Improved snow geese algorithm for engineering applications and clustering optimization
The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still problems that are easy to fall into local optimal and premature convergence. In order to further improve the optimization performance of the...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 4506 - 95 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
06.02.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still problems that are easy to fall into local optimal and premature convergence. In order to further improve the optimization performance of the algorithm, this paper proposes an improved Snow Goose algorithm (ISGA) based on three strategies according to the real migration habits of snow geese: (1) Lead goose rotation mechanism. (2) Honk-guiding mechanism. (3) Outlier boundary strategy. Through the above strategies, the exploration and development ability of the original algorithm is comprehensively enhanced, and the convergence accuracy and convergence speed are improved. In this paper, two standard test sets of IEEE CEC2022 and IEEE CEC2017 are used to verify the excellent performance of the improved algorithm. The practical application ability of ISGA is tested through 8 engineering problems, and ISGA is employed to enhance the effect of the clustering algorithm. The results show that compared with the comparison algorithm, the proposed ISGA has a faster iteration speed and can find better solutions, which shows its great potential in solving practical optimization problems. |
|---|---|
| AbstractList | The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still problems that are easy to fall into local optimal and premature convergence. In order to further improve the optimization performance of the algorithm, this paper proposes an improved Snow Goose algorithm (ISGA) based on three strategies according to the real migration habits of snow geese: (1) Lead goose rotation mechanism. (2) Honk-guiding mechanism. (3) Outlier boundary strategy. Through the above strategies, the exploration and development ability of the original algorithm is comprehensively enhanced, and the convergence accuracy and convergence speed are improved. In this paper, two standard test sets of IEEE CEC2022 and IEEE CEC2017 are used to verify the excellent performance of the improved algorithm. The practical application ability of ISGA is tested through 8 engineering problems, and ISGA is employed to enhance the effect of the clustering algorithm. The results show that compared with the comparison algorithm, the proposed ISGA has a faster iteration speed and can find better solutions, which shows its great potential in solving practical optimization problems. Abstract The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still problems that are easy to fall into local optimal and premature convergence. In order to further improve the optimization performance of the algorithm, this paper proposes an improved Snow Goose algorithm (ISGA) based on three strategies according to the real migration habits of snow geese: (1) Lead goose rotation mechanism. (2) Honk-guiding mechanism. (3) Outlier boundary strategy. Through the above strategies, the exploration and development ability of the original algorithm is comprehensively enhanced, and the convergence accuracy and convergence speed are improved. In this paper, two standard test sets of IEEE CEC2022 and IEEE CEC2017 are used to verify the excellent performance of the improved algorithm. The practical application ability of ISGA is tested through 8 engineering problems, and ISGA is employed to enhance the effect of the clustering algorithm. The results show that compared with the comparison algorithm, the proposed ISGA has a faster iteration speed and can find better solutions, which shows its great potential in solving practical optimization problems. The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still problems that are easy to fall into local optimal and premature convergence. In order to further improve the optimization performance of the algorithm, this paper proposes an improved Snow Goose algorithm (ISGA) based on three strategies according to the real migration habits of snow geese: (1) Lead goose rotation mechanism. (2) Honk-guiding mechanism. (3) Outlier boundary strategy. Through the above strategies, the exploration and development ability of the original algorithm is comprehensively enhanced, and the convergence accuracy and convergence speed are improved. In this paper, two standard test sets of IEEE CEC2022 and IEEE CEC2017 are used to verify the excellent performance of the improved algorithm. The practical application ability of ISGA is tested through 8 engineering problems, and ISGA is employed to enhance the effect of the clustering algorithm. The results show that compared with the comparison algorithm, the proposed ISGA has a faster iteration speed and can find better solutions, which shows its great potential in solving practical optimization problems.The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still problems that are easy to fall into local optimal and premature convergence. In order to further improve the optimization performance of the algorithm, this paper proposes an improved Snow Goose algorithm (ISGA) based on three strategies according to the real migration habits of snow geese: (1) Lead goose rotation mechanism. (2) Honk-guiding mechanism. (3) Outlier boundary strategy. Through the above strategies, the exploration and development ability of the original algorithm is comprehensively enhanced, and the convergence accuracy and convergence speed are improved. In this paper, two standard test sets of IEEE CEC2022 and IEEE CEC2017 are used to verify the excellent performance of the improved algorithm. The practical application ability of ISGA is tested through 8 engineering problems, and ISGA is employed to enhance the effect of the clustering algorithm. The results show that compared with the comparison algorithm, the proposed ISGA has a faster iteration speed and can find better solutions, which shows its great potential in solving practical optimization problems. |
| ArticleNumber | 4506 |
| Author | Tong, Yuxuan Chen, Jincheng Zhang, Zhiyuan Bing, Shengwei Ren, Quance Bian, Haihong Li, Can Liu, Yuhan |
| Author_xml | – sequence: 1 givenname: Haihong surname: Bian fullname: Bian, Haihong organization: College of Electrical Engineering, Nanjing Institute of Technology, Jiangsu Province Key Construction Laboratory for Active Distribution Network, Nanjing Institute of Technology – sequence: 2 givenname: Can surname: Li fullname: Li, Can email: 792838028@qq.com organization: College of Electrical Engineering, Nanjing Institute of Technology, Jiangsu Province Key Construction Laboratory for Active Distribution Network, Nanjing Institute of Technology – sequence: 3 givenname: Yuhan surname: Liu fullname: Liu, Yuhan organization: College of Electrical Engineering, Nanjing Institute of Technology, Jiangsu Province Key Construction Laboratory for Active Distribution Network, Nanjing Institute of Technology – sequence: 4 givenname: Yuxuan surname: Tong fullname: Tong, Yuxuan organization: Cixi Power Supply Company of State Grid Zhejiang Electric Power Co., Ltd – sequence: 5 givenname: Shengwei surname: Bing fullname: Bing, Shengwei organization: College of Electrical Engineering, Nanjing Institute of Technology, Jiangsu Province Key Construction Laboratory for Active Distribution Network, Nanjing Institute of Technology – sequence: 6 givenname: Jincheng surname: Chen fullname: Chen, Jincheng organization: College of Electrical Engineering, Nanjing Institute of Technology, Jiangsu Province Key Construction Laboratory for Active Distribution Network, Nanjing Institute of Technology – sequence: 7 givenname: Quance surname: Ren fullname: Ren, Quance organization: College of Electrical Engineering, Nanjing Institute of Technology, Jiangsu Province Key Construction Laboratory for Active Distribution Network, Nanjing Institute of Technology – sequence: 8 givenname: Zhiyuan surname: Zhang fullname: Zhang, Zhiyuan organization: College of Electrical Engineering, Nanjing Institute of Technology, Jiangsu Province Key Construction Laboratory for Active Distribution Network, Nanjing Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39915568$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UUuP1SAYJWaMM47zB1yYJm7cVHmUAksz8XGTSdyoW0Lha-WmhQqtRn-93HZGzSyGDYTzyPed8xSdhRgAoecEvyaYyTe5IVzJGlNeS4klrsUjdEFxw2vKKD37732OrnI-4nI4VQ1RT9A5U4pw3soL9PUwzSn-AFflEH9WA0CGyoxDTH75NlV9TBWEwQeA5MNQmXkevTWLjyFXJrjKjmtedizOi5_87w18hh73ZsxwdXtfoi_v332-_ljffPpwuH57U9tG8qV2rMcgMGuJpNYqEAA9FgYT0xkrMeeOd5ZI3PUNgU4SZXnBpTVlF3AE2CU67L4umqOek59M-qWj8Xr7iGnQJi3ejqAVaw0VYBzpZdNx2rXcATTGYEe56HHxerV7lUC-r5AXPflsYRxNgLhmzUjbMCW4YIX68h71GNcUyqYbi6hGsZPhi1vW2k3g_o53l34hyJ1gU8w5Qa-tX7b8lmT8qAnWp6713rUuXeutay2KlN6T3rk_KGK7KM-nxiD9G_sB1R99CbwX |
| CitedBy_id | crossref_primary_10_3390_a18060316 crossref_primary_10_3390_biomimetics10090620 crossref_primary_10_3390_pr13051407 crossref_primary_10_1109_ACCESS_2025_3560731 crossref_primary_10_3390_biomimetics10060388 |
| Cites_doi | 10.1007/978-3-031-09753-9_25 10.1016/j.rico.2022.100127 10.1016/j.eswa.2023.123088 10.1016/j.knosys.2015.12.022 10.1016/j.future.2020.04.008 10.1016/j.knosys.2018.08.030 10.1016/j.engappai.2022.105075 10.1007/978-3-031-09753-9_29 10.1007/s12530-023-09553-6 10.1016/j.neucom.2023.02.010 10.1080/23311916.2022.2114196 10.1016/j.eswa.2023.122070 10.1016/j.engappai.2023.107532 10.1007/s11277-020-07259-5 10.1007/s00202-023-01803-9 10.1080/0952813X.2022.2104388 10.1016/j.knosys.2023.111194 10.1016/j.knosys.2022.110214 10.1007/s12293-012-0075-1 10.1007/s10462-011-9309-8 10.1016/j.advengsoft.2016.01.008 10.1016/j.knosys.2019.105169 10.1007/s10586-023-04221-5 10.1016/j.ins.2019.03.062 10.1007/s10489-021-02629-3 10.22266/ijies2020.1031.45 10.1155/2015/258491 10.4018/IJAMC.2017070101 10.1007/s11831-023-10036-9 10.1016/j.swevo.2020.100821 10.3390/math10193466 10.1016/j.knosys.2024.111850 10.1016/j.knosys.2023.111257 10.1016/j.knosys.2023.111081 10.1109/TETCI.2023.3251441 10.1016/j.apm.2023.10.045 10.1016/j.asoc.2016.01.054 10.1016/j.applthermaleng.2022.118687 10.1016/j.cma.2023.116582 10.1109/4235.585893 10.1016/j.engappai.2022.104763 10.1016/j.eswa.2023.120886 10.1016/j.engappai.2023.106121 10.12989/acd.2017.2.4.313 10.1016/j.eswa.2021.116468 10.1016/j.asoc.2023.110573 10.1016/j.cma.2020.113609 10.1007/s00366-020-01179-5 10.1038/s41598-024-54910-3 10.53106/160792642023122407003 10.1007/s10462-024-10723-4 10.1016/j.cie.2022.108032 10.29130/dubited.1014947 10.1016/j.swevo.2023.101374 10.1016/j.asoc.2023.110479 10.1016/j.cma.2023.116446 10.1016/j.eswa.2023.121744 10.1016/j.knosys.2023.110305 10.1016/j.engappai.2022.105501 10.37190/ord230108 10.1111/exsy.12956 10.29130/dubited.1016209 10.1016/j.eswa.2023.121597 10.1016/j.knosys.2022.110206 10.1016/j.ins.2023.02.043 10.1016/j.apm.2020.12.021 10.1007/978-3-540-70928-2_25 10.1016/j.eswa.2023.122200 10.1016/j.swevo.2023.101277 10.1080/15397734.2016.1213639 10.1016/j.compbiomed.2024.108064 10.1016/j.asoc.2020.106734 10.1007/s10462-023-10653-7 10.1016/j.knosys.2024.111737 10.1016/j.knosys.2022.110011 10.1038/s41598-022-14225-7 10.1016/j.eswa.2024.123734 10.1016/j.eswa.2023.120069 10.1007/s10462-024-10729-y 10.1038/s41598-023-48462-1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-88080-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 95 |
| ExternalDocumentID | oai_doaj_org_article_936a27ead1f84b52b65dee4aa0d257f0 39915568 10_1038_s41598_025_88080_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Jiangsu Provincial Key Research and Development Program grantid: BE2020688; BE2020688; BE2020688; BE2020688; BE2020688; BE2020688; BE2020688; BE2020688 funderid: http://dx.doi.org/10.13039/501100013058 – fundername: Jiangsu Provincial Key Research and Development Program grantid: BE2020688 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c485t-d3f0e7036182cc9e7eef07a01abac8055d5bc180bf41eb819c5f078ca005ed1e3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415966300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:36:06 EST 2025 Fri Sep 05 10:39:00 EDT 2025 Tue Oct 07 07:55:32 EDT 2025 Thu Apr 03 06:56:40 EDT 2025 Sat Nov 29 03:22:32 EST 2025 Tue Nov 18 21:43:58 EST 2025 Fri Feb 21 02:37:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Snow geese algorithm Meta-heuristic algorithm Honk-guiding mechanism Engineering and clustering optimization Lead goose rotation mechanism Outlier boundary |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-d3f0e7036182cc9e7eef07a01abac8055d5bc180bf41eb819c5f078ca005ed1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3164194930?pq-origsite=%requestingapplication% |
| PMID | 39915568 |
| PQID | 3164194930 |
| PQPubID | 2041939 |
| PageCount | 95 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_936a27ead1f84b52b65dee4aa0d257f0 proquest_miscellaneous_3164397573 proquest_journals_3164194930 pubmed_primary_39915568 crossref_citationtrail_10_1038_s41598_025_88080_7 crossref_primary_10_1038_s41598_025_88080_7 springer_journals_10_1038_s41598_025_88080_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-06 |
| PublicationDateYYYYMMDD | 2025-02-06 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | L Meng (88080_CR74) 2023; 82 88080_CR82 J Bai (88080_CR77) 2023; 282 MH Amiri (88080_CR3) 2024; 14 88080_CR44 H Bakir (88080_CR62) 2022; 168 J Wang (88080_CR2) 2024; 57 J Lian (88080_CR6) 2024; 172 J Zhang (88080_CR41) 2023; 78 88080_CR47 P Subramanian (88080_CR57) 2020; 113 88080_CR49 H Bakır (88080_CR59) 2023; 105 88080_CR48 Z Tian (88080_CR23) 2024; 245 HT Kahraman (88080_CR68) 2022; 52 K Zolf (88080_CR25) 2023 RA Mora-Gutiérrez (88080_CR50) 2014; 41 P Trojovský (88080_CR27) 2023; 13 D Han (88080_CR38) 2019; 491 P Tiwari (88080_CR34) 2024 HT Kahraman (88080_CR71) 2023; 122 M Verij kazemi (88080_CR30) 2022; 193 A Kaveh (88080_CR51) 2022; 38 G Tejani (88080_CR31) 2017 W Zhao (88080_CR9) 2024; 238 S Zhao (88080_CR46) 2022; 114 DH Wolpert (88080_CR72) 1997; 1 M Abdel-Basset (88080_CR18) 2022 Q Zhang (88080_CR36) 2023; 261 M Dehghani (88080_CR76) 2023; 259 88080_CR79 S Duman (88080_CR60) 2022; 111 H Chen (88080_CR35) 2020; 111 G Tejani (88080_CR21) 2017; 8 H Peraza-Vázquez (88080_CR5) 2024; 57 W Zhao (88080_CR13) 2023; 417 AYS Lam (88080_CR43) 2012; 4 M Ghasemi (88080_CR28) 2024; 419 A-Q Tian (88080_CR73) 2024; 126 R Sowmya (88080_CR15) 2024; 128 M Dehghani (88080_CR26) 2022; 12 S Zhao (88080_CR16) 2024; 238 S Duman (88080_CR69) 2023; 117 Z Liao (88080_CR42) 2023; 261 88080_CR80 M Azizi (88080_CR12) 2021; 93 P Duankhan (88080_CR22) 2024 88080_CR63 L Deng (88080_CR14) 2023; 225 H Su (88080_CR19) 2023; 532 HT Kahraman (88080_CR58) 2020; 190 88080_CR65 Z-K Feng (88080_CR24) 2021; 98 88080_CR67 B Ozkaya (88080_CR70) 2023; 144 C Cavallaro (88080_CR33) 2024; 284 88080_CR66 Y Fu (88080_CR10) 2024; 57 88080_CR1 Y Gao (88080_CR17) 2023; 232 X Liu (88080_CR40) 2023; 7 S Wang (88080_CR39) 2023; 630 M Abdel-Basset (88080_CR4) 2024; 284 RK Hamad (88080_CR7) 2024 Y Sonmez (88080_CR61) 2022; 36 S Aras (88080_CR64) 2021; 61 88080_CR52 W Zhao (88080_CR45) 2019; 163 88080_CR54 88080_CR53 88080_CR55 S Mirjalili (88080_CR11) 2016; 96 S Mirjalili (88080_CR75) 2016; 95 M Mirrashid (88080_CR20) 2022; 7 A Taheri (88080_CR37) 2024; 238 L Abualigah (88080_CR78) 2021; 376 M Mirrashid (88080_CR29) 2023; 264 HT Öztürk (88080_CR81) 2023; 145 B Abdollahzadeh (88080_CR8) 2024 D Zhu (88080_CR32) 2024; 237 G Sun (88080_CR56) 2016; 46 |
| References_xml | – ident: 88080_CR65 doi: 10.1007/978-3-031-09753-9_25 – volume: 7 year: 2022 ident: 88080_CR20 publication-title: Results Control Optim. doi: 10.1016/j.rico.2022.100127 – volume: 245 year: 2024 ident: 88080_CR23 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.123088 – volume: 96 start-page: 120 year: 2016 ident: 88080_CR11 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 111 start-page: 175 year: 2020 ident: 88080_CR35 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.04.008 – volume: 163 start-page: 283 year: 2019 ident: 88080_CR45 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.030 – volume: 114 year: 2022 ident: 88080_CR46 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105075 – ident: 88080_CR67 doi: 10.1007/978-3-031-09753-9_29 – year: 2024 ident: 88080_CR7 publication-title: Evol. Syst. doi: 10.1007/s12530-023-09553-6 – volume: 532 start-page: 183 year: 2023 ident: 88080_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – ident: 88080_CR79 doi: 10.1080/23311916.2022.2114196 – volume: 238 year: 2024 ident: 88080_CR37 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122070 – volume: 128 year: 2024 ident: 88080_CR15 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107532 – volume: 113 start-page: 1 year: 2020 ident: 88080_CR57 publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07259-5 – volume: 105 start-page: 3121 issue: 5 year: 2023 ident: 88080_CR59 publication-title: Electr. Eng. doi: 10.1007/s00202-023-01803-9 – volume: 36 start-page: 1 year: 2022 ident: 88080_CR61 publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2022.2104388 – volume: 284 year: 2024 ident: 88080_CR33 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111194 – volume: 261 year: 2023 ident: 88080_CR42 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110214 – ident: 88080_CR82 – volume: 4 start-page: 3 issue: 1 year: 2012 ident: 88080_CR43 publication-title: Memet. Comput. doi: 10.1007/s12293-012-0075-1 – volume: 41 start-page: 301 issue: 3 year: 2014 ident: 88080_CR50 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9309-8 – volume: 95 start-page: 51 year: 2016 ident: 88080_CR75 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 190 year: 2020 ident: 88080_CR58 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105169 – year: 2024 ident: 88080_CR8 publication-title: Clust. Comput. doi: 10.1007/s10586-023-04221-5 – volume: 491 start-page: 204 year: 2019 ident: 88080_CR38 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.03.062 – volume: 52 start-page: 4873 issue: 5 year: 2022 ident: 88080_CR68 publication-title: Appl. Intell. doi: 10.1007/s10489-021-02629-3 – ident: 88080_CR54 doi: 10.22266/ijies2020.1031.45 – ident: 88080_CR49 doi: 10.1155/2015/258491 – volume: 8 start-page: 1 year: 2017 ident: 88080_CR21 publication-title: Int. J. Appl. Metaheuristic Comput. (IJAMC) doi: 10.4018/IJAMC.2017070101 – year: 2024 ident: 88080_CR34 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-023-10036-9 – volume: 61 year: 2021 ident: 88080_CR64 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100821 – year: 2022 ident: 88080_CR18 publication-title: Mathematics doi: 10.3390/math10193466 – ident: 88080_CR47 doi: 10.1016/j.knosys.2024.111850 – volume: 284 year: 2024 ident: 88080_CR4 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111257 – volume: 282 year: 2023 ident: 88080_CR77 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111081 – volume: 7 start-page: 1605 issue: 6 year: 2023 ident: 88080_CR40 publication-title: IEEE Trans. Emerg. Topics Comput. Intell. doi: 10.1109/TETCI.2023.3251441 – volume: 126 start-page: 327 year: 2024 ident: 88080_CR73 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2023.10.045 – volume: 46 start-page: 703 year: 2016 ident: 88080_CR56 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.054 – ident: 88080_CR80 doi: 10.1016/j.applthermaleng.2022.118687 – volume: 419 year: 2024 ident: 88080_CR28 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116582 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 88080_CR72 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 111 year: 2022 ident: 88080_CR60 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104763 – volume: 232 year: 2023 ident: 88080_CR17 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120886 – volume: 122 year: 2023 ident: 88080_CR71 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106121 – year: 2017 ident: 88080_CR31 publication-title: Adv. Comput. Des. doi: 10.12989/acd.2017.2.4.313 – volume: 193 start-page: 116468 year: 2022 ident: 88080_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116468 – volume: 145 year: 2023 ident: 88080_CR81 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110573 – volume: 376 year: 2021 ident: 88080_CR78 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: 38 start-page: 1921 issue: 3 year: 2022 ident: 88080_CR51 publication-title: Eng. Comput. doi: 10.1007/s00366-020-01179-5 – volume: 14 start-page: 5032 issue: 1 year: 2024 ident: 88080_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-024-54910-3 – ident: 88080_CR53 doi: 10.53106/160792642023122407003 – volume: 57 start-page: 98 issue: 4 year: 2024 ident: 88080_CR2 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10723-4 – volume: 168 year: 2022 ident: 88080_CR62 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108032 – ident: 88080_CR63 doi: 10.29130/dubited.1014947 – volume: 82 year: 2023 ident: 88080_CR74 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101374 – volume: 144 year: 2023 ident: 88080_CR70 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110479 – volume: 417 year: 2023 ident: 88080_CR13 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116446 – volume: 238 year: 2024 ident: 88080_CR16 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121744 – volume: 264 year: 2023 ident: 88080_CR29 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110305 – volume: 117 year: 2023 ident: 88080_CR69 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105501 – year: 2023 ident: 88080_CR25 publication-title: Oper. Res. Decis. doi: 10.37190/ord230108 – ident: 88080_CR48 doi: 10.1111/exsy.12956 – ident: 88080_CR66 doi: 10.29130/dubited.1016209 – volume: 237 year: 2024 ident: 88080_CR32 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121597 – volume: 261 year: 2023 ident: 88080_CR36 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110206 – volume: 630 start-page: 669 year: 2023 ident: 88080_CR39 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.02.043 – ident: 88080_CR52 – volume: 93 start-page: 657 year: 2021 ident: 88080_CR12 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.12.021 – ident: 88080_CR44 doi: 10.1007/978-3-540-70928-2_25 – volume: 238 year: 2024 ident: 88080_CR9 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122200 – volume: 78 year: 2023 ident: 88080_CR41 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101277 – ident: 88080_CR55 doi: 10.1080/15397734.2016.1213639 – volume: 172 year: 2024 ident: 88080_CR6 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108064 – volume: 98 year: 2021 ident: 88080_CR24 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106734 – volume: 57 start-page: 59 issue: 3 year: 2024 ident: 88080_CR5 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10653-7 – ident: 88080_CR1 doi: 10.1016/j.knosys.2024.111737 – volume: 259 year: 2023 ident: 88080_CR76 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110011 – volume: 12 start-page: 9924 issue: 1 year: 2022 ident: 88080_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-022-14225-7 – year: 2024 ident: 88080_CR22 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123734 – volume: 225 year: 2023 ident: 88080_CR14 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120069 – volume: 57 start-page: 123 issue: 5 year: 2024 ident: 88080_CR10 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10729-y – volume: 13 start-page: 21472 issue: 1 year: 2023 ident: 88080_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-023-48462-1 |
| SSID | ssj0000529419 |
| Score | 2.4743106 |
| Snippet | The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there are still... Abstract The Snow Goose Algorithm (SGA) is a new meta-heuristic algorithm proposed in 2024, which has been proved to have good optimization effect, but there... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4506 |
| SubjectTerms | 639/705/1041 639/705/1042 Algorithms Aquatic birds Chen caerulescens Convergence Engineering and clustering optimization Honk-guiding mechanism Humanities and Social Sciences Lead goose rotation mechanism Meta-heuristic algorithm multidisciplinary Optimization Outlier boundary Science Science (multidisciplinary) Snow Snow geese algorithm Waterfowl |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXVN6BgozEDaL6ubaPgKg4oIoDoN4sPyYFaZtUzS4V_55xnN0u4nXhmnGieDwTf5PxfEPIc6mEiMqlVjIoLcwUa50uVSBKJOsiAgYzFQq_N8fH9uTEfdhp9VXOhFV64Kq4QycXQRicL--silrEhc4AKgSW0dq6KVpH1LMTTFVWb-EUd3OVDJP2cMSdqlSTCd3awqXYmp92oomw_3co85cM6bTxHO2TWzNipK_qm94m16C_Q27UHpLf75LP9bcAZDr2wyU9BRiBhuXpgFH_lzOKmJTCFecg3U1Y09BnmpbrwpVQZAN-Ps7musx75NPR249v3rVzs4Q2KatXbZYdg8KmhQFDSg4MQMdMYDzEkCzTOuuYuGWxUxwi4oCkUW5TQF1B5iDvk71-6OEhocKil-ZkUzJCBRViIayJC9GpyHQOXUP4RnE-zUzipaHF0k8ZbWl9VbZHZftJ2d405MX2nvPKo_HX0a_LemxHFg7s6QJahp8tw__LMhpysFlNPzvm6CWGh9wpJ1H8bCtGlyp5ktDDsK5jEKZpIxvyoFrB9k0Qz_FC2taQlxuzuHr4nyf06H9M6DG5KYr9ljPjiwOyt7pYwxNyPX1bfR0vnk4O8AMVIwdn priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved snow geese algorithm for engineering applications and clustering optimization |
| URI | https://link.springer.com/article/10.1038/s41598-025-88080-7 https://www.ncbi.nlm.nih.gov/pubmed/39915568 https://www.proquest.com/docview/3164194930 https://www.proquest.com/docview/3164397573 https://doaj.org/article/936a27ead1f84b52b65dee4aa0d257f0 |
| Volume | 15 |
| WOSCitedRecordID | wos001415966300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQu5VkIlFWQuEFUx4-1c0IUtQKJriIEaDlFfmVB2iZls1vEv2fsZHdBQC9cfIgfcjwz9njG8w3AM8YpNbywGSM-pDDjJCtEiALh1KrCoMIgY6DwOzmZqOm0KAeDWzc8q1zviXGjdq0NNvIjhno9XrgLRl5efMtC1qjgXR1SaOzAXkBJYPHpXrmxsQQvFnYaYmUIU0cdnlchpoyKTAVExUz-dh5F2P6_6Zp_-Enj8XN6638nfhv2B8UzfdVzyh245pu7cKNPRfnjHnzqrQvepV3Tfk9n3nc-1fMZjrT8cp6iapv6LXRh-qvfO9WNS-18FSAXQl2Lu9D5EN55Hz6ennx4_SYbci5kliuxzByriQ-gXHjvsLbw0vuaSE1ybbRVRAgnjM0VMTXPvUF1wgqsV1bjYnuXe3YAu03b-IeQUoXC7qyyVlKuuTYB98aMac0NEU7XCeTrla_sAEge8mLMq-gYZ6rqqVUhtapIrUom8HzT56KH47iy9XEg6KZlgNKOH9rFrBoksyrYWFOJApXXihtBzVg477nWxOF2VpMEDtd0rQb57qotURN4uqlGyQzuFt34dtW3QW1PSJbAg56NNjNBtTAP2G8JvFjz1Xbwf__Qo6vn8hhu0sDa4VH5-BB2l4uVfwLX7eXya7cYwY6cyliqEewdn0zK96NogsDyjJajKDtYU749Kz__BPpHG7A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQb3o9AASPBCqI6jj1xFgjxqlp1GHVRUHeuXxmQpkmZzFD1p_hGrvMaENBdF2zHnshJjo9PfH3PBXiWcsYMz22cUh9KmHEa5yJkgXBmZW5QMGRNovA4m0zkwUG-twY_-lyYcKyy58SGqF1lwx75Zoq6Hj-485S-Pv4Wh6pRIbral9BoYbHrT0_wk61-tfMe3-9zxrY-7L_bjruqArHlUixilxbUB9spVNbW5j7zvqCZpok22koqhBPGJpKagife4IJpBbZLqxGv3iU-xetegIsoI5hsjgruDXs6IWqGg-xyc2gqN2tcH0MOGxOxDA6Ocfbb-teUCfibtv0jLtssd1vX_7cHdQOudcKavGlnwk1Y8-UtuNyW2jy9DZ_b3RPvSF1WJ2Tqfe2Jnk1x5IsvRwSlO_Era0bya1yf6NIRO1sGS4nQViHLHnXpq3fg07nc1F1YL6vS3wfCJJKZs9LajHHNtQm-PmbECm6ocLqIIOnftLKd4Xqo-zFTTeA_lapFh0J0qAYdKovgxfCf49Zu5MzebwOAhp7BKrz5oZpPVcc8Kk9HmmVIGEkhuRHMjITznmtNHdJ1QSPY6HGkOv6q1QpEETwdmpF5QjhJl75atn1QzYosjeBeC9thJCh7k-BtF8HLHseri__7hh6cPZYncGV7_-NYjXcmuw_hKgvTKhygH23A-mK-9I_gkv2--FrPHzfzksDheeP7J2Tic1Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJ1HHvjHBACyoqq1WoPgHpz_cq20jYpm12q_jV-HeM8dkFAbz1wjZ3IiT9_nnhmvgF4kXLGDM9tnFIfSphxGuciZIFwZmVu0GDImkThvWw8lvv7-WQDfvS5MCGssufEhqhdZcMZ-SBFux5_uPOUDoouLGKyPXp78i0OFaSCp7Uvp9FCZNefneLvW_1mZxvn-iVjo4-fP3yKuwoDseVSLGKXFtQHCSq0sq3NfeZ9QTNNE220lVQIJ4xNJDUFT7zBzdMKbJdWI3a9S3yKz70El7MgWt6EDU5W5zvBg4YD7vJ0aCoHNe6VIZ-NiVgGNcc4-20vbEoG_M3O_cNH22x9o5v_80e7BTc6g5u8a1fIbdjw5R242pbgPLsLX9tTFe9IXVanZOp97YmeTXHki8NjgiY98WvJRvKrv5_o0hE7WwapidBWIfsed2mt9-DLhbzUfdgsq9I_BMIkkpyz0tqMcc21CXo_ZsgKbqhwuogg6Wdd2U6IPdQDmakmICCVqkWKQqSoBikqi-DV6p6TVobk3N7vA5hWPYOEeHOhmk9Vx0gqT4eaZUgkSSG5EcwMhfOea00d0nhBI9jqMaU6XqvVGlARPF81IyMFN5MufbVs-6CVK7I0ggcthFcjQXM4CZp3EbzuMb1--L9f6NH5Y3kG1xDWam9nvPsYrrOwwkJc_XALNhfzpX8CV-z3xVE9f9osUQIHFw3vn7-NfBE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+snow+geese+algorithm+for+engineering+applications+and+clustering+optimization&rft.jtitle=Scientific+reports&rft.au=Bian%2C+Haihong&rft.au=Li%2C+Can&rft.au=Liu%2C+Yuhan&rft.au=Tong%2C+Yuxuan&rft.date=2025-02-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-88080-7&rft.externalDocID=10_1038_s41598_025_88080_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |