Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction
Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. Materials and methods Th...
Gespeichert in:
| Veröffentlicht in: | Magma (New York, N.Y.) Jg. 38; H. 2; S. 221 - 237 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.04.2025
|
| Schlagworte: | |
| ISSN: | 1352-8661, 0968-5243, 1352-8661 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Object
Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.
Materials and methods
This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.
Results
The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS’s efficiency in expediting iterative reconstruction while maintaining high-quality results.
Discussion
By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner. |
|---|---|
| AbstractList | Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.
This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.
The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.
By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner. Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.OBJECTSpatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.MATERIALS AND METHODSThis study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.RESULTSThe full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.DISCUSSIONBy offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner. Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. Materials and methods This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. Results The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS’s efficiency in expediting iterative reconstruction while maintaining high-quality results. Discussion By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner. |
| Author | Iyer, Siddharth S. Chatnuntawech, Itthi Cao, Xiaozhi Sandino, Christopher M. Tong, Elizabeth Liao, Congyu Ruengchaijatuporn, Natthanan Setsompop, Kawin Yurt, Mahmut Schauman, S. Sophie |
| Author_xml | – sequence: 1 givenname: S. Sophie orcidid: 0000-0002-3744-2553 surname: Schauman fullname: Schauman, S. Sophie email: sophie.schauman.academic@gmail.com organization: Department of Radiology, Stanford University, Department of Clinical Neuroscience, Karolinska Institute – sequence: 2 givenname: Siddharth S. surname: Iyer fullname: Iyer, Siddharth S. organization: Department of Radiology, Stanford University, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 3 givenname: Christopher M. surname: Sandino fullname: Sandino, Christopher M. organization: Department of Electrical Engineering, Stanford University – sequence: 4 givenname: Mahmut surname: Yurt fullname: Yurt, Mahmut organization: Department of Electrical Engineering, Stanford University – sequence: 5 givenname: Xiaozhi surname: Cao fullname: Cao, Xiaozhi organization: Department of Radiology, Stanford University – sequence: 6 givenname: Congyu surname: Liao fullname: Liao, Congyu organization: Department of Radiology, Stanford University – sequence: 7 givenname: Natthanan surname: Ruengchaijatuporn fullname: Ruengchaijatuporn, Natthanan organization: Center of Excellence in Computational Molecular Biology, Chulalongkorn University, Center for Artificial Intelligence in Medicine, Chulalongkorn University – sequence: 8 givenname: Itthi surname: Chatnuntawech fullname: Chatnuntawech, Itthi organization: National Nanotechnology Center, National Science and Technology Development Agency – sequence: 9 givenname: Elizabeth surname: Tong fullname: Tong, Elizabeth organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 10 givenname: Kawin surname: Setsompop fullname: Setsompop, Kawin organization: Department of Radiology, Stanford University, Department of Electrical Engineering, Stanford University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39891798$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:160824532$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNp9UUtvFSEUJqbGPvQPuDCzrAssj3nAyphbH02adFFdEy6ce6UyMALTRn-9jPfatC66AE7O9zjAd4wOQgyA0GtK3lFChrNMCectJqwuyhjD7Bk6orxjWPQ9PXhQH6LjnG8IYbQj_AU65FJIOkhxhPw5wNR40Cm4sG1ccMVp736DbUwcpwQ51zJDyAt8eg7e4dX120psbqOfRyjJmSZPuriIC4xTTNo3eV7XloEmgYkhlzSbioeX6PlG-wyv9ucJ-vbp49fVF3x59fli9eESm1Z0BZu17ZncgO1EL7S0gxna3q71htVN9qCBdq2EwQ6gq6JlpINeSiutGDixlJ8gvPPNdzDNazUlN-r0S0Xt1L71o1agJOmYaCv__Y5fkRGsgVDqKx7JHiPBfVfbeKsolbTlXFaH071Dij9nyEWNLhvwXgeIc1ac9qwbWsFYpb55OOx-yr9MKoHtCCbFnBNs7imUqCV4tQte1eDV3-DV4ir-ExlXllCWCzv_tJTvf6vOCVtI6ibOKdSAnlL9AXiGxg4 |
| CitedBy_id | crossref_primary_10_1109_TMI_2025_3559467 |
| Cites_doi | 10.1109/TBME.2014.2320463 10.1002/mrm.26977 10.1002/mrm.22826 10.1109/42.906424 10.1002/mrm.24540 10.1002/mrm.25486 10.1002/mrm.27673 10.1002/mrm.24751 10.1002/mrm.24577 10.1002/mrm.25156 10.1002/mrm.21245 10.1002/mrm.29141 10.1002/mrm.25674 10.1002/mrm.21236 10.1109/TMI.2018.2865356 10.1109/LGRS.2018.2802944 10.1038/s41598-020-70551-8 10.1109/TCI.2021.3097596 10.1002/mrm.25161 10.1002/mrm.21391 10.1016/j.jcp.2020.109675 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.22052 10.1002/mrm.27726 10.1109/TSP.2002.807005 10.1109/MSP.2007.914728 10.1038/s41598-020-70789-2 10.1002/mrm.28420 10.1002/mrm.25421 10.1002/mrm.26928 10.1002/mrm.28222 10.1109/ISBI.2007.357020 10.1002/mrm.29194 10.1002/mrm.21799 10.1109/ISBI.2016.7493320 10.1002/mrm.26639 10.1002/mrm.28733 10.1002/mrm.28706 10.1002/mrm.25513 10.1002/mrm.29916 10.1109/MSP.2019.2943645 10.1038/nature11971 10.1002/mrm.26102 10.1002/hbm.10062 10.1137/080716542 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS D8T ZZAVC |
| DOI | 10.1007/s10334-024-01222-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1352-8661 |
| EndPage | 237 |
| ExternalDocumentID | oai_swepub_ki_se_905284 PMC11914339 39891798 10_1007_s10334_024_01222_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Karolinska Institute – fundername: GE Healthcare funderid: http://dx.doi.org/10.13039/100006775 – fundername: National Institutes of Health grantid: R01EB020613; R01MH116173; R01EB019437; U01EB025162; P41EB030006 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NIH HHS grantid: U01EB025162 – fundername: NIH HHS grantid: P41EB030006 – fundername: NIH HHS grantid: R01EB020613 – fundername: NIH HHS grantid: R01EB019437 – fundername: NIH HHS grantid: R01MH116173 – fundername: NIBIB NIH HHS grantid: P41 EB030006 |
| GroupedDBID | --- --K -Y2 .86 .VR 06C 06D 0R~ 0VY 1B1 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 7X7 88E 88I 8FE 8FG 8FH 8FI 8FJ 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANXM AANZL AAPKM AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIUM ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACRPL ACSNA ACUDM ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADMUD ADNMO ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK5 LLZTM M1P M2P M41 M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9S PCBAR PF0 PHGZT PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R2- R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SEW SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD SSZ STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UHS UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 ZMTXR ZOVNA ~EX AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION AGQPQ CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AEUPX AFFHD AFPUW AOWAS D8T PHGZM PJZUB PPXIY PQGLB ZZAVC |
| ID | FETCH-LOGICAL-c485t-cbd629fed5868a9d7c746dbaf2dba96eae1549e7d7eac484205e699d9d8730d13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410562300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1352-8661 0968-5243 |
| IngestDate | Tue Nov 25 03:31:34 EST 2025 Tue Nov 04 02:02:42 EST 2025 Fri Sep 05 14:32:21 EDT 2025 Tue May 06 01:31:56 EDT 2025 Sat Nov 29 08:07:55 EST 2025 Tue Nov 18 21:55:28 EST 2025 Tue Mar 18 01:12:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deep learning Brain Algorithms Magnetic resonance imaging Image processing (computer-assisted) |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-cbd629fed5868a9d7c746dbaf2dba96eae1549e7d7eac484205e699d9d8730d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3744-2553 |
| OpenAccessLink | https://link.springer.com/10.1007/s10334-024-01222-2 |
| PMID | 39891798 |
| PQID | 3162574822 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_905284 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11914339 proquest_miscellaneous_3162574822 pubmed_primary_39891798 crossref_primary_10_1007_s10334_024_01222_2 crossref_citationtrail_10_1007_s10334_024_01222_2 springer_journals_10_1007_s10334_024_01222_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany |
| PublicationSubtitle | Official Journal of the European Society for Magnetic Resonance in Medicine and Biology |
| PublicationTitle | Magma (New York, N.Y.) |
| PublicationTitleAbbrev | Magn Reson Mater Phy |
| PublicationTitleAlternate | MAGMA |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | L Ying (1222_CR42) 2007; 57 Z Zhang (1222_CR43) 2018; 15 CA Baron (1222_CR20) 2018; 79 B Liu (1222_CR31) 2009; 61 JA Fessler (1222_CR35) 2003; 51 1222_CR50 1222_CR51 1222_CR53 1222_CR54 AG Christodoulou (1222_CR13) 2014; 61 K Hammernik (1222_CR23) 2018; 79 F Wajer (1222_CR19) 2001 Y Zhang (1222_CR46) 2001; 20 N Ben-Eliezer (1222_CR9) 2015; 73 PA Gómez (1222_CR55) 2020; 10 M Uecker (1222_CR17) 2015 KP Pruessmann (1222_CR36) 1999; 42 B Zhao (1222_CR10) 2015; 74 X Cao (1222_CR15) 2022; 88 O Norbeck (1222_CR38) 2020; 84 1222_CR40 C Huang (1222_CR7) 2013; 70 T Küstner (1222_CR27) 2020; 10 1222_CR44 1222_CR45 H Pedersen (1222_CR3) 2009; 62 X Cao (1222_CR49) 2024; 91 JA Fessler (1222_CR32) 2020; 37 D Ma (1222_CR1) 2013; 495 M Lustig (1222_CR30) 2008; 25 M Lustig (1222_CR29) 2007; 58 S Demir (1222_CR48) 2022; 87 S Kecskemeti (1222_CR2) 2016; 75 X Cao (1222_CR5) 2019; 82 D Kim (1222_CR39) 2021; 86 J Huang (1222_CR33) 2020; 419 JV Velikina (1222_CR8) 2015; 74 MZ Darestani (1222_CR52) 2021; 7 F Wang (1222_CR25) 2019; 81 1222_CR34 1222_CR6 HK Aggarwal (1222_CR22) 2018; 38 E Cole (1222_CR57) 2021; 86 JG Pipe (1222_CR41) 1999; 41 J Assländer (1222_CR14) 2018; 79 1222_CR26 S Iyer (1222_CR56) 2022 CM Sandino (1222_CR24) 2021; 85 T Zhang (1222_CR16) 2015; 73 M Mani (1222_CR21) 2015; 74 KT Block (1222_CR28) 2007; 57 FH Petzschner (1222_CR4) 2011; 66 JV Velikina (1222_CR11) 2013; 70 M Uecker (1222_CR37) 2014; 71 SM Smith (1222_CR47) 2002; 17 JI Tamir (1222_CR12) 2017; 77 A Beck (1222_CR18) 2009; 2 37034586 - bioRxiv. 2023 Mar 28:2023.03.28.534431. doi: 10.1101/2023.03.28.534431. |
| References_xml | – volume: 61 start-page: 2451 year: 2014 ident: 1222_CR13 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2320463 – volume: 79 start-page: 3055 year: 2018 ident: 1222_CR23 publication-title: Magn Reson Med doi: 10.1002/mrm.26977 – ident: 1222_CR51 – volume: 66 start-page: 706 year: 2011 ident: 1222_CR4 publication-title: Magn Reson Med doi: 10.1002/mrm.22826 – volume: 20 start-page: 45 year: 2001 ident: 1222_CR46 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – volume: 70 start-page: 1026 year: 2013 ident: 1222_CR7 publication-title: Magn Reson Med doi: 10.1002/mrm.24540 – volume: 74 start-page: 1086 year: 2015 ident: 1222_CR21 publication-title: Magn Reson Med doi: 10.1002/mrm.25486 – volume: 81 start-page: 3599 year: 2019 ident: 1222_CR25 publication-title: Magn Reson Med doi: 10.1002/mrm.27673 – volume: 71 start-page: 990 year: 2014 ident: 1222_CR37 publication-title: Magn Reson Med doi: 10.1002/mrm.24751 – volume: 70 start-page: 1263 year: 2013 ident: 1222_CR11 publication-title: Magn Reson Med doi: 10.1002/mrm.24577 – volume: 73 start-page: 809 year: 2015 ident: 1222_CR9 publication-title: Magn Reson Med doi: 10.1002/mrm.25156 – volume: 57 start-page: 1196 year: 2007 ident: 1222_CR42 publication-title: Magn Reson Med doi: 10.1002/mrm.21245 – volume: 87 start-page: 2380 year: 2022 ident: 1222_CR48 publication-title: Magn Reson Med doi: 10.1002/mrm.29141 – volume: 75 start-page: 1040 year: 2016 ident: 1222_CR2 publication-title: Magn Reson Med doi: 10.1002/mrm.25674 – start-page: 2486 volume-title: Berkeley Advanced Reconstruction Toolbox year: 2015 ident: 1222_CR17 – volume: 57 start-page: 1086 year: 2007 ident: 1222_CR28 publication-title: Magn Reson Med doi: 10.1002/mrm.21236 – volume: 38 start-page: 394 year: 2018 ident: 1222_CR22 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2865356 – volume: 15 start-page: 749 year: 2018 ident: 1222_CR43 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2018.2802944 – volume: 10 start-page: 1 year: 2020 ident: 1222_CR27 publication-title: Sci Rep doi: 10.1038/s41598-020-70551-8 – volume: 7 start-page: 724 year: 2021 ident: 1222_CR52 publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2021.3097596 – start-page: 767 volume-title: Major speedup of reconstruction for sensitivity encoding with arbitrary trajectories year: 2001 ident: 1222_CR19 – volume: 73 start-page: 655 year: 2015 ident: 1222_CR16 publication-title: Magn Reson Med doi: 10.1002/mrm.25161 – volume: 58 start-page: 1182 year: 2007 ident: 1222_CR29 publication-title: Magn Reson Med doi: 10.1002/mrm.21391 – volume: 419 year: 2020 ident: 1222_CR33 publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109675 – volume: 42 start-page: 952 year: 1999 ident: 1222_CR36 publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 62 start-page: 706 year: 2009 ident: 1222_CR3 publication-title: Magn Reson Med doi: 10.1002/mrm.22052 – start-page: 3466 volume-title: SMILR - Subspace MachIne Learning Reconstruction year: 2022 ident: 1222_CR56 – volume: 82 start-page: 289 year: 2019 ident: 1222_CR5 publication-title: Magn Reson Med doi: 10.1002/mrm.27726 – volume: 51 start-page: 560 year: 2003 ident: 1222_CR35 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2002.807005 – ident: 1222_CR45 – volume: 25 start-page: 72 year: 2008 ident: 1222_CR30 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2007.914728 – volume: 10 start-page: 13769 year: 2020 ident: 1222_CR55 publication-title: Sci Rep doi: 10.1038/s41598-020-70789-2 – ident: 1222_CR53 – volume: 85 start-page: 152 year: 2021 ident: 1222_CR24 publication-title: Magn Reson Med doi: 10.1002/mrm.28420 – ident: 1222_CR44 – volume: 74 start-page: 489 year: 2015 ident: 1222_CR10 publication-title: Magn Reson Med doi: 10.1002/mrm.25421 – ident: 1222_CR40 – volume: 79 start-page: 2685 year: 2018 ident: 1222_CR20 publication-title: Magn Reson Med doi: 10.1002/mrm.26928 – volume: 84 start-page: 1441 year: 2020 ident: 1222_CR38 publication-title: Magn Reson Med doi: 10.1002/mrm.28222 – ident: 1222_CR6 doi: 10.1109/ISBI.2007.357020 – volume: 88 start-page: 133 year: 2022 ident: 1222_CR15 publication-title: Magn Reson Med doi: 10.1002/mrm.29194 – volume: 61 start-page: 145 year: 2009 ident: 1222_CR31 publication-title: Magn Reson Med doi: 10.1002/mrm.21799 – ident: 1222_CR34 doi: 10.1109/ISBI.2016.7493320 – volume: 79 start-page: 83 year: 2018 ident: 1222_CR14 publication-title: Magn Reson Med doi: 10.1002/mrm.26639 – volume: 86 start-page: 1093 year: 2021 ident: 1222_CR57 publication-title: Magn Reson Med doi: 10.1002/mrm.28733 – volume: 41 start-page: 179 year: 1999 ident: 1222_CR41 publication-title: Magn Reson Imaging – ident: 1222_CR54 – volume: 86 start-page: 197 year: 2021 ident: 1222_CR39 publication-title: Magn Reson Med doi: 10.1002/mrm.28706 – volume: 74 start-page: 1279 year: 2015 ident: 1222_CR8 publication-title: Magn Reson Med doi: 10.1002/mrm.25513 – ident: 1222_CR50 – volume: 91 start-page: 987 year: 2024 ident: 1222_CR49 publication-title: Magn Reson Med doi: 10.1002/mrm.29916 – volume: 37 start-page: 33 year: 2020 ident: 1222_CR32 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2019.2943645 – volume: 495 start-page: 187 year: 2013 ident: 1222_CR1 publication-title: Nature doi: 10.1038/nature11971 – ident: 1222_CR26 – volume: 77 start-page: 180 year: 2017 ident: 1222_CR12 publication-title: Magn Reson Med doi: 10.1002/mrm.26102 – volume: 17 start-page: 143 year: 2002 ident: 1222_CR47 publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 – volume: 2 start-page: 183 year: 2009 ident: 1222_CR18 publication-title: SIAM J Imaging Sci doi: 10.1137/080716542 – reference: 37034586 - bioRxiv. 2023 Mar 28:2023.03.28.534431. doi: 10.1101/2023.03.28.534431. |
| SSID | ssj0021503 |
| Score | 2.3961523 |
| Snippet | Object
Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or... Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively... |
| SourceID | swepub pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 221 |
| SubjectTerms | Algorithms Basic Science - Reconstruction algorithms and artificial intelligence Biomedical Engineering and Bioengineering Brain - diagnostic imaging Brain Mapping - methods Computer Appl. in Life Sciences Data Compression - methods Deep Learning Health Informatics Humans Image Processing, Computer-Assisted - methods Imaging Imaging, Three-Dimensional Magnetic Resonance Imaging - methods Medicine Medicine & Public Health Phantoms, Imaging Radiology Research Article Solid State Physics Spatio-Temporal Analysis |
| Title | Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction |
| URI | https://link.springer.com/article/10.1007/s10334-024-01222-2 https://www.ncbi.nlm.nih.gov/pubmed/39891798 https://www.proquest.com/docview/3162574822 https://pubmed.ncbi.nlm.nih.gov/PMC11914339 http://kipublications.ki.se/Default.aspx?queryparsed=id:160824532 |
| Volume | 38 |
| WOSCitedRecordID | wos001410562300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1352-8661 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021503 issn: 1352-8661 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKrRCXQlugy2PlShVq1VraxE5sHxEUcemqKhTtzYrjSVmxCohQDvz6jh0nZaFCgksUxY9YHnv8jWb8DSEfy8TKUrqM8SJzaKDgTrcgKwZF4kbWSltZEZJNyPFYTSb6R7wU1nTR7p1LMmjqO5fdOBcMzxTm3UEpQ8X7Eo875RM2_Dw-7c0shDg8Xo_5f7v5I-gBrnwYHtn7SO_xiYYz6HDleaNfJa8j5qR77SJ5Q15A_ZYsfY9e9XdkdgBwSWP-iN906uOJEJ7fgqM-4jzQizva-FB3LP50ALMp2z_-jBVpq9w8yz9tQmw2i1xXM9qgSkKDHGiwuXue2jXy6_Dbyf4Ri1kYWClUds1K6_JUV-AylatCOxStyJ0tqhQfOocCPMsbSCdRhwsl0lEGudZOO4XawyV8nSzWFzW892FUiD_KtHJ5xQXkymZVhXBCpGjRI25MByTpBGPKSFHuM2XMzD9yZT-NBqfRhGk02OZL3-ayJeh4tPaHTt4G95F3jhQ1XPxpDE_QEpQC8dKAbLTy7_vjWmlP7DYgam5l9BU8R_d8ST09C1zdgT-Pcz0gX7t1YaKWaB4d52670OZ-ET-d4xsYPcoQWmw-rd8tspz6BMYh9GibLKLsYYe8Km-up83VkCzIiRqG3fQXE2EdYg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFA-isvmi-9SrbkYYY8MFbpu0TR7lqijqZUw3fAtNc6oXL1Xs1Qf_ek_StNudQ3AvpTQfDcnJye9wTn6HkE9FZLIiswnjeWLRQMGdbiArGeSR7RuTmdIIn2wiGw7l2Zn6Hi6F1W20e-uS9Jr6j8tunAuGZwpz7qCYoeKdE3hiOcb8Hye_OjMLIQ4P12P-3W76CHqEKx-HR3Y-0r_4RP0ZtLf0f6N_RRYD5qTbjZC8JjNQvSEvjoNX_S0Z7wBc05A_4pyOXDwRwvN7sNRFnHt6cUtrF-qOxV92YDxig5OvWJE2ys2x_NPax2azwHU1pjWqJDTIgXqbu-OpfUd-7u2eDvZZyMLACiGTCSuMTWNVgk1kKnNlcWlFak1exvhQKeTgWN4gsxnqcCFF3E8gVcoqK1F72Ii_J7PVVQUrLowK8UcRlzYtuYBUmqQsEU6IGC16xI1xj0TtwugiUJS7TBlj_Ztc2U2jxmnUfho1ttnq2lw3BB1P1t5s11vjPnLOkbyCq9ta8wgtwUwgXuqR5Wb9u_64ksoRu_WInJKMroLj6J4uqUYXnqvb8-dxrnrkWysXOmiJ-slxfm4EbeoX4dMlvoFW_QShxerz-t0gL_dPj4_00cHwcI0sxC6ZsQ9DWiezKAfwgcwXd5NRffPR76kHwUUfXg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQQNNeYLANChsYaZo2gbUmdhL7cVqpQEA1aT-0NyuOz1tFlVWk7GF_PWfHDSubJiFeqqix08Y-n7_Tff6OkO0qMUVV2IzxMrMYoOBKN1A4BmVi-8YUxhkRik0Uo5E8P1dHt07xB7b7PCXZnmnwKk31bH9q3f6tg2-cC4b7C_OpoZShE34sPJHex-vHZ13IhXCHx6My9_db3I7uYMy7VMkuX_qXtmjYj4bP_v9NVsnTiEXpQWs8z8kjqF-Q5e8x275GJgOAKY11JS7o2POMELbfgKWeiR5kxy1tPAUeb-8OYDJmh8d72JC2Ts-r_9MmcLZZ1MCa0AZdFQbqQEMs3unXrpPT4aeTw88sVmdglZDZjFXG5qlyYDOZy1JZnHKRW1O6FD9UDiV49TcobIG-XUiR9jPIlbLKSvQqNuEbZKm-quGVp1chLqlSZ3PHBeTSZM4hzBApRvqIJ9MeSeaTpKsoXe4raEz0H9FlP4wah1GHYdTY50PXZ9oKdzzY-v187jWuL580KWu4-tVonmCEWAjEUT3ysrWF7nlcSeUF33pELlhJ18Brdy_eqceXQcM76Opxrnrk49xGdPQezYP_c6c1uoWfiF_9wCvQqp8h5Hj9b899R5aPBkP97cvo6xuykvoax4GdtEmW0Axgizyprmfj5ufbsLx-A0N-KEI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+initialized+compressed+sensing+%28Deli-CS%29+in+volumetric+spatio-temporal+subspace+reconstruction&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Schauman%2C+S.+Sophie&rft.au=Iyer%2C+Siddharth+S.&rft.au=Sandino%2C+Christopher+M.&rft.au=Yurt%2C+Mahmut&rft.date=2025-04-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft.volume=38&rft.issue=2&rft.spage=221&rft.epage=237&rft_id=info:doi/10.1007%2Fs10334-024-01222-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10334_024_01222_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon |