Autonomous Unobtrusive Detection of Mild Cognitive Impairment in Older Adults
The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing ap...
Uloženo v:
| Vydáno v: | IEEE transactions on biomedical engineering Ročník 62; číslo 5; s. 1383 - 1394 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.05.2015
|
| Témata: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults. |
|---|---|
| AbstractList | The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults. The current diagnosis process of dementia is resulting in a high-percentage of cases with delayed detection. To address this problem, in this paper we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of 3 years, a number of measures associated with the subjects' walking speeds and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This work is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults. The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults. |
| Author | Taati, Babak Akl, Ahmad Mihailidis, Alex |
| Author_xml | – sequence: 1 givenname: Ahmad surname: Akl fullname: Akl, Ahmad email: ahmad.akl@utoronto.ca organization: Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada – sequence: 2 givenname: Babak surname: Taati fullname: Taati, Babak organization: Toronto Rehabilitation Institute – sequence: 3 givenname: Alex surname: Mihailidis fullname: Mihailidis, Alex organization: Institute of Biomaterials and Biomedical Engineering, University of Toronto |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25585407$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1O3DAUha2Kqgy0D1BVQll2k6nt-C8bpGEKLRIjNrC2HMcGo8QebGekvn0dzYAoi64s637n3KtzTsCRD94A8BXBJUKw_XF3sblcYojoEjeiRaT9ABaIUlFj2qAjsIAQibrFLTkGJyk9lS8RhH0Cx7hAlEC-AJvVlIMPY5hSde9Dl-OU3M5UP002Orvgq2CrjRv6ah0evMvz7HrcKhdH43PlfHU79CZWq34acvoMPlo1JPPl8J6C-6vLu_Xv-ub21_V6dVNrImiue8aU1tzCDiOi2w5bhZAlmAhBO9hay1nDERbUWKI5Nb1lnWpwgRVmPdTNKTjf-26nbjS9LqdENchtdKOKf2RQTv478e5RPoSdJAQy3jbF4PvBIIbnyaQsR5e0GQblTYlCIsYpYoI2uKBnb3e9LnnJsAB8D-gYUorGSu2ymrMrq90gEZRzW3JuS85tyUNbRYneKV_M_6f5ttc4Y8wrzyGkRKDmLyX0oPk |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1109_JBHI_2018_2834317 crossref_primary_10_1093_ageing_afaa135 crossref_primary_10_3389_fpsyt_2022_1038008 crossref_primary_10_1109_MIM_2021_9513638 crossref_primary_10_1093_ageing_afaf108 crossref_primary_10_1016_j_patcog_2022_109149 crossref_primary_10_3390_s23198272 crossref_primary_10_1109_ACCESS_2022_3165208 crossref_primary_10_1002_trc2_12094 crossref_primary_10_1038_s41746_025_01640_z crossref_primary_10_1002_widm_1492 crossref_primary_10_1016_j_eswa_2022_117538 crossref_primary_10_1002_widm_1254 crossref_primary_10_1109_JSEN_2018_2866806 crossref_primary_10_3233_AIS_160385 crossref_primary_10_1109_ACCESS_2024_3450970 crossref_primary_10_1109_JBHI_2018_2833618 crossref_primary_10_3233_JAD_210049 crossref_primary_10_2196_22831 crossref_primary_10_1140_epjs_s11734_024_01289_x crossref_primary_10_1016_j_bspc_2024_106023 crossref_primary_10_1109_ACCESS_2017_2711495 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_1007_s00521_022_07268_4 crossref_primary_10_3390_math11030648 crossref_primary_10_1080_13825585_2021_1917503 crossref_primary_10_3390_smartcities4040070 crossref_primary_10_1038_s41746_024_01144_2 crossref_primary_10_3390_s22031220 crossref_primary_10_3389_fnagi_2017_00101 crossref_primary_10_1007_s12652_016_0387_y crossref_primary_10_1055_a_2657_8212 crossref_primary_10_1371_journal_pone_0165211 crossref_primary_10_1186_s12877_020_01678_6 crossref_primary_10_3390_s21124249 crossref_primary_10_1109_JSEN_2020_3008063 crossref_primary_10_1371_journal_pone_0168949 crossref_primary_10_3389_fphar_2019_01699 crossref_primary_10_1155_2022_6274185 crossref_primary_10_1002_pnp_721 crossref_primary_10_1016_j_artmed_2016_06_003 crossref_primary_10_1016_j_jamda_2025_105548 crossref_primary_10_1016_j_future_2020_07_046 crossref_primary_10_1016_j_psychres_2019_112732 crossref_primary_10_3390_s22114254 crossref_primary_10_1136_bmjopen_2021_054235 crossref_primary_10_3390_jpm12010011 crossref_primary_10_1016_j_micpro_2021_104013 crossref_primary_10_1145_3365225 crossref_primary_10_1155_2021_2679398 crossref_primary_10_3390_s22072769 crossref_primary_10_1109_JBHI_2015_2512273 crossref_primary_10_1109_ACCESS_2021_3076362 crossref_primary_10_1016_j_bios_2025_117722 crossref_primary_10_1007_s10586_019_03014_z crossref_primary_10_1016_j_bspc_2021_103195 crossref_primary_10_1109_JSEN_2017_2771287 crossref_primary_10_1109_RBME_2018_2851500 crossref_primary_10_1038_s41746_022_00657_y crossref_primary_10_1016_j_jagp_2025_06_001 crossref_primary_10_3389_fnhum_2020_00245 crossref_primary_10_1109_ACCESS_2022_3156607 crossref_primary_10_1109_TASE_2019_2942386 |
| Cites_doi | 10.1111/j.1532-5415.2004.52459.x 10.1109/MC.2004.1297237 10.1212/WNL.0b013e318259e1de 10.1093/geront/39.4.457 10.1097/00127893-200103000-00003 10.1111/j.1532-5415.2008.01758.x 10.1109/TSMC.2013.2252338 10.1145/633292.633416 10.7326/0003-4819-109-6-476 10.1109/MC.2005.107 10.1001/archneur.63.12.1763 10.1111/j.1532-5415.2005.53221.x 10.1016/j.gaitpost.2011.09.006 10.1109/TASE.2010.2049840 10.1016/0022-3956(75)90026-6 10.1093/geronb/gbq095 10.1001/archneurol.2010.159 10.1016/j.jalz.2008.07.004 10.1212/WNL.50.5.1496 10.1109/TBME.2009.2036732 10.1177/153331759701200202 10.1212/WNL.43.11.2412-a |
| ContentType | Journal Article |
| Copyright | Copyright (c) 2014 IEEE. 2014 |
| Copyright_xml | – notice: Copyright (c) 2014 IEEE. 2014 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1109/TBME.2015.2389149 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1394 |
| ExternalDocumentID | PMC4406793 25585407 10_1109_TBME_2015_2389149 7005481 |
| Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Oregon Alzheimer's Disease Center grantid: P30AG008017 – fundername: SAAC Intelligent Systems for Assessing Aging Changes, and Intel Corporation BRP – fundername: BRP grantid: R01AG024059 – fundername: Oregon Roybal Center for Translational Research on Aging grantid: P30AG024978 – fundername: NIA NIH HHS grantid: R01AG024059 – fundername: NIA NIH HHS grantid: P30 AG008017 – fundername: NIA NIH HHS grantid: P30AG024978 – fundername: NIA NIH HHS grantid: P30 AG024978 – fundername: NIA NIH HHS grantid: R01 AG024059 – fundername: NIA NIH HHS grantid: P30AG008017 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c485t-d66acc7f0b214c9b2fa11f424885b09ff76371285ef4c75edf6ba32214a26d0c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353513400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Tue Sep 30 14:51:19 EDT 2025 Sun Sep 28 10:16:49 EDT 2025 Thu Apr 03 07:01:54 EDT 2025 Tue Nov 18 22:38:10 EST 2025 Sat Nov 29 05:34:16 EST 2025 Wed Aug 27 02:17:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | older population Home activity unobtrusive sensing technologies signal processing mild cognitive impairment (MCI) smart systems machine learning walking speed |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-d66acc7f0b214c9b2fa11f424885b09ff76371285ef4c75edf6ba32214a26d0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1109/TBME.2015.2389149 |
| PMID | 25585407 |
| PQID | 1675168532 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TBME_2015_2389149 crossref_citationtrail_10_1109_TBME_2015_2389149 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4406793 pubmed_primary_25585407 ieee_primary_7005481 proquest_miscellaneous_1675168532 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-01 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref14 ref11 ref10 (ref3) 2010 kirby (ref2) 2002 ref17 ref16 (ref19) 2011 (ref1) 2011 dawadi (ref21) 0 skubic (ref20) 0 ref24 chang (ref31) 2001 ref23 ref26 ref25 ref22 barry (ref15) 2000 ref28 ref27 ref29 ref8 ref7 cook (ref18) 2006; 12 ref9 ref4 ref6 ref5 buracchio (ref30) 2010; 67 10495584 - Gerontologist. 1999 Aug;39(4):457-64 21743050 - J Gerontol B Psychol Sci Soc Sci. 2011 Jul;66 Suppl 1:i180-90 22689734 - Neurology. 2012 Jun 12;78(24):1946-52 15450043 - J Am Geriatr Soc. 2004 Oct;52(10):1668-75 9596020 - Neurology. 1998 May;50(5):1496-8 19012864 - Alzheimers Dement. 2008 Nov;4(6):395-405 20697049 - Arch Neurol. 2010 Aug;67(8):980-6 17172617 - Arch Neurol. 2006 Dec;63(12):1763-9 22047773 - Gait Posture. 2012 Feb;35(2):197-202 18482293 - J Am Geriatr Soc. 2008 Jul;56(7):1244-51 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 25530925 - IEEE Trans Syst Man Cybern Syst. 2013 Nov;43(6):1302-1313 19932989 - IEEE Trans Biomed Eng. 2010 Apr;57(4):813-20 8232972 - Neurology. 1993 Nov;43(11):2412-4 15817019 - J Am Geriatr Soc. 2005 Apr;53(4):695-9 3046450 - Ann Intern Med. 1988 Sep 15;109(6):476-86 |
| References_xml | – ident: ref10 doi: 10.1111/j.1532-5415.2004.52459.x – ident: ref14 doi: 10.1109/MC.2004.1297237 – ident: ref23 doi: 10.1212/WNL.0b013e318259e1de – ident: ref6 doi: 10.1093/geront/39.4.457 – ident: ref11 doi: 10.1097/00127893-200103000-00003 – ident: ref25 doi: 10.1111/j.1532-5415.2008.01758.x – ident: ref22 doi: 10.1109/TSMC.2013.2252338 – ident: ref17 doi: 10.1145/633292.633416 – ident: ref5 doi: 10.7326/0003-4819-109-6-476 – ident: ref16 doi: 10.1109/MC.2005.107 – ident: ref24 doi: 10.1001/archneur.63.12.1763 – ident: ref7 doi: 10.1111/j.1532-5415.2005.53221.x – year: 2011 ident: ref19 publication-title: GE Healthcare – ident: ref29 doi: 10.1016/j.gaitpost.2011.09.006 – start-page: 12 year: 2000 ident: ref15 article-title: Easyliving: Technologies for intelligent environments publication-title: Proc Int Symp Handheld Ubiquitous Comput – ident: ref13 doi: 10.1109/TASE.2010.2049840 – ident: ref8 doi: 10.1016/0022-3956(75)90026-6 – ident: ref28 doi: 10.1093/geronb/gbq095 – start-page: 56 year: 0 ident: ref21 article-title: An approach to cognitive assessment in smart home publication-title: Workshop on Data Mining for Medicine and Healthcare – year: 2002 ident: ref2 article-title: The health of canadians-The federal role, volume two: Current trends and future challenges publication-title: The Standing Senate Committee on Social Affairs Science and Technology Tech Rep – volume: 12 start-page: 15 year: 2006 ident: ref18 article-title: Health monitoring and assistance to support aging in place publication-title: J Universal Comput Sci – volume: 67 start-page: 980 year: 2010 ident: ref30 article-title: The trajectory of gait speed preceding mild cognitive impairment publication-title: Arch Neurol doi: 10.1001/archneurol.2010.159 – ident: ref12 doi: 10.1016/j.jalz.2008.07.004 – year: 2010 ident: ref3 publication-title: Alzheimer society of B C – ident: ref26 doi: 10.1212/WNL.50.5.1496 – year: 2001 ident: ref31 publication-title: LIBSVM A library for support vector machines – ident: ref27 doi: 10.1109/TBME.2009.2036732 – year: 2011 ident: ref1 article-title: Senior resource for aging in place – ident: ref4 doi: 10.1177/153331759701200202 – start-page: 198 year: 0 ident: ref20 article-title: Testing classifiers for embedded health assessment publication-title: Proc 10th Int Smart Homes Health Telematics Conf Impact Anal Solutions Chronic Disease Prevention Manag – ident: ref9 doi: 10.1212/WNL.43.11.2412-a – reference: 3046450 - Ann Intern Med. 1988 Sep 15;109(6):476-86 – reference: 17172617 - Arch Neurol. 2006 Dec;63(12):1763-9 – reference: 22047773 - Gait Posture. 2012 Feb;35(2):197-202 – reference: 8232972 - Neurology. 1993 Nov;43(11):2412-4 – reference: 9596020 - Neurology. 1998 May;50(5):1496-8 – reference: 20697049 - Arch Neurol. 2010 Aug;67(8):980-6 – reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 – reference: 22689734 - Neurology. 2012 Jun 12;78(24):1946-52 – reference: 10495584 - Gerontologist. 1999 Aug;39(4):457-64 – reference: 21743050 - J Gerontol B Psychol Sci Soc Sci. 2011 Jul;66 Suppl 1:i180-90 – reference: 25530925 - IEEE Trans Syst Man Cybern Syst. 2013 Nov;43(6):1302-1313 – reference: 15817019 - J Am Geriatr Soc. 2005 Apr;53(4):695-9 – reference: 19012864 - Alzheimers Dement. 2008 Nov;4(6):395-405 – reference: 19932989 - IEEE Trans Biomed Eng. 2010 Apr;57(4):813-20 – reference: 15450043 - J Am Geriatr Soc. 2004 Oct;52(10):1668-75 – reference: 18482293 - J Am Geriatr Soc. 2008 Jul;56(7):1244-51 |
| SSID | ssj0014846 |
| Score | 2.465787 |
| Snippet | The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore... The current diagnosis process of dementia is resulting in a high-percentage of cases with delayed detection. To address this problem, in this paper we explore... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1383 |
| SubjectTerms | Aged Aged, 80 and over Algorithms Artificial Intelligence Biomedical measurement Cognitive Dysfunction - diagnosis Cognitive Dysfunction - physiopathology Dementia Feature extraction Female Home Activity Humans Legged locomotion Machine Learning Male Mild Cognitive Impairment Monitoring Older Population Remote Sensing Technology - instrumentation Remote Sensing Technology - methods ROC Curve Sensors Signal Processing Signal Processing, Computer-Assisted Smart Systems Support Vector Machine Unobtrusive Sensing Technologies Vectors Walking Speed |
| Title | Autonomous Unobtrusive Detection of Mild Cognitive Impairment in Older Adults |
| URI | https://ieeexplore.ieee.org/document/7005481 https://www.ncbi.nlm.nih.gov/pubmed/25585407 https://www.proquest.com/docview/1675168532 https://pubmed.ncbi.nlm.nih.gov/PMC4406793 |
| Volume | 62 |
| WOSCitedRecordID | wos000353513400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddKWN7aLd269J2xYM9jaV1HH8-Xr_oHq7bQwv3FmLHZoGSlN7d_v5ZSS70ShnsLRAbC0m2ZEv6CeArpUFRR0MqTMlTHoRLtc19aqzLgywrZkXZNZtQNzd6NjO_NuD7WAvjve-Sz_wJfnax_Kp1S3wqO1XoYGCd9SulZF-rNUYMuO6LcmgWNzAzfIhgZtSc3p5NLzGJS5wwjMpxRAqNnrRG7Lk1c9T1V3nJ1XyeMfnEBF3t_B_x72B7cDXJpNeN97Dhm114-wSAcBdeT4fQ-h5MJ8sFFji0yzm5a1qLxRjxJCQXftFlazWkDWRa31fkfJVxRH7Es6R-xHVJ3ZCf2PCbTBDQY_4B7q4ub8-v06HXQuq4Fou0krJ0TgVqWcadsSyUWRY4i_tbWIoPuzJX0ZYJH7hTwldB2jIeBhkvmayoyz_CZtM2_hMQp7X0hiPOjOW5rbQ3rLLUCuatyINPgK5YXrgBiBz7YdwX3YWEmgIFVqDAikFgCXwbpzz0KBz_GryH3B8HDoxP4MtKrkXcQhgXKRsfmVpk8dKUyei3sAT2ezmPk1d6koBa04BxAMJzr_9p6t8dTDfn-EiXH7xMziG8QaL73Mkj2IxS9Z9hy_1Z1PPH46jhM33cafhfm4n3JA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcQTDAeNr62lfERJJ4QhTRN2ubx-BIIevBwSLxVTZqISqiduLv9_cRtr-ImhLS3Sk3U1HZsJ7Z_Bjik1MZUU-sLmXOfW6H9RIXGl0qHNsoLpkTeNJuIh8Pk6Uk-LMBxXwtjjGmSz8wJPjax_KLWU7wqO43RwcA66yXBOaNttVYfM-BJW5ZDA7eFmeRdDDOg8nR0ll5iGpc4YRiX44gV6nzpBNHn5gxS02HlI2fz35zJd0bo6vv_LX8NvnXOJhm00rEOC6bagNV3EIQbsJx2wfVNSAfTCZY41NMxeaxqheUYTheSCzNp8rUqUluSli8FOZ_lHJEbp03KV_wuKStyjy2_yQAhPcZb8Hh1OTq_9rtuC77miZj4RRTlWseWKhZwLRWzeRBYztwOF4ri1W4Uxs6aCWO5joUpbKRypw4CnrOooDr8AYtVXZlfQHSSREZyRJpRPFRFYiQrFFWCGSVCazygM5JnuoMix44YL1lzJKEyQ4ZlyLCsY5gHR_2UPy0Ox2eDN5H6_cCO8B4czPiauU2EkZG8Mo6oWeCOTUHkPBfmwc-Wz_3kmZx4EM9JQD8AAbrn31TlcwPUzTle04XbHy9nH1auR-lddnczvP0NX_EH2kzKHVh0HDa78EX_nZTj171Gzt8AxMX5gw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+unobtrusive+detection+of+mild+cognitive+impairment+in+older+adults&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Akl%2C+Ahmad&rft.au=Taati%2C+Babak&rft.au=Mihailidis%2C+Alex&rft.date=2015-05-01&rft.eissn=1558-2531&rft.volume=62&rft.issue=5&rft.spage=1383&rft_id=info:doi/10.1109%2FTBME.2015.2389149&rft_id=info%3Apmid%2F25585407&rft.externalDocID=25585407 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |