Miniterm, a Novel Virtual Sensor for Predictive Maintenance for the Industry 4.0 Era

This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 16; S. 6222
Hauptverfasser: Garcia, Eduardo, Montés, Nicolás, Llopis, Javier, Lacasa, Antonio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors’ knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works.
AbstractList This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors' knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works.This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors' knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works.
This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors’ knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works.
Audience Academic
Author Garcia, Eduardo
Montés, Nicolás
Llopis, Javier
Lacasa, Antonio
AuthorAffiliation 2 Department of Mathematics, Physics and Technological Sciences, University CEU Cardenal Herrera, C/ San Bartolome 55, 46115 Valencia, Alfara del Patriarca, Spain
1 Ford Spain, Poligono Industrial Ford S/N, 46440 Valencia, Almussafes, Spain
AuthorAffiliation_xml – name: 2 Department of Mathematics, Physics and Technological Sciences, University CEU Cardenal Herrera, C/ San Bartolome 55, 46115 Valencia, Alfara del Patriarca, Spain
– name: 1 Ford Spain, Poligono Industrial Ford S/N, 46440 Valencia, Almussafes, Spain
Author_xml – sequence: 1
  givenname: Eduardo
  orcidid: 0000-0002-4210-9835
  surname: Garcia
  fullname: Garcia, Eduardo
– sequence: 2
  givenname: Nicolás
  orcidid: 0000-0002-0661-3479
  surname: Montés
  fullname: Montés, Nicolás
– sequence: 3
  givenname: Javier
  orcidid: 0000-0001-5543-2255
  surname: Llopis
  fullname: Llopis, Javier
– sequence: 4
  givenname: Antonio
  orcidid: 0000-0003-4379-0682
  surname: Lacasa
  fullname: Lacasa, Antonio
BookMark eNptkl1rFDEUhgep2A-98B8MeKPgbvM1mcyNUErVhVYFq7fhTHJmm2UmqUlmof_ebLcUWySEHM553jc54RxXBz54rKq3lCw578hpYoxKyRh7UR1RwcRCMUYO_okPq-OUNoQwzrl6VR1ySWjTKXpUXV857zLG6WMN9bewxbH-7WKeYax_ok8h1kPZPyJaZ7LbYn0Fzmf04A3el_IN1itv55TjXS2WpL6I8Lp6OcCY8M3DeVL9-nxxff51cfn9y-r87HJhhGrywgKltKMKuUEwg5UKVA-N4tBZS6kgwLhqsaOGAKC0hoI0nbKKDoMgPecn1WrvawNs9G10E8Q7HcDp-0SIaw0xOzOi7qkdlGgQh64VVihlOwm97C1wtEztvD7tvW7nfkJr0OcI4xPTpxXvbvQ6bHUnqJCCFYP3DwYx_JkxZT25ZHAcwWOYk2YtaSVRgtGCvnuGbsIcffmqHSVFo1TXFGq5p9ZQGnB-COVeU5bFyZkyAYMr-bOWlW6katoi-LAXmBhSijg8vp4SvRsU_TgohT19xhqXIbuwa86N_1H8BbTVvy4
CitedBy_id crossref_primary_10_3390_en17236170
crossref_primary_10_3390_app14219781
crossref_primary_10_3390_math10142398
crossref_primary_10_5604_01_3001_0053_7130
crossref_primary_10_3390_s23020894
crossref_primary_10_1007_s00170_024_14270_8
crossref_primary_10_1007_s44245_023_00017_4
crossref_primary_10_1186_s13636_025_00417_2
crossref_primary_10_4102_jtscm_v17i0_941
crossref_primary_10_3390_s23146569
crossref_primary_10_1080_00207543_2025_2453107
crossref_primary_10_3390_machines12110760
crossref_primary_10_3390_pr11092665
crossref_primary_10_3390_su142416723
crossref_primary_10_1016_j_jmsy_2023_04_009
crossref_primary_10_1007_s12065_025_01079_x
crossref_primary_10_1016_j_jmsy_2025_08_011
crossref_primary_10_3390_s23073493
crossref_primary_10_3390_s25102973
crossref_primary_10_1088_1757_899X_1284_1_012012
Cites_doi 10.1016/j.ymssp.2015.10.007
10.1108/13552519510083110
10.1016/j.ijpe.2012.10.020
10.1016/j.cie.2018.03.005
10.1080/00207540600678896
10.5220/0009594001170124
10.3390/math10142398
10.1016/j.ijmecsci.2018.02.041
10.5220/0009594100260034
10.1111/mice.12059
10.1016/j.ymssp.2009.01.009
10.1080/00207540802244240
10.1155/2015/793161
10.1016/j.matpr.2017.12.219
10.1007/s00362-013-0559-1
10.1016/j.ymssp.2005.09.012
10.1108/13552511011084508
10.1007/s00170-009-2482-0
10.1016/j.cie.2012.02.002
10.18637/jss.v058.i03
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22166222
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b1df845eef974d488d96ab6bda3ed283
PMC9414642
A724886857
10_3390_s22166222
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: CDIT (Centre for the Development of Industrial Technology)
  grantid: IDI-20190878
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c485t-da111918e3ceacfd68a8ba583a9dd1140a2387e91c0aae6dc1a6c98d81ff40b33
IEDL.DBID PIMPY
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845292200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:52 EDT 2025
Tue Nov 04 01:46:00 EST 2025
Fri Sep 05 07:01:30 EDT 2025
Tue Oct 07 07:25:39 EDT 2025
Tue Nov 04 18:24:00 EST 2025
Sat Nov 29 07:18:52 EST 2025
Tue Nov 18 21:51:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-da111918e3ceacfd68a8ba583a9dd1140a2387e91c0aae6dc1a6c98d81ff40b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-4210-9835
0000-0002-0661-3479
0000-0001-5543-2255
0000-0003-4379-0682
OpenAccessLink https://www.proquest.com/publiccontent/docview/2706458895?pq-origsite=%requestingapplication%
PMID 36015981
PQID 2706458895
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b1df845eef974d488d96ab6bda3ed283
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9414642
proquest_miscellaneous_2707608421
proquest_journals_2706458895
gale_infotracacademiconefile_A724886857
crossref_primary_10_3390_s22166222
crossref_citationtrail_10_3390_s22166222
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dolgui (ref_1) 2013; 142
Gusikhin (ref_21) 2019; Volume 613
Khan (ref_4) 2010; 16
Bect (ref_25) 2015; 68
Duffuaa (ref_2) 1995; 1
ref_12
Tsui (ref_27) 2015; 2015
Ahmad (ref_8) 2012; 63
ref_18
Li (ref_19) 2009; 47
Wang (ref_28) 2016; 70
Jardine (ref_9) 2006; 20
Zhao (ref_14) 2018; 118
Corcoran (ref_13) 2018; 140
Nigro (ref_15) 2014; 29
Killick (ref_17) 2014; 58
ref_24
ref_23
ref_22
ref_20
Lei (ref_26) 2009; 23
ref_3
ref_29
Peng (ref_6) 2010; 50
Jeong (ref_11) 2007; 45
Kumar (ref_10) 2018; 5
ref_5
ref_7
Aly (ref_16) 2014; 55
References_xml – ident: ref_7
– volume: 70
  start-page: 201
  year: 2016
  ident: ref_28
  article-title: K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.007
– volume: 1
  start-page: 20
  year: 1995
  ident: ref_2
  article-title: Maintenance and quality: The missing link
  publication-title: J. Qual. Maint. Eng.
  doi: 10.1108/13552519510083110
– ident: ref_5
– ident: ref_3
– volume: 142
  start-page: 259
  year: 2013
  ident: ref_1
  article-title: A taxonomy of line balancing problems and their solution approaches
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2012.10.020
– volume: 118
  start-page: 383
  year: 2018
  ident: ref_14
  article-title: Optimal replacement policies for a shock model with a change point
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.03.005
– volume: 45
  start-page: 2007
  year: 2007
  ident: ref_11
  article-title: Integrated decision-support system for diagnosis, maintenance planning and scheduling of manufacturing systems
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540600678896
– ident: ref_24
  doi: 10.5220/0009594001170124
– ident: ref_18
– ident: ref_23
– ident: ref_22
  doi: 10.3390/math10142398
– volume: 140
  start-page: 179
  year: 2018
  ident: ref_13
  article-title: Monitoring power-law creep using failure forecast method
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.02.041
– ident: ref_29
  doi: 10.5220/0009594100260034
– ident: ref_12
– volume: 68
  start-page: 78
  year: 2015
  ident: ref_25
  article-title: Identification of abnormal events by data monitoring: Application to complex systems
  publication-title: Appl. Complex Syst. Comput. Ind.
– volume: 29
  start-page: 416
  year: 2014
  ident: ref_15
  article-title: Localized structural damage detection. A change point
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12059
– volume: Volume 613
  start-page: 101
  year: 2019
  ident: ref_21
  article-title: Towards a Novel Maintenance Support System Based On mini-terms: Mini-term 4.0
  publication-title: Informatics in Control, Automation and Robotics, Proceedings of the ICINCO, Porto, Portugal, 29–31 July 2018
– volume: 23
  start-page: 1535
  year: 2009
  ident: ref_26
  article-title: Gear crack level identification based on weighted Knearest neighbor classification algorithm
  publication-title: J. Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2009.01.009
– volume: 47
  start-page: 6145
  year: 2009
  ident: ref_19
  article-title: Real time production improvement through bottleneck control
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540802244240
– volume: 2015
  start-page: 793161
  year: 2015
  ident: ref_27
  article-title: Prognostics and Health Management: A Review on Data Driven Approaches
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/793161
– volume: 5
  start-page: 6128
  year: 2018
  ident: ref_10
  article-title: Condition based maintenance of bearings and gears for fault detection. A review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2017.12.219
– volume: 55
  start-page: 1159
  year: 2014
  ident: ref_16
  article-title: An ANOVA-type test for multiple change points
  publication-title: Stat. Pap.
  doi: 10.1007/s00362-013-0559-1
– volume: 20
  start-page: 1483
  year: 2006
  ident: ref_9
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signals Process.
  doi: 10.1016/j.ymssp.2005.09.012
– ident: ref_20
– volume: 16
  start-page: 341
  year: 2010
  ident: ref_4
  article-title: Development of an analytical relation between maintenance, quality and productivity
  publication-title: J. Qual. Maint. Eng.
  doi: 10.1108/13552511011084508
– volume: 50
  start-page: 297
  year: 2010
  ident: ref_6
  article-title: Current status of machine prognostics in condition-based maintenance: A review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2482-0
– volume: 63
  start-page: 135
  year: 2012
  ident: ref_8
  article-title: An overview of time-based and condition-based maintenance in industrial application
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2012.02.002
– volume: 58
  start-page: 1
  year: 2014
  ident: ref_17
  article-title: Changepoint: An R Package for Changepoint Analysis
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v058.i03
SSID ssj0023338
Score 2.4908245
Snippet This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6222
SubjectTerms Algorithms
Design and construction
fault detection
IIoT
Industry 4.0
Maintenance
Manufacturing
Methods
Miniterm
Preventive maintenance
Production capacity
Programmable controllers
Programmable logic controllers
Quality control
Sensors
sub-cicle time
Useful life
virtual sensor
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-k-KAP4idGq6wi6IOxyWazH49VWnzpUbBK35bZ7AYP2pzkroX-951JcsedCr74FMhOwu7sfCazvwF4xx8akUt1WivbXAVX5xitzo1GZyuU3IZjaDZhZjN7fu5Ot1p9cU3YCA88Mu4glLG1qk6ppcg3krhFpzHoELFKkXwjW1-KetbJ1JRqVZR5jThCFSX1B0spS62llDveZwDp_9MU_14eueVvjh_CgylQFIfjBB_BndQ9hvtb8IFP4OxkzhFjf_lRoJgtrtOF-DHv-UCI-EbZ6aIXFJGK057_xbBVEyfI6BAMsZGGIQr-xNS740aoT4U46vEpfD8-OvvyNZ-6JOSNsvUqj1gySJtNVUNGtI3aog1YE6NdjJTtFEhe2SRXNgVi0rEpUTfORlu2rSpCVT2DvW7RpecgonL0Ji1NUwcVkMw4OnQ61HShNFBm8GHNPd9MEOLcyeLCUyrBjPYbRmfwdkP6a8TN-BvRZ96CDQFDXQ83SAD8JAD-XwKQwXveQM8KSZNpcDpXQEtiaCt_aCQ9pG1tMthf77GfNHXppWHEPmtdncGbzTDpGP84wS4trgYaowurZJmB2ZGNnanvjnTznwNat1PkjJR88T_W-hLuST5-MRQg7sPeqr9Kr-Buc72aL_vXgwrcArqjDlw
  priority: 102
  providerName: Directory of Open Access Journals
Title Miniterm, a Novel Virtual Sensor for Predictive Maintenance for the Industry 4.0 Era
URI https://www.proquest.com/docview/2706458895
https://www.proquest.com/docview/2707608421
https://pubmed.ncbi.nlm.nih.gov/PMC9414642
https://doaj.org/article/b1df845eef974d488d96ab6bda3ed283
Volume 22
WOSCitedRecordID wos000845292200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48EYElsogJDiQbeIkfpzQLuoKDq0qWFA5RU7sQKUlWdLuSlz47cykbtgC4sTFkeJJ4mjsedgz3wA8o41GQ6E6leJVmBY6C41VIpTCaJUYTmU4umITcjZTi4We-_TolQ-r3MrETlBv0J4pbhuF8Ng2Je2Yj7kknDWldPbq7FtINaTorNUX1NiDIQFvqQEM52-n80-9A5agP7ZBF0rQ1R-vOI-F4Jzv6KQOuv9PAf170OQlLXR88_-O_xbc8NYoO9xMn9twxdV34PoljMK7cDJdklnafn3JDJs1F-6UfVy2lHXC3qML3LQMzV42b-nAh0QnmxqCoCAcD9d1oYXJfIGQ7yw9iNikNffgw_Hk5PWb0JdiCMtUZevQmpiQ4JRLSpTUlRXKqMJkyE1tLbpUkUHVL52Oy8gYJ2wZG1FqZVVcVWlUJMl9GNRN7R4As6nGNwkuy6xIC4O6wmijRZHhBX1NHsCLLTPy0uOUU7mM0xz9FeJb3vMtgKc96dkGnONvREfE0Z6A8LS7G037OffLMy9iW6k0c65C_8qiULNamEIU1iTOogUWwHOaDzmtehxMaXzyAv4S4Wflh5LjQ0JlMoD9Lf9zLw5W-S92B_Ck78aFTKczpnbNeUcjRaRSHgcgd6baztB3e-rllw4SXKeo8VL-8N8ffwTXOGVvdPGL-zBYt-fuMVwtL9bLVTuCPbmQXatGMDyazObvRt0WBbbTH5ORX00_ATajLbs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBQk48I0wFFgQCA6Y2mt7Pw4IFWjVqk1UiYByM2PvGiKVuDhpUf8Uv5EZx0kbQNx64GTJu7HX8fObmd3ZNwBPeaIROVWnMrIK08JmITqjQq3QmgQll-Foi03oft8Mh3Z_BX7O98JwWuWcE1uidnXJc-TrUrOymjE2e3P4PeSqUby6Oi-hMYPFrj_5QSHb5PXOe3q_z6Tc2hy82w67qgJhmZpsGjqMWdTM-KQk0qmcMmgKzGhg1jmKDiIkK6a9jcsI0StXxqhKa5yJqyqNCp4AJcq_QDyuOYVMD08DvITivZl6UZLYaH0iZayUlHLJ5rWlAf40AL8nZZ6xclvX_rf_5zpc7fxpsTH7AG7Aih_fhCtnVBZvwaA3Yse6-fZSoOjXx_5AfBo1vG9GfKAgvm4EOe5iv-ElKyZ_0UMW0WAlEt82kY8suhInJyJ9FYnNBm_Dx3N5rDuwOq7H_i4Il1q6kpK6zIq0QLJ2aNGqIqMDRcsygBfz152XndI6F_w4yCniYmTkC2QE8GTR9XAmL_K3Tm8ZM4sOrAjenqibL3lHMHkRu8qkmfcVRYiOaNlZhYUqHCbekQ8ZwHNGXM68RYMpsdt-QY_ECmD5hpb0I2UyHcDaHGF5R2iT_BReATxeNBMV8foSjn191PbRKjKpjAPQS2BeGvpyy3j0tRU1tynZ7FTe-_fNH8Gl7UFvL9_b6e_eh8uS96K02ZhrsDptjvwDuFgeT0eT5mH7ZQr4fN5Q_wV3eHpx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBSE48EYYCiwIBAdM7LW9jwNChbaiKo0iUarczNi7hkglLk5a1L_Gr2PGcdIGELceOFnybux1_Hkeu7PfB_CUJxqRS3UqI6swLWwWojMq1AqtSVCyDEcrNqH7fTMc2sEK_JzvheGyyrlNbA21q0ueI-9JzcxqxtisV3VlEYONrTeH30NWkOKV1rmcxgwiO_7kB6Vvk9fbG_Sun0m5tbn37n3YKQyEZWqyaegwZoIz45OSDFDllEFTYEaDtM5RphAheTTtbVxGiF65MkZVWuNMXFVpVPBkKJn_CzpJNMtG6OFpspdQ7jdjMkoSG_UmUsZKSSmX_F8rE_CnM_i9QPOMx9u69j__V9fhahdni_XZh3EDVvz4Jlw5w754C_Z2RxxwN99eChT9-tgfiP1Rw_tpxEdK7utGUEAvBg0vZbFTELvI5BrMUOLbJoqdRSd9ciLSV5HYbPA2fDqXx7oDq-N67O-CcKmlKympy6xICyQviBatKjI6UBYtA3gxf_V52TGwsxDIQU6ZGKMkX6AkgCeLrocz2pG_dXrL-Fl0YKbw9kTdfMk7w5MXsatMmnlfUeboyFw7q7BQhcPEO4otA3jO6MvZntFgSuy2ZdAjMTNYvq4l_UiZTAewNkdb3hm6SX4KtQAeL5rJRPG6E459fdT20SoyqYwD0EvAXhr6cst49LUlO7cp-fJU3vv3zR_BJUJ4_mG7v3MfLkveotIWaa7B6rQ58g_gYnk8HU2ah-1HKuDzeSP9F-dbgyU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniterm%2C+a+Novel+Virtual+Sensor+for+Predictive+Maintenance+for+the+Industry+4.0+Era&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Garcia%2C+Eduardo&rft.au=Mont%C3%A9s%2C+Nicol%C3%A1s&rft.au=Llopis%2C+Javier&rft.au=Lacasa%2C+Antonio&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=16&rft.spage=6222&rft_id=info:doi/10.3390%2Fs22166222&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon