Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction

Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. Materials and methods Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) Jg. 38; H. 2; S. 221 - 237
Hauptverfasser: Schauman, S. Sophie, Iyer, Siddharth S., Sandino, Christopher M., Yurt, Mahmut, Cao, Xiaozhi, Liao, Congyu, Ruengchaijatuporn, Natthanan, Chatnuntawech, Itthi, Tong, Elizabeth, Setsompop, Kawin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.04.2025
Schlagworte:
ISSN:1352-8661, 0968-5243, 1352-8661
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. Materials and methods This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. Results The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS’s efficiency in expediting iterative reconstruction while maintaining high-quality results. Discussion By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.
AbstractList Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results. By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.
Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.OBJECTSpatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.MATERIALS AND METHODSThis study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.RESULTSThe full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.DISCUSSIONBy offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.
Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. Materials and methods This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. Results The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS’s efficiency in expediting iterative reconstruction while maintaining high-quality results. Discussion By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.
Author Iyer, Siddharth S.
Chatnuntawech, Itthi
Cao, Xiaozhi
Sandino, Christopher M.
Tong, Elizabeth
Liao, Congyu
Ruengchaijatuporn, Natthanan
Setsompop, Kawin
Yurt, Mahmut
Schauman, S. Sophie
Author_xml – sequence: 1
  givenname: S. Sophie
  orcidid: 0000-0002-3744-2553
  surname: Schauman
  fullname: Schauman, S. Sophie
  email: sophie.schauman.academic@gmail.com
  organization: Department of Radiology, Stanford University, Department of Clinical Neuroscience, Karolinska Institute
– sequence: 2
  givenname: Siddharth S.
  surname: Iyer
  fullname: Iyer, Siddharth S.
  organization: Department of Radiology, Stanford University, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
– sequence: 3
  givenname: Christopher M.
  surname: Sandino
  fullname: Sandino, Christopher M.
  organization: Department of Electrical Engineering, Stanford University
– sequence: 4
  givenname: Mahmut
  surname: Yurt
  fullname: Yurt, Mahmut
  organization: Department of Electrical Engineering, Stanford University
– sequence: 5
  givenname: Xiaozhi
  surname: Cao
  fullname: Cao, Xiaozhi
  organization: Department of Radiology, Stanford University
– sequence: 6
  givenname: Congyu
  surname: Liao
  fullname: Liao, Congyu
  organization: Department of Radiology, Stanford University
– sequence: 7
  givenname: Natthanan
  surname: Ruengchaijatuporn
  fullname: Ruengchaijatuporn, Natthanan
  organization: Center of Excellence in Computational Molecular Biology, Chulalongkorn University, Center for Artificial Intelligence in Medicine, Chulalongkorn University
– sequence: 8
  givenname: Itthi
  surname: Chatnuntawech
  fullname: Chatnuntawech, Itthi
  organization: National Nanotechnology Center, National Science and Technology Development Agency
– sequence: 9
  givenname: Elizabeth
  surname: Tong
  fullname: Tong, Elizabeth
  organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
– sequence: 10
  givenname: Kawin
  surname: Setsompop
  fullname: Setsompop, Kawin
  organization: Department of Radiology, Stanford University, Department of Electrical Engineering, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39891798$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:160824532$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNp9UUtvFSEUJqbGPvQPuDCzrAssj3nAyphbH02adFFdEy6ce6UyMALTRn-9jPfatC66AE7O9zjAd4wOQgyA0GtK3lFChrNMCectJqwuyhjD7Bk6orxjWPQ9PXhQH6LjnG8IYbQj_AU65FJIOkhxhPw5wNR40Cm4sG1ccMVp736DbUwcpwQ51zJDyAt8eg7e4dX120psbqOfRyjJmSZPuriIC4xTTNo3eV7XloEmgYkhlzSbioeX6PlG-wyv9ucJ-vbp49fVF3x59fli9eESm1Z0BZu17ZncgO1EL7S0gxna3q71htVN9qCBdq2EwQ6gq6JlpINeSiutGDixlJ8gvPPNdzDNazUlN-r0S0Xt1L71o1agJOmYaCv__Y5fkRGsgVDqKx7JHiPBfVfbeKsolbTlXFaH071Dij9nyEWNLhvwXgeIc1ac9qwbWsFYpb55OOx-yr9MKoHtCCbFnBNs7imUqCV4tQte1eDV3-DV4ir-ExlXllCWCzv_tJTvf6vOCVtI6ibOKdSAnlL9AXiGxg4
CitedBy_id crossref_primary_10_1109_TMI_2025_3559467
Cites_doi 10.1109/TBME.2014.2320463
10.1002/mrm.26977
10.1002/mrm.22826
10.1109/42.906424
10.1002/mrm.24540
10.1002/mrm.25486
10.1002/mrm.27673
10.1002/mrm.24751
10.1002/mrm.24577
10.1002/mrm.25156
10.1002/mrm.21245
10.1002/mrm.29141
10.1002/mrm.25674
10.1002/mrm.21236
10.1109/TMI.2018.2865356
10.1109/LGRS.2018.2802944
10.1038/s41598-020-70551-8
10.1109/TCI.2021.3097596
10.1002/mrm.25161
10.1002/mrm.21391
10.1016/j.jcp.2020.109675
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.22052
10.1002/mrm.27726
10.1109/TSP.2002.807005
10.1109/MSP.2007.914728
10.1038/s41598-020-70789-2
10.1002/mrm.28420
10.1002/mrm.25421
10.1002/mrm.26928
10.1002/mrm.28222
10.1109/ISBI.2007.357020
10.1002/mrm.29194
10.1002/mrm.21799
10.1109/ISBI.2016.7493320
10.1002/mrm.26639
10.1002/mrm.28733
10.1002/mrm.28706
10.1002/mrm.25513
10.1002/mrm.29916
10.1109/MSP.2019.2943645
10.1038/nature11971
10.1002/mrm.26102
10.1002/hbm.10062
10.1137/080716542
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1007/s10334-024-01222-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1352-8661
EndPage 237
ExternalDocumentID oai_swepub_ki_se_905284
PMC11914339
39891798
10_1007_s10334_024_01222_2
Genre Journal Article
GrantInformation_xml – fundername: Karolinska Institute
– fundername: GE Healthcare
  funderid: http://dx.doi.org/10.13039/100006775
– fundername: National Institutes of Health
  grantid: R01EB020613; R01MH116173; R01EB019437; U01EB025162; P41EB030006
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIH HHS
  grantid: U01EB025162
– fundername: NIH HHS
  grantid: P41EB030006
– fundername: NIH HHS
  grantid: R01EB020613
– fundername: NIH HHS
  grantid: R01EB019437
– fundername: NIH HHS
  grantid: R01MH116173
– fundername: NIBIB NIH HHS
  grantid: P41 EB030006
GroupedDBID ---
--K
-Y2
.86
.VR
06C
06D
0R~
0VY
1B1
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAPKM
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIUM
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACRPL
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMUD
ADNMO
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK5
LLZTM
M1P
M2P
M41
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PCBAR
PF0
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R2-
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AEUPX
AFFHD
AFPUW
AOWAS
D8T
PHGZM
PJZUB
PPXIY
PQGLB
ZZAVC
ID FETCH-LOGICAL-c485t-cbd629fed5868a9d7c746dbaf2dba96eae1549e7d7eac484205e699d9d8730d13
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410562300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1352-8661
0968-5243
IngestDate Tue Nov 25 03:31:34 EST 2025
Tue Nov 04 02:02:42 EST 2025
Fri Sep 05 14:32:21 EDT 2025
Tue May 06 01:31:56 EDT 2025
Sat Nov 29 08:07:55 EST 2025
Tue Nov 18 21:55:28 EST 2025
Tue Mar 18 01:12:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Brain
Algorithms
Magnetic resonance imaging
Image processing (computer-assisted)
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-cbd629fed5868a9d7c746dbaf2dba96eae1549e7d7eac484205e699d9d8730d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3744-2553
OpenAccessLink https://link.springer.com/10.1007/s10334-024-01222-2
PMID 39891798
PQID 3162574822
PQPubID 23479
PageCount 17
ParticipantIDs swepub_primary_oai_swepub_ki_se_905284
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11914339
proquest_miscellaneous_3162574822
pubmed_primary_39891798
crossref_primary_10_1007_s10334_024_01222_2
crossref_citationtrail_10_1007_s10334_024_01222_2
springer_journals_10_1007_s10334_024_01222_2
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
PublicationSubtitle Official Journal of the European Society for Magnetic Resonance in Medicine and Biology
PublicationTitle Magma (New York, N.Y.)
PublicationTitleAbbrev Magn Reson Mater Phy
PublicationTitleAlternate MAGMA
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References L Ying (1222_CR42) 2007; 57
Z Zhang (1222_CR43) 2018; 15
CA Baron (1222_CR20) 2018; 79
B Liu (1222_CR31) 2009; 61
JA Fessler (1222_CR35) 2003; 51
1222_CR50
1222_CR51
1222_CR53
1222_CR54
AG Christodoulou (1222_CR13) 2014; 61
K Hammernik (1222_CR23) 2018; 79
F Wajer (1222_CR19) 2001
Y Zhang (1222_CR46) 2001; 20
N Ben-Eliezer (1222_CR9) 2015; 73
PA Gómez (1222_CR55) 2020; 10
M Uecker (1222_CR17) 2015
KP Pruessmann (1222_CR36) 1999; 42
B Zhao (1222_CR10) 2015; 74
X Cao (1222_CR15) 2022; 88
O Norbeck (1222_CR38) 2020; 84
1222_CR40
C Huang (1222_CR7) 2013; 70
T Küstner (1222_CR27) 2020; 10
1222_CR44
1222_CR45
H Pedersen (1222_CR3) 2009; 62
X Cao (1222_CR49) 2024; 91
JA Fessler (1222_CR32) 2020; 37
D Ma (1222_CR1) 2013; 495
M Lustig (1222_CR30) 2008; 25
M Lustig (1222_CR29) 2007; 58
S Demir (1222_CR48) 2022; 87
S Kecskemeti (1222_CR2) 2016; 75
X Cao (1222_CR5) 2019; 82
D Kim (1222_CR39) 2021; 86
J Huang (1222_CR33) 2020; 419
JV Velikina (1222_CR8) 2015; 74
MZ Darestani (1222_CR52) 2021; 7
F Wang (1222_CR25) 2019; 81
1222_CR34
1222_CR6
HK Aggarwal (1222_CR22) 2018; 38
E Cole (1222_CR57) 2021; 86
JG Pipe (1222_CR41) 1999; 41
J Assländer (1222_CR14) 2018; 79
1222_CR26
S Iyer (1222_CR56) 2022
CM Sandino (1222_CR24) 2021; 85
T Zhang (1222_CR16) 2015; 73
M Mani (1222_CR21) 2015; 74
KT Block (1222_CR28) 2007; 57
FH Petzschner (1222_CR4) 2011; 66
JV Velikina (1222_CR11) 2013; 70
M Uecker (1222_CR37) 2014; 71
SM Smith (1222_CR47) 2002; 17
JI Tamir (1222_CR12) 2017; 77
A Beck (1222_CR18) 2009; 2
37034586 - bioRxiv. 2023 Mar 28:2023.03.28.534431. doi: 10.1101/2023.03.28.534431.
References_xml – volume: 61
  start-page: 2451
  year: 2014
  ident: 1222_CR13
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2320463
– volume: 79
  start-page: 3055
  year: 2018
  ident: 1222_CR23
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26977
– ident: 1222_CR51
– volume: 66
  start-page: 706
  year: 2011
  ident: 1222_CR4
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22826
– volume: 20
  start-page: 45
  year: 2001
  ident: 1222_CR46
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906424
– volume: 70
  start-page: 1026
  year: 2013
  ident: 1222_CR7
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24540
– volume: 74
  start-page: 1086
  year: 2015
  ident: 1222_CR21
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25486
– volume: 81
  start-page: 3599
  year: 2019
  ident: 1222_CR25
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27673
– volume: 71
  start-page: 990
  year: 2014
  ident: 1222_CR37
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24751
– volume: 70
  start-page: 1263
  year: 2013
  ident: 1222_CR11
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24577
– volume: 73
  start-page: 809
  year: 2015
  ident: 1222_CR9
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25156
– volume: 57
  start-page: 1196
  year: 2007
  ident: 1222_CR42
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21245
– volume: 87
  start-page: 2380
  year: 2022
  ident: 1222_CR48
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29141
– volume: 75
  start-page: 1040
  year: 2016
  ident: 1222_CR2
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25674
– start-page: 2486
  volume-title: Berkeley Advanced Reconstruction Toolbox
  year: 2015
  ident: 1222_CR17
– volume: 57
  start-page: 1086
  year: 2007
  ident: 1222_CR28
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21236
– volume: 38
  start-page: 394
  year: 2018
  ident: 1222_CR22
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2865356
– volume: 15
  start-page: 749
  year: 2018
  ident: 1222_CR43
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2018.2802944
– volume: 10
  start-page: 1
  year: 2020
  ident: 1222_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-70551-8
– volume: 7
  start-page: 724
  year: 2021
  ident: 1222_CR52
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2021.3097596
– start-page: 767
  volume-title: Major speedup of reconstruction for sensitivity encoding with arbitrary trajectories
  year: 2001
  ident: 1222_CR19
– volume: 73
  start-page: 655
  year: 2015
  ident: 1222_CR16
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25161
– volume: 58
  start-page: 1182
  year: 2007
  ident: 1222_CR29
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– volume: 419
  year: 2020
  ident: 1222_CR33
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109675
– volume: 42
  start-page: 952
  year: 1999
  ident: 1222_CR36
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 62
  start-page: 706
  year: 2009
  ident: 1222_CR3
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22052
– start-page: 3466
  volume-title: SMILR - Subspace MachIne Learning Reconstruction
  year: 2022
  ident: 1222_CR56
– volume: 82
  start-page: 289
  year: 2019
  ident: 1222_CR5
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27726
– volume: 51
  start-page: 560
  year: 2003
  ident: 1222_CR35
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2002.807005
– ident: 1222_CR45
– volume: 25
  start-page: 72
  year: 2008
  ident: 1222_CR30
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2007.914728
– volume: 10
  start-page: 13769
  year: 2020
  ident: 1222_CR55
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-70789-2
– ident: 1222_CR53
– volume: 85
  start-page: 152
  year: 2021
  ident: 1222_CR24
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28420
– ident: 1222_CR44
– volume: 74
  start-page: 489
  year: 2015
  ident: 1222_CR10
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25421
– ident: 1222_CR40
– volume: 79
  start-page: 2685
  year: 2018
  ident: 1222_CR20
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26928
– volume: 84
  start-page: 1441
  year: 2020
  ident: 1222_CR38
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28222
– ident: 1222_CR6
  doi: 10.1109/ISBI.2007.357020
– volume: 88
  start-page: 133
  year: 2022
  ident: 1222_CR15
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29194
– volume: 61
  start-page: 145
  year: 2009
  ident: 1222_CR31
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21799
– ident: 1222_CR34
  doi: 10.1109/ISBI.2016.7493320
– volume: 79
  start-page: 83
  year: 2018
  ident: 1222_CR14
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26639
– volume: 86
  start-page: 1093
  year: 2021
  ident: 1222_CR57
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28733
– volume: 41
  start-page: 179
  year: 1999
  ident: 1222_CR41
  publication-title: Magn Reson Imaging
– ident: 1222_CR54
– volume: 86
  start-page: 197
  year: 2021
  ident: 1222_CR39
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28706
– volume: 74
  start-page: 1279
  year: 2015
  ident: 1222_CR8
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25513
– ident: 1222_CR50
– volume: 91
  start-page: 987
  year: 2024
  ident: 1222_CR49
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29916
– volume: 37
  start-page: 33
  year: 2020
  ident: 1222_CR32
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2019.2943645
– volume: 495
  start-page: 187
  year: 2013
  ident: 1222_CR1
  publication-title: Nature
  doi: 10.1038/nature11971
– ident: 1222_CR26
– volume: 77
  start-page: 180
  year: 2017
  ident: 1222_CR12
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26102
– volume: 17
  start-page: 143
  year: 2002
  ident: 1222_CR47
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10062
– volume: 2
  start-page: 183
  year: 2009
  ident: 1222_CR18
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/080716542
– reference: 37034586 - bioRxiv. 2023 Mar 28:2023.03.28.534431. doi: 10.1101/2023.03.28.534431.
SSID ssj0021503
Score 2.3961523
Snippet Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or...
Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 221
SubjectTerms Algorithms
Basic Science - Reconstruction algorithms and artificial intelligence
Biomedical Engineering and Bioengineering
Brain - diagnostic imaging
Brain Mapping - methods
Computer Appl. in Life Sciences
Data Compression - methods
Deep Learning
Health Informatics
Humans
Image Processing, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Phantoms, Imaging
Radiology
Research Article
Solid State Physics
Spatio-Temporal Analysis
Title Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction
URI https://link.springer.com/article/10.1007/s10334-024-01222-2
https://www.ncbi.nlm.nih.gov/pubmed/39891798
https://www.proquest.com/docview/3162574822
https://pubmed.ncbi.nlm.nih.gov/PMC11914339
http://kipublications.ki.se/Default.aspx?queryparsed=id:160824532
Volume 38
WOSCitedRecordID wos001410562300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1352-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021503
  issn: 1352-8661
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKrRCXQlugy2PlShVq1VraxE5sHxEUcemqKhTtzYrjSVmxCohQDvz6jh0nZaFCgksUxY9YHnv8jWb8DSEfy8TKUrqM8SJzaKDgTrcgKwZF4kbWSltZEZJNyPFYTSb6R7wU1nTR7p1LMmjqO5fdOBcMzxTm3UEpQ8X7Eo875RM2_Dw-7c0shDg8Xo_5f7v5I-gBrnwYHtn7SO_xiYYz6HDleaNfJa8j5qR77SJ5Q15A_ZYsfY9e9XdkdgBwSWP-iN906uOJEJ7fgqM-4jzQizva-FB3LP50ALMp2z_-jBVpq9w8yz9tQmw2i1xXM9qgSkKDHGiwuXue2jXy6_Dbyf4Ri1kYWClUds1K6_JUV-AylatCOxStyJ0tqhQfOocCPMsbSCdRhwsl0lEGudZOO4XawyV8nSzWFzW892FUiD_KtHJ5xQXkymZVhXBCpGjRI25MByTpBGPKSFHuM2XMzD9yZT-NBqfRhGk02OZL3-ayJeh4tPaHTt4G95F3jhQ1XPxpDE_QEpQC8dKAbLTy7_vjWmlP7DYgam5l9BU8R_d8ST09C1zdgT-Pcz0gX7t1YaKWaB4d52670OZ-ET-d4xsYPcoQWmw-rd8tspz6BMYh9GibLKLsYYe8Km-up83VkCzIiRqG3fQXE2EdYg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFA-isvmi-9SrbkYYY8MFbpu0TR7lqijqZUw3fAtNc6oXL1Xs1Qf_ek_StNudQ3AvpTQfDcnJye9wTn6HkE9FZLIiswnjeWLRQMGdbiArGeSR7RuTmdIIn2wiGw7l2Zn6Hi6F1W20e-uS9Jr6j8tunAuGZwpz7qCYoeKdE3hiOcb8Hye_OjMLIQ4P12P-3W76CHqEKx-HR3Y-0r_4RP0ZtLf0f6N_RRYD5qTbjZC8JjNQvSEvjoNX_S0Z7wBc05A_4pyOXDwRwvN7sNRFnHt6cUtrF-qOxV92YDxig5OvWJE2ys2x_NPax2azwHU1pjWqJDTIgXqbu-OpfUd-7u2eDvZZyMLACiGTCSuMTWNVgk1kKnNlcWlFak1exvhQKeTgWN4gsxnqcCFF3E8gVcoqK1F72Ii_J7PVVQUrLowK8UcRlzYtuYBUmqQsEU6IGC16xI1xj0TtwugiUJS7TBlj_Ztc2U2jxmnUfho1ttnq2lw3BB1P1t5s11vjPnLOkbyCq9ta8wgtwUwgXuqR5Wb9u_64ksoRu_WInJKMroLj6J4uqUYXnqvb8-dxrnrkWysXOmiJ-slxfm4EbeoX4dMlvoFW_QShxerz-t0gL_dPj4_00cHwcI0sxC6ZsQ9DWiezKAfwgcwXd5NRffPR76kHwUUfXg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQQNNeYLANChsYaZo2gbUmdhL7cVqpQEA1aT-0NyuOz1tFlVWk7GF_PWfHDSubJiFeqqix08Y-n7_Tff6OkO0qMUVV2IzxMrMYoOBKN1A4BmVi-8YUxhkRik0Uo5E8P1dHt07xB7b7PCXZnmnwKk31bH9q3f6tg2-cC4b7C_OpoZShE34sPJHex-vHZ13IhXCHx6My9_db3I7uYMy7VMkuX_qXtmjYj4bP_v9NVsnTiEXpQWs8z8kjqF-Q5e8x275GJgOAKY11JS7o2POMELbfgKWeiR5kxy1tPAUeb-8OYDJmh8d72JC2Ts-r_9MmcLZZ1MCa0AZdFQbqQEMs3unXrpPT4aeTw88sVmdglZDZjFXG5qlyYDOZy1JZnHKRW1O6FD9UDiV49TcobIG-XUiR9jPIlbLKSvQqNuEbZKm-quGVp1chLqlSZ3PHBeTSZM4hzBApRvqIJ9MeSeaTpKsoXe4raEz0H9FlP4wah1GHYdTY50PXZ9oKdzzY-v187jWuL580KWu4-tVonmCEWAjEUT3ysrWF7nlcSeUF33pELlhJ18Brdy_eqceXQcM76Opxrnrk49xGdPQezYP_c6c1uoWfiF_9wCvQqp8h5Hj9b899R5aPBkP97cvo6xuykvoax4GdtEmW0Axgizyprmfj5ufbsLx-A0N-KEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+initialized+compressed+sensing+%28Deli-CS%29+in+volumetric+spatio-temporal+subspace+reconstruction&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Schauman%2C+S.+Sophie&rft.au=Iyer%2C+Siddharth+S.&rft.au=Sandino%2C+Christopher+M.&rft.au=Yurt%2C+Mahmut&rft.date=2025-04-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft.volume=38&rft.issue=2&rft.spage=221&rft.epage=237&rft_id=info:doi/10.1007%2Fs10334-024-01222-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10334_024_01222_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon