Global asymptotic stability for a distributed delay differential-difference system of a Kermack-McKendrick SIR model

We investigate a system of distributed delay differential-difference equations describing an epidemic model of susceptible, infected, recovered and temporary protected population dynamics. A nonlocal term (distributed delay) appears in this model to describe the temporary protection period of the su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable analysis Ročník 102; číslo 12; s. 3463 - 3475
Hlavní autoři: Adimy, Mostafa, Chekroun, Abdennasser, Kuniya, Toshikazu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 13.08.2023
Taylor & Francis Ltd
Témata:
ISSN:0003-6811, 1563-504X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We investigate a system of distributed delay differential-difference equations describing an epidemic model of susceptible, infected, recovered and temporary protected population dynamics. A nonlocal term (distributed delay) appears in this model to describe the temporary protection period of the susceptible individuals. We investigate the mathematical properties of the model. We obtain the global asymptotic stability of the two steady states: disease-free and endemic. We construct appropriate Lyapunov functionals where the basic reproduction number appears as a threshold for the global asymptotic behavior of the solution between disease extinction and persistence.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-6811
1563-504X
DOI:10.1080/00036811.2022.2075352