCPbmQXatGMDyazObvRt0WBbbTH5ORX00_ATajLbs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBQk48I0wFFgQCA6Y2mt7Pw4IFWjVqk1UiYByM2PvGiKVuDhpUf8Uv5EZx0kbQNx64GTJu7HX8fObmd3ZNwBPeaIROVWnMrIK08JmITqjQq3QmgQll-Foi03oft8Mh3Z_BX7O98JwWuWcE1uidnXJc-TrUrOymjE2e3P4PeSqUby6Oi-hMYPFrj_5QSHb5PXOe3q_z6Tc2hy82w67qgJhmZpsGjqMWdTM-KQk0qmcMmgKzGhg1jmKDiIkK6a9jcsI0StXxqhKa5yJqyqNCp4AJcq_QDyuOYVMD08DvITivZl6UZLYaH0iZayUlHLJ5rWlAf40AL8nZZ6xclvX_rf_5zpc7fxpsTH7AG7Aih_fhCtnVBZvwaA3Yse6-fZSoOjXx_5AfBo1vG9GfKAgvm4EOe5iv-ElKyZ_0UMW0WAlEt82kY8suhInJyJ9FYnNBm_Dx3N5rDuwOq7H_i4Il1q6kpK6zIq0QLJ2aNGqIqMDRcsygBfz152XndI6F_w4yCniYmTkC2QE8GTR9XAmL_K3Tm8ZM4sOrAjenqibL3lHMHkRu8qkmfcVRYiOaNlZhYUqHCbekQ8ZwHNGXM68RYMpsdt-QY_ECmD5hpb0I2UyHcDaHGF5R2iT_BReATxeNBMV8foSjn191PbRKjKpjAPQS2BeGvpyy3j0tRU1tynZ7FTe-_fNH8Gl7UFvL9_b6e_eh8uS96K02ZhrsDptjvwDuFgeT0eT5mH7ZQr4fN5Q_wV3eHpx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBSE48EYYCiwIBAdM7LW9jwNChbaiKo0iUarczNi7hkglLk5a1L_Gr2PGcdIGELceOFnybux1_Hkeu7PfB_CUJxqRS3UqI6swLWwWojMq1AqtSVCyDEcrNqH7fTMc2sEK_JzvheGyyrlNbA21q0ueI-9JzcxqxtisV3VlEYONrTeH30NWkOKV1rmcxgwiO_7kB6Vvk9fbG_Sun0m5tbn37n3YKQyEZWqyaegwZoIz45OSDFDllEFTYEaDtM5RphAheTTtbVxGiF65MkZVWuNMXFVpVPBkKJn_CzpJNMtG6OFpspdQ7jdjMkoSG_UmUsZKSSmX_F8rE_CnM_i9QPOMx9u69j__V9fhahdni_XZh3EDVvz4Jlw5w754C_Z2RxxwN99eChT9-tgfiP1Rw_tpxEdK7utGUEAvBg0vZbFTELvI5BrMUOLbJoqdRSd9ciLSV5HYbPA2fDqXx7oDq-N67O-CcKmlKympy6xICyQviBatKjI6UBYtA3gxf_V52TGwsxDIQU6ZGKMkX6AkgCeLrocz2pG_dXrL-Fl0YKbw9kTdfMk7w5MXsatMmnlfUeboyFw7q7BQhcPEO4otA3jO6MvZntFgSuy2ZdAjMTNYvq4l_UiZTAewNkdb3hm6SX4KtQAeL5rJRPG6E459fdT20SoyqYwD0EvAXhr6cst49LUlO7cp-fJU3vv3zR_BJUJ4_mG7v3MfLkveotIWaa7B6rQ58g_gYnk8HU2ah-1HKuDzeSP9F-dbgyU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniterm%2C+a+Novel+Virtual+Sensor+for+Predictive+Maintenance+for+the+Industry+4.0+Era&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Garcia%2C+Eduardo&rft.au=Mont%C3%A9s%2C+Nicol%C3%A1s&rft.au=Llopis%2C+Javier&rft.au=Lacasa%2C+Antonio&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=16&rft.spage=6222&rft_id=info:doi/10.3390%2Fs22166222&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |