Autonomous Unobtrusive Detection of Mild Cognitive Impairment in Older Adults

The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing ap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on biomedical engineering Ročník 62; číslo 5; s. 1383 - 1394
Hlavní autoři: Akl, Ahmad, Taati, Babak, Mihailidis, Alex
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2015
Témata:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.
AbstractList The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.
The current diagnosis process of dementia is resulting in a high-percentage of cases with delayed detection. To address this problem, in this paper we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of 3 years, a number of measures associated with the subjects' walking speeds and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This work is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.
The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.
Author Taati, Babak
Akl, Ahmad
Mihailidis, Alex
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Akl
  fullname: Akl, Ahmad
  email: ahmad.akl@utoronto.ca
  organization: Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Babak
  surname: Taati
  fullname: Taati, Babak
  organization: Toronto Rehabilitation Institute
– sequence: 3
  givenname: Alex
  surname: Mihailidis
  fullname: Mihailidis, Alex
  organization: Institute of Biomaterials and Biomedical Engineering, University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25585407$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2Kqgy0D1BVQll2k6nt-C8bpGEKLRIjNrC2HMcGo8QebGekvn0dzYAoi64s637n3KtzTsCRD94A8BXBJUKw_XF3sblcYojoEjeiRaT9ABaIUlFj2qAjsIAQibrFLTkGJyk9lS8RhH0Cx7hAlEC-AJvVlIMPY5hSde9Dl-OU3M5UP002Orvgq2CrjRv6ah0evMvz7HrcKhdH43PlfHU79CZWq34acvoMPlo1JPPl8J6C-6vLu_Xv-ub21_V6dVNrImiue8aU1tzCDiOi2w5bhZAlmAhBO9hay1nDERbUWKI5Nb1lnWpwgRVmPdTNKTjf-26nbjS9LqdENchtdKOKf2RQTv478e5RPoSdJAQy3jbF4PvBIIbnyaQsR5e0GQblTYlCIsYpYoI2uKBnb3e9LnnJsAB8D-gYUorGSu2ymrMrq90gEZRzW3JuS85tyUNbRYneKV_M_6f5ttc4Y8wrzyGkRKDmLyX0oPk
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JBHI_2018_2834317
crossref_primary_10_1093_ageing_afaa135
crossref_primary_10_3389_fpsyt_2022_1038008
crossref_primary_10_1109_MIM_2021_9513638
crossref_primary_10_1093_ageing_afaf108
crossref_primary_10_1016_j_patcog_2022_109149
crossref_primary_10_3390_s23198272
crossref_primary_10_1109_ACCESS_2022_3165208
crossref_primary_10_1002_trc2_12094
crossref_primary_10_1038_s41746_025_01640_z
crossref_primary_10_1002_widm_1492
crossref_primary_10_1016_j_eswa_2022_117538
crossref_primary_10_1002_widm_1254
crossref_primary_10_1109_JSEN_2018_2866806
crossref_primary_10_3233_AIS_160385
crossref_primary_10_1109_ACCESS_2024_3450970
crossref_primary_10_1109_JBHI_2018_2833618
crossref_primary_10_3233_JAD_210049
crossref_primary_10_2196_22831
crossref_primary_10_1140_epjs_s11734_024_01289_x
crossref_primary_10_1016_j_bspc_2024_106023
crossref_primary_10_1109_ACCESS_2017_2711495
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1007_s00521_022_07268_4
crossref_primary_10_3390_math11030648
crossref_primary_10_1080_13825585_2021_1917503
crossref_primary_10_3390_smartcities4040070
crossref_primary_10_1038_s41746_024_01144_2
crossref_primary_10_3390_s22031220
crossref_primary_10_3389_fnagi_2017_00101
crossref_primary_10_1007_s12652_016_0387_y
crossref_primary_10_1055_a_2657_8212
crossref_primary_10_1371_journal_pone_0165211
crossref_primary_10_1186_s12877_020_01678_6
crossref_primary_10_3390_s21124249
crossref_primary_10_1109_JSEN_2020_3008063
crossref_primary_10_1371_journal_pone_0168949
crossref_primary_10_3389_fphar_2019_01699
crossref_primary_10_1155_2022_6274185
crossref_primary_10_1002_pnp_721
crossref_primary_10_1016_j_artmed_2016_06_003
crossref_primary_10_1016_j_jamda_2025_105548
crossref_primary_10_1016_j_future_2020_07_046
crossref_primary_10_1016_j_psychres_2019_112732
crossref_primary_10_3390_s22114254
crossref_primary_10_1136_bmjopen_2021_054235
crossref_primary_10_3390_jpm12010011
crossref_primary_10_1016_j_micpro_2021_104013
crossref_primary_10_1145_3365225
crossref_primary_10_1155_2021_2679398
crossref_primary_10_3390_s22072769
crossref_primary_10_1109_JBHI_2015_2512273
crossref_primary_10_1109_ACCESS_2021_3076362
crossref_primary_10_1016_j_bios_2025_117722
crossref_primary_10_1007_s10586_019_03014_z
crossref_primary_10_1016_j_bspc_2021_103195
crossref_primary_10_1109_JSEN_2017_2771287
crossref_primary_10_1109_RBME_2018_2851500
crossref_primary_10_1038_s41746_022_00657_y
crossref_primary_10_1016_j_jagp_2025_06_001
crossref_primary_10_3389_fnhum_2020_00245
crossref_primary_10_1109_ACCESS_2022_3156607
crossref_primary_10_1109_TASE_2019_2942386
Cites_doi 10.1111/j.1532-5415.2004.52459.x
10.1109/MC.2004.1297237
10.1212/WNL.0b013e318259e1de
10.1093/geront/39.4.457
10.1097/00127893-200103000-00003
10.1111/j.1532-5415.2008.01758.x
10.1109/TSMC.2013.2252338
10.1145/633292.633416
10.7326/0003-4819-109-6-476
10.1109/MC.2005.107
10.1001/archneur.63.12.1763
10.1111/j.1532-5415.2005.53221.x
10.1016/j.gaitpost.2011.09.006
10.1109/TASE.2010.2049840
10.1016/0022-3956(75)90026-6
10.1093/geronb/gbq095
10.1001/archneurol.2010.159
10.1016/j.jalz.2008.07.004
10.1212/WNL.50.5.1496
10.1109/TBME.2009.2036732
10.1177/153331759701200202
10.1212/WNL.43.11.2412-a
ContentType Journal Article
Copyright Copyright (c) 2014 IEEE. 2014
Copyright_xml – notice: Copyright (c) 2014 IEEE. 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1109/TBME.2015.2389149
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1394
ExternalDocumentID PMC4406793
25585407
10_1109_TBME_2015_2389149
7005481
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Oregon Alzheimer's Disease Center
  grantid: P30AG008017
– fundername: SAAC Intelligent Systems for Assessing Aging Changes, and Intel Corporation BRP
– fundername: BRP
  grantid: R01AG024059
– fundername: Oregon Roybal Center for Translational Research on Aging
  grantid: P30AG024978
– fundername: NIA NIH HHS
  grantid: R01AG024059
– fundername: NIA NIH HHS
  grantid: P30 AG008017
– fundername: NIA NIH HHS
  grantid: P30AG024978
– fundername: NIA NIH HHS
  grantid: P30 AG024978
– fundername: NIA NIH HHS
  grantid: R01 AG024059
– fundername: NIA NIH HHS
  grantid: P30AG008017
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c485t-d66acc7f0b214c9b2fa11f424885b09ff76371285ef4c75edf6ba32214a26d0c3
IEDL.DBID RIE
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353513400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Tue Sep 30 14:51:19 EDT 2025
Sun Sep 28 10:16:49 EDT 2025
Thu Apr 03 07:01:54 EDT 2025
Tue Nov 18 22:38:10 EST 2025
Sat Nov 29 05:34:16 EST 2025
Wed Aug 27 02:17:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords older population
Home activity
unobtrusive sensing technologies
signal processing
mild cognitive impairment (MCI)
smart systems
machine learning
walking speed
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-d66acc7f0b214c9b2fa11f424885b09ff76371285ef4c75edf6ba32214a26d0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1109/TBME.2015.2389149
PMID 25585407
PQID 1675168532
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TBME_2015_2389149
crossref_citationtrail_10_1109_TBME_2015_2389149
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4406793
pubmed_primary_25585407
ieee_primary_7005481
proquest_miscellaneous_1675168532
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
ref11
ref10
(ref3) 2010
kirby (ref2) 2002
ref17
ref16
(ref19) 2011
(ref1) 2011
dawadi (ref21) 0
skubic (ref20) 0
ref24
chang (ref31) 2001
ref23
ref26
ref25
ref22
barry (ref15) 2000
ref28
ref27
ref29
ref8
ref7
cook (ref18) 2006; 12
ref9
ref4
ref6
ref5
buracchio (ref30) 2010; 67
10495584 - Gerontologist. 1999 Aug;39(4):457-64
21743050 - J Gerontol B Psychol Sci Soc Sci. 2011 Jul;66 Suppl 1:i180-90
22689734 - Neurology. 2012 Jun 12;78(24):1946-52
15450043 - J Am Geriatr Soc. 2004 Oct;52(10):1668-75
9596020 - Neurology. 1998 May;50(5):1496-8
19012864 - Alzheimers Dement. 2008 Nov;4(6):395-405
20697049 - Arch Neurol. 2010 Aug;67(8):980-6
17172617 - Arch Neurol. 2006 Dec;63(12):1763-9
22047773 - Gait Posture. 2012 Feb;35(2):197-202
18482293 - J Am Geriatr Soc. 2008 Jul;56(7):1244-51
1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
25530925 - IEEE Trans Syst Man Cybern Syst. 2013 Nov;43(6):1302-1313
19932989 - IEEE Trans Biomed Eng. 2010 Apr;57(4):813-20
8232972 - Neurology. 1993 Nov;43(11):2412-4
15817019 - J Am Geriatr Soc. 2005 Apr;53(4):695-9
3046450 - Ann Intern Med. 1988 Sep 15;109(6):476-86
References_xml – ident: ref10
  doi: 10.1111/j.1532-5415.2004.52459.x
– ident: ref14
  doi: 10.1109/MC.2004.1297237
– ident: ref23
  doi: 10.1212/WNL.0b013e318259e1de
– ident: ref6
  doi: 10.1093/geront/39.4.457
– ident: ref11
  doi: 10.1097/00127893-200103000-00003
– ident: ref25
  doi: 10.1111/j.1532-5415.2008.01758.x
– ident: ref22
  doi: 10.1109/TSMC.2013.2252338
– ident: ref17
  doi: 10.1145/633292.633416
– ident: ref5
  doi: 10.7326/0003-4819-109-6-476
– ident: ref16
  doi: 10.1109/MC.2005.107
– ident: ref24
  doi: 10.1001/archneur.63.12.1763
– ident: ref7
  doi: 10.1111/j.1532-5415.2005.53221.x
– year: 2011
  ident: ref19
  publication-title: GE Healthcare
– ident: ref29
  doi: 10.1016/j.gaitpost.2011.09.006
– start-page: 12
  year: 2000
  ident: ref15
  article-title: Easyliving: Technologies for intelligent environments
  publication-title: Proc Int Symp Handheld Ubiquitous Comput
– ident: ref13
  doi: 10.1109/TASE.2010.2049840
– ident: ref8
  doi: 10.1016/0022-3956(75)90026-6
– ident: ref28
  doi: 10.1093/geronb/gbq095
– start-page: 56
  year: 0
  ident: ref21
  article-title: An approach to cognitive assessment in smart home
  publication-title: Workshop on Data Mining for Medicine and Healthcare
– year: 2002
  ident: ref2
  article-title: The health of canadians-The federal role, volume two: Current trends and future challenges
  publication-title: The Standing Senate Committee on Social Affairs Science and Technology Tech Rep
– volume: 12
  start-page: 15
  year: 2006
  ident: ref18
  article-title: Health monitoring and assistance to support aging in place
  publication-title: J Universal Comput Sci
– volume: 67
  start-page: 980
  year: 2010
  ident: ref30
  article-title: The trajectory of gait speed preceding mild cognitive impairment
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2010.159
– ident: ref12
  doi: 10.1016/j.jalz.2008.07.004
– year: 2010
  ident: ref3
  publication-title: Alzheimer society of B C
– ident: ref26
  doi: 10.1212/WNL.50.5.1496
– year: 2001
  ident: ref31
  publication-title: LIBSVM A library for support vector machines
– ident: ref27
  doi: 10.1109/TBME.2009.2036732
– year: 2011
  ident: ref1
  article-title: Senior resource for aging in place
– ident: ref4
  doi: 10.1177/153331759701200202
– start-page: 198
  year: 0
  ident: ref20
  article-title: Testing classifiers for embedded health assessment
  publication-title: Proc 10th Int Smart Homes Health Telematics Conf Impact Anal Solutions Chronic Disease Prevention Manag
– ident: ref9
  doi: 10.1212/WNL.43.11.2412-a
– reference: 3046450 - Ann Intern Med. 1988 Sep 15;109(6):476-86
– reference: 17172617 - Arch Neurol. 2006 Dec;63(12):1763-9
– reference: 22047773 - Gait Posture. 2012 Feb;35(2):197-202
– reference: 8232972 - Neurology. 1993 Nov;43(11):2412-4
– reference: 9596020 - Neurology. 1998 May;50(5):1496-8
– reference: 20697049 - Arch Neurol. 2010 Aug;67(8):980-6
– reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
– reference: 22689734 - Neurology. 2012 Jun 12;78(24):1946-52
– reference: 10495584 - Gerontologist. 1999 Aug;39(4):457-64
– reference: 21743050 - J Gerontol B Psychol Sci Soc Sci. 2011 Jul;66 Suppl 1:i180-90
– reference: 25530925 - IEEE Trans Syst Man Cybern Syst. 2013 Nov;43(6):1302-1313
– reference: 15817019 - J Am Geriatr Soc. 2005 Apr;53(4):695-9
– reference: 19012864 - Alzheimers Dement. 2008 Nov;4(6):395-405
– reference: 19932989 - IEEE Trans Biomed Eng. 2010 Apr;57(4):813-20
– reference: 15450043 - J Am Geriatr Soc. 2004 Oct;52(10):1668-75
– reference: 18482293 - J Am Geriatr Soc. 2008 Jul;56(7):1244-51
SSID ssj0014846
Score 2.465787
Snippet The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore...
The current diagnosis process of dementia is resulting in a high-percentage of cases with delayed detection. To address this problem, in this paper we explore...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1383
SubjectTerms Aged
Aged, 80 and over
Algorithms
Artificial Intelligence
Biomedical measurement
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - physiopathology
Dementia
Feature extraction
Female
Home Activity
Humans
Legged locomotion
Machine Learning
Male
Mild Cognitive Impairment
Monitoring
Older Population
Remote Sensing Technology - instrumentation
Remote Sensing Technology - methods
ROC Curve
Sensors
Signal Processing
Signal Processing, Computer-Assisted
Smart Systems
Support Vector Machine
Unobtrusive Sensing Technologies
Vectors
Walking Speed
Title Autonomous Unobtrusive Detection of Mild Cognitive Impairment in Older Adults
URI https://ieeexplore.ieee.org/document/7005481
https://www.ncbi.nlm.nih.gov/pubmed/25585407
https://www.proquest.com/docview/1675168532
https://pubmed.ncbi.nlm.nih.gov/PMC4406793
Volume 62
WOSCitedRecordID wos000353513400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddKWN7aLd269J2xYM9jaV1HH8-Xr_oHq7bQwv3FmLHZoGSlN7d_v5ZSS70ShnsLRAbC0m2ZEv6CeArpUFRR0MqTMlTHoRLtc19aqzLgywrZkXZNZtQNzd6NjO_NuD7WAvjve-Sz_wJfnax_Kp1S3wqO1XoYGCd9SulZF-rNUYMuO6LcmgWNzAzfIhgZtSc3p5NLzGJS5wwjMpxRAqNnrRG7Lk1c9T1V3nJ1XyeMfnEBF3t_B_x72B7cDXJpNeN97Dhm114-wSAcBdeT4fQ-h5MJ8sFFji0yzm5a1qLxRjxJCQXftFlazWkDWRa31fkfJVxRH7Es6R-xHVJ3ZCf2PCbTBDQY_4B7q4ub8-v06HXQuq4Fou0krJ0TgVqWcadsSyUWRY4i_tbWIoPuzJX0ZYJH7hTwldB2jIeBhkvmayoyz_CZtM2_hMQp7X0hiPOjOW5rbQ3rLLUCuatyINPgK5YXrgBiBz7YdwX3YWEmgIFVqDAikFgCXwbpzz0KBz_GryH3B8HDoxP4MtKrkXcQhgXKRsfmVpk8dKUyei3sAT2ezmPk1d6koBa04BxAMJzr_9p6t8dTDfn-EiXH7xMziG8QaL73Mkj2IxS9Z9hy_1Z1PPH46jhM33cafhfm4n3JA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcQTDAeNr62lfERJJ4QhTRN2ubx-BIIevBwSLxVTZqISqiduLv9_cRtr-ImhLS3Sk3U1HZsJ7Z_Bjik1MZUU-sLmXOfW6H9RIXGl0qHNsoLpkTeNJuIh8Pk6Uk-LMBxXwtjjGmSz8wJPjax_KLWU7wqO43RwcA66yXBOaNttVYfM-BJW5ZDA7eFmeRdDDOg8nR0ll5iGpc4YRiX44gV6nzpBNHn5gxS02HlI2fz35zJd0bo6vv_LX8NvnXOJhm00rEOC6bagNV3EIQbsJx2wfVNSAfTCZY41NMxeaxqheUYTheSCzNp8rUqUluSli8FOZ_lHJEbp03KV_wuKStyjy2_yQAhPcZb8Hh1OTq_9rtuC77miZj4RRTlWseWKhZwLRWzeRBYztwOF4ri1W4Uxs6aCWO5joUpbKRypw4CnrOooDr8AYtVXZlfQHSSREZyRJpRPFRFYiQrFFWCGSVCazygM5JnuoMix44YL1lzJKEyQ4ZlyLCsY5gHR_2UPy0Ox2eDN5H6_cCO8B4czPiauU2EkZG8Mo6oWeCOTUHkPBfmwc-Wz_3kmZx4EM9JQD8AAbrn31TlcwPUzTle04XbHy9nH1auR-lddnczvP0NX_EH2kzKHVh0HDa78EX_nZTj171Gzt8AxMX5gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+unobtrusive+detection+of+mild+cognitive+impairment+in+older+adults&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Akl%2C+Ahmad&rft.au=Taati%2C+Babak&rft.au=Mihailidis%2C+Alex&rft.date=2015-05-01&rft.eissn=1558-2531&rft.volume=62&rft.issue=5&rft.spage=1383&rft_id=info:doi/10.1109%2FTBME.2015.2389149&rft_id=info%3Apmid%2F25585407&rft.externalDocID=25585407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon